Srivastava et al. Journal of Inequalities and Applications (2024) 2024:16 ® Journal of Inequalities and Applications
https://doi.org/10.1186/513660-024-03090-9 a SpringerOpen Journal

RESEARCH Open Access

Check for
updates

Faber polynomial coefficient inequalities for
bi-Bazilevic functions associated with the
Fibonacci-number series and the square-root
functions

H.M. Srivastava'****, Shahid Khan®, Sarfraz Nawaz Malik’, Fairouz Tchier®, Afis Saliu®” and Qin Xin'®

“Correspondence:
asaliu@utg.edugm Abstract

?Department of Mathematics, . L ) .
Umvpemy of the Gambia. Birkama Two new subclasses of the class of bi-Bazilevi¢ functions, which are related to the

Campus, MDI Road, Kanifing, Fibonacci-number series and the square-root functions, are introduced and studied in
Zeaﬁfé”da‘ PO.Box 3530, The this article. Under a special choice of the parameter involved, these two classes of

Full list of author information is Bazilevic¢ functions reduce to two new subclasses of star-like biunivalent functions
available at the end of the article related with the Fibonacci-number series and the square-root functions. Using the
Faber polynomial expansion (FPE) technique, we find the general coefficient bounds
for the functions belonging to each of these classes. We also find bounds for the
initial coefficients for bi-Bazilevi¢ functions and demonstrate how unexpectedly these
initial coefficients behave in relation to the square-root functions and the
Fibonacci-number series.

Mathematics Subject Classification: 30C45; 30C50

Keywords: Analytic functions; Univalent functions; Biunivalent functions; Bazilevi¢
functions; Fibonacci numbers; Faber polynomials expansions; Fekete; Szegd problem

1 Introduction and preliminaries

The study of finding bounds on the coefficients is and has remained a major problem in
Geometric Function Theory of Complex Analysis. The size of the coefficients of a given
analytic function can have an impact on a variety of characteristics, including univalence,
rate of growth, and distortion. Formulation of coefficient problems contains the estimation
of the general or nth coefficient bounds, the Fekete—Szeg6 problem, Hankel determinants,
and many other entities. A number of researchers have tackled the aforementioned coef-
ficient problems by using different techniques. For instance, Bieberbach [1] provided the
estimation on the second coefficient of univalent functions and conjectured a correspond-
ing estimate on the nth coefficient of a univalent function, which was finally settled by de
Branges [2]. Another interesting problem, which has a close relationship with the Bieber-
bach conjecture, was tackled by Littlewood and Paley (see [3]) by deriving the coefficient
bounds for odd univalent functions. Further, Fekete and Szego [4] obtained sharp bounds
for the difference of the first two coefficients of univalent functions. Then, the problem
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of finding bounds on coefficients received much attention for many other subclasses of
univalent functions. Additional information on this topic can be found in [5-7] and the
references cited therein.

Just like univalent functions, finding coefficient estimates for biunivalent functions has
been a subject of substantial interest in recent years. Evidently, researchers working on this
topic drew a lot of motivation from the groundbreaking research of Srivastava et al. [8].
Numerous fascinating examples of functions falling under the class of biunivalent func-
tions can be found in the work of Srivastava et al. [8]. Since bounds on these functions can
be utilized for predicting their geometry, coefficient problems are also crucial in the study
of biunivalent functions. For most of the subclasses of the biunivalent functions, finding
the bounds for the general coefficients is still an open problem. However, under some as-
sumptions, the general coefficient estimates for some particular subclasses of biunivalent
functions were obtained in recent years (see, for details [9-16]).

In this study, by using the Faber polynomial (see [17, 18]), we obtain coefficient bounds
for some classes of biunivalent functions. This polynomial has been extensively studied in
the past few years. This polynomial plays an important role in the mathematical sciences,
particularly in Geometric Function Theory of Complex Analysis. By employing the Faber
polynomial expansion technique, Hamidi and Jahangiri [19, 20] as well as Srivastava et al.
[21] developed new subclasses of biunivalent functions and discovered some novel and
useful characteristics. Several different subclasses of the analytic and biunivalent function
class were introduced and studied analogously by many other authors (see, for example,
[10, 22-27)).

Let A stand for the set of all holomorphic functions & in the open unit disk:

E= {z:ze(Cand |z| < 1},
which are normalized by
£0)=0 and £'(0)=1.

Each function & € A can, therefore, be expressed in the series form given by

E(2)=z+ Zanz”. (1.1)
n=2

Additionally, the members of the class S, which is a subclass of A4, are also univalent in E.
Each function & € S has an inverse function £7! = g, which is defined as follows:

2(@)=2z (zeE)
and

s(gw) =w (|w| <ro(E);ro(£) = }L)

The series expansion of the inverse function is given by

gw)=w- aw? + (2a§ - ﬂg)W3 - (Sag —5asa3 + a4)w4 e (1.2)
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An analytic function £ is called biunivalent in I if the function & and its inverse £ ! are
both univalent in E. The class of all biunivalent functions in E is denoted by X. By the
same token, a function £ is said to be bi-Bazilevi¢ in E if both the function and its inverse
are Bazilevi¢ in E (see [28]). The behavior of these types of functions is unpredictable and,
in fact, not much is known about their coefficients.

For &, &, € A, if the function & is subordinate to the function &, in E, denoted by

§1(z) < &2(2) (z€E),
then we have a function uy € A such that |u(z)| < 1, #0(0) = 0 and
£1(2) =& (uo(2)) (z€E).

The set of star-like functions of order « in E is denoted by the symbol S*(«) and we have

ZE'(2)
&(2)

S*(a):{é:éeSandfﬁ( )>a(0§a<1)}.
A class B(y, p) of analytic functions & was first studied by Bazilevi¢ [28] in 1955. Its
definition in an open unit disk E is as follows:

. Lyiy
i g

s(Z):<1 +sz /0 (p(t) — iyt 2 )[h(t)]mdt) , (1.3)

whereh € §*,p € P, p € R*and y € R. Bazilevic [28] also showed that 5(y, p) is a subclass
of S. The following inequality results upon taking y = 0 in (1.3) and then differentiating
each side:

z£'(2)
() >0 oy

wherein all the powers are considered to be principal values. Thomas [29] gave the name
“Bazilevi¢ functions of type p” for such type of functions that satisfy (1.4). Despite the fact
that the class B(p) is the largest subclass of univalent functions and contains a large num-
ber of known subclasses of S, little is known about the class B(y, p) of functions defined
by (1.3) or for the class B(p) in general. The class of Bazilevi¢ functions and the associ-
ated counterparts have undergone substantial research in a variety of areas. For further
information, see [30-33].

The idea of subordination was used in order to define many subclasses of analytic func-
tions. For instance, the Carathéodory class P of functions with positive real part can be
defined as follows:

P = {p:p(O): 1 and p(z) < 1—:(2615)}.

Geometric Function Theory of Complex Analysis is especially intriguing in the geomet-
ric structure of the image domain. On an understanding of the ranges of these functions,
other classes of analytic functions have been developed and explored. Several well-known
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subclasses of the class P can be created by substituting the function % with appropriate

functions. For instance, we cite the following special cases:
1. By taking
1+(1-2x)z
ol - U2 g2,
1-2z
we obtain the plane to the right of the vertical line u = « (see [34]).
2. By taking

1+4
-T2 L1<B<A<),
1+Bz

¢1(2)

1-AB
1-B2

we have the circular domain centered at
3. If we take

and with radius % (see [35]).

0(2) =z+1+22,

we obtain the crescent-shaped region that was studied in [36].
4. For

3
z
Z2)=1+z——,
¢3(2) 3

we have the nephroid domain that was investigated in [37].

5. If we set
1
2 ’

1+z \“
@4(z) = (T%) (Ol

we obtain the leaf-like domain (see [38]).

1%
v

1B

6. By taking ¢s(z) = 1 + sinz, we obtain the eight-shaped region (see [39]).
7. For

2,2 _
b5(2) = 1+122 (r:: 1 \/§>,

1-tz-1222
we have the shell-like domains studied in [40, 41]. The function

65(2) 1+1222
Z)= —"—/¥—/——
o 1-1z-122?

generates the shell-like curve. In a more detailed way, commonly known as a shell-like
curve, is produced by mapping the unit circle through the function ¢¢(z) given by:

V5 ) sinf;(4cosf; — 1)
= +i
2(3—-2cos6;)  2(3-2co0s6;)2(1 + cosby)

b6(e") (0 <6, <27).

The series representation for this significant function is as follows:

(0]
P6@) =1+ (1 +thy1)T"2"

n=1



Srivastava et al. Journal of Inequalities and Applications (2024) 2024:16

o0
=1+ Z T,7",
n=1

where
Tn = (un—l + Mn+l)rn (15)

and

y (-7t (T_l—\/g>
n - \/g - 2 )

which brings it closer to the Fibonacci numbers by producing a series of constant coeffi-
cients. For indepth research on the aforementioned functions and a large number of other
similar functions, see ([42—-48]) and the references cited therein.

8. The function ¢;(2) = +/1 + z yields the right-half of the lemniscate of Bernoulli, which
was introduced and studied in [49, 50]. Moreover, ¢,(z) = +/1 + z is an analytic function
with positive real part in the unit disk E, which satisfies the following conditions:

97(00=1 and ¢;(0)>0

such that the series expansion of the form ¢;(z) = +/1 + z is given as follows:

(2n = 2)!(-1)"1
¥7(2) = Z 1)'1/1‘22” —7"

o0
=1+Zan”

n=1
=1+Qiz+Qz’+ -,

where

_(2n- 2)!(=1)"1
Qu= W (1.6)

In our work, we shall use the function:

2.2
be(2) = 1+122 (r:l_ﬁ)

1-1z-1222 2

and the function
¢7(2) =1 +2z.

Definition 1.1 Let & be an analytic function and be of the form (1.1). Then, § € B’; (ps(2))
if and only if

z l_ﬂ,
<%> &'(2) < ps(2)

Page 5 of 19
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and

w \'*
(m) g/(W)<</’6(W),

where 0 < f<1landz,w e E.

Definition 1.2 Let & be an analytic function and be of the form (1.1). Then, & € Bg (p7(2))
if and only if

z \'"*,
(@) £'(2) < ¢7(2)

and

1-8
(ﬁ) Z) < g (),

where 0 < B <1andz,weE.

For 8 = 0, the above two classes of Bazilevi¢ functions reduce to two new subclasses of
star-like biunivalent functions related with the Fibonacci-number series and the square-

root function.

Definition 1.3 Assume that § is an analytic function and has the form given by (1.1).
Then, & € S (ps(2)) if and only if

zE'(2)
£(2)

< p6(2)

and

wg'(w)
gw)

< ‘/’6(W);

where z, w € E.

Definition 1.4 Suppose that £ is an analytic function and has the form (1.1). Then, § €
Sz (¢7(2)) if and only if

zE'(2)
£(2)

< ¢7(2)

and

wg'(w)
gw)

< ‘/’7(W);

where z, w € E.
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Throughout this article, we will be presuming that 0 < 8 < 1.

Next, with a view to introducing the Faber polynomial expansion (FPE) method and its
applications, we assume that the coefficients of the inverse map g of the analytic function
& can be expressed as follows by using the FPE method (see [51, 52]):

o 1
gw) =€ W) =w+ Y —6) (ar,as. .. a)w",

n=2

where

6;?1 = 6;?1(a2) azs... yﬂn)

I n s
TE2ns )m-1"2 Qe+ ))n-3) 2 P
+ —(—n)! aa,
(=2m + 3)i(m—4)! *
(-n)! e
B 2’)1)!(11 T *[as + (-n +2)a3]

(—I’Z)' n-6
t Cone g gt 2+ Dasa]

+ Za’{" O,

27

in which Q,, is a homogeneous polynomial in the variables a,, a3, ...,a, for 7 < j < n such
as (for example) (—n)! are symbolically interpreted as follows:

(-m)!'=T(1-n)=(-n)(-n-1)(-n-2)--- (neNg:=NU{0}={0,1,2,3,...}).

In particular, the first three terms of G, are given by:

21654 = (543 - 5axas + as).

In general, for v € Z := {0,41,%2,...} and n = 2, an expansion of &}, is of the following
form:
t(t—1)

p_ 2 e —
Sp=van+ — =Dyt gy Dt T P

where

D, =D, (az as,...).

Page 7 of 19
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Also, by [51, 52], we have

00
V@)t - - (@n)"

D@ ay) = Y e (g =Ty <),

M1ty eees Kps

n=1

The sum is taken over all nonnegative integers (i1, ..., i, that satisfy the following condi-
tions:

K1+ Mot Uy=V
and

W1+ 20+ + Uy, =N
Clearly, we have

Di(ar,...,an) = ay.

In this paper, we introduce new subclasses of analytic biunivalent functions connected
with the Fibonacci-number series and the square-root functions. We also obtain the es-
timates for the initial Taylor—Maclaurin coefficients for functions in each of these sub-
classes. Moreover, we investigate estimates for the general coefficients a, for functions in
these subclasses of biunivalent functions by using the Faber polynomial expansion (FBE)
method.

2 Main results
To prove our main results, we shall need the following known results (see [1]).

Lemma 2.1 Let

o0
V(@)= et
n=1
be a Schwarz function so that
’w(z)‘ <1 (|z| < 1).
Ify 20, then
lea+yei| S1+(y - Dlal.

In the following theorem, we use the Faber polynomial expansion method and determine
the unpredictable behavior of the coefficients’ estimates of the functions class Bg (p6(2))
defined by the Fibonacci-number series.

Theorem 2.2 Let & € Bg (96(2)) be given by (1.1). Also, let ax =0 (2 S k < n—1). Then,

T
2] < 221

(neN\({1,2}),

where T is given in (1.5) for all values of n.
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Proof For & € Bg (¢6(2)), then the FPE for (%)1"35/(2) is given by
z \'"* > ny\ g
— E)=1+ (1 + —)K (as,a3,...,a,:1)2". (2.1)
(s@)) Zl p) kTt
For the inverse mapping g = £, the FPE for ( ﬁ)l’ﬂ g'(w) is

w ' o0 "~
((@) gw) =1+ Z(l + E)Kk (b, b by )W, 02

n=1

where

1 _
bui = ——K " ay,a3,...,a01) (k2 1).
n+1

Furthermore, since & € Bg (p6(2)), by the definition of subordination, there exists a
Schwarz function ¥ (z) given by

o0
V@ =) o' (z€E)
n=1
such that

z l’ﬂ,
(%> £'(2) = 9 (V¥ (2))

[e¢} n
= 1+ZZTk6£(Cl’C2’---;Cn)Zn~ (23)

n=1 k=1

Similarly, we have

w \P
(m) gw) (wek).

There exists a Schwarz function g(z) given by

such that

w \P
((@) g W) =p1(q(w))

=1+ Y Ti&d,dy,...,dy)7" (2.4)

n=1 k=1

Evaluating the coefficients of equations (2.1) and (2.3), for any # = 2, we obtain

n-1

n

(1 + E)Gﬁ(az,as,m,am)an =Y TiSh(c, e Cm)- (2.5)
k=1
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Evaluating the coefficients of equations (2.2) and (2.4), for any # 2 2, we have
" n-1
(1 N E)gf(bz,bg, b = Y TiGEdr,dy . ). (2.6)

k=1

Solving for a; and taking the moduli of the coefficients of the Schwarz functions ¥ and g,
we obtain (see [1])

lcal 1 and  |du S 1.

Also, from the assumptions that 2 < k < n - 1 and a4 = 0, respectively, we obtain

b,=-a,
as well as
n
<1 + —),Bﬂn = T1Cn_1 (27)
B
and
n
—(1 + B)ﬁﬂn = Tldn—l' (28)

By solving equations (2.7) and (2.8) for a, and determining the moduli, and by the coeffi-
cients of the Schwarz functions ¥ (z) and g(w), we have |c,| < land |d,| <1, (see [1]):

|T1]
n+ B’

|a,| =
This completes the proof of Theorem 2.2. O
Theorem 2.3 If an analytic function & given by (1.1) belongs to the class Bé (p6(2)), and if
To=aT; (x>0),

then

2T < 2B+1)
< |V @oE O<Di= TG,

T, 2(8+1)
ﬂ_+11 (Tl 2 (13:2) )r
T,
las] £ —
B+2
and
Ty
2l < 7
az —aq| = )
| el B+1)(B+2)

where Ty and T, are given by (1.5).
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Proof Taking n =2 in (2.5) and (2.6), we have

(B +1ay =T (2.9)
and

~(B + Day = Thd,. (2.10)
From (2.9) and (2.10), we find that

¢ = —d. (2.11)

If we take the moduli of both sides of any of these two equations, for the coefficients of
the Schwarz functions ¥ and g given by (see [1])

lcal =1 and  |du =1,

we have

T
jas| £ 1. (2.12)
B+1
For n = 3, equations (2.5) and (2.6) yield

Wag +(B+2)az = Ticy +aTic} (2.13)

and
giggiﬁé—w+m@=n@+anﬁ, (2.14)
respectively. Thus, upon adding (2.13) and (2.14), we obtain
(1+B)(B +2)a3 = Ti[(c2 + acl) + (da + ady)].
Again, for the coefficients of the Schwarz functions v and g, we have
1+ B)(B +2lazl* < Th[|cs + aci| + |dy + adi|].
Thus, by Lemma 2.1, we have
(L+B)(B +2)las|* < Ta[1+ (¢ = Dler|* + 1+ (@ = Ddy [*].

Now, by using the moduli of the coefficients of the Schwarz functions, we obtain

2T,
1+B)(B+2)

las| < (2.15)



Srivastava et al. Journal of Inequalities and Applications (2024) 2024:16 Page 12 0of 19

Consequently, we note that

2T T
1+p)B+2) B+1

Multiplying equation (2.13) by (3 + 8) and equation (2.14) by (8 — 1), we obtain
208+ 1)(B +2)az = T1[(3 + B)(c2 + (@)ci) — (B = 1)(d2 + (-B)dy)]-

From Lemma 2.1, we have

T,

2 2
las| = m[(?) +,3)(1 + (- 1))|Cl| +(B - 1)(1 +(a—- 1))|d1| ]

Applying the moduli of the coefficients of the Schwarz functions to the above equation,
we have

T,

B+2)

las| <

Lastly, upon subtracting equation (2.13) from equation (2.14), if we use equation (2.11),
we find that

(B+1)(B+2)(as —a3) = Tilcy - da],

which can be rewritten as follows:

Ty
B+1)(B+2)

—TE

This completes the proof. O
Taking B = 0 in Theorem 2.2, we obtain Theorem 2.4 below for the class Sx(¢¢(2)).

Theorem 2.4 Let & € Sx(ps(2)) be an analytic function. Also, let ay =0 2(S k < n—1).
Then,

la,| £ 'i—” (ne N\ {1,2}). (2.16)

Taking B = 0 in Theorem 2.3, we obtain the following Theorem 2.5 for the class
Sz (96(2))-

Theorem 2.5 If an analytic function & given by (1.1) belongs to the class Sx(ps(z)), and if
Ty=aT; (a>0),
then

JT7 (0<T; 1),
las| < v O0<h=D (2.17)

% (Tl 2 1)»
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(2.18)
and
|as —a3| < —. (2.19)

In the following theorem, we use the Faber polynomial expansion method and determine
the unpredictable behavior of coefficient estimates of the functions class Bg (¢7(2)) defined
by the series of the square-root function.

Theorem 2.6 Let & € Bg (¢7(2)) be an analytic function. Also, let ar =0 2 < k< n-1).
Then,

<128 Geny 1,2)), (2.20)

n+p

where the value of Q; is given by (1.6) for all values of n.

Proof For € € Bg (¢7(2)), the FPE for (%)H’S/(z) is given by

1-8 oo
(%) E'(z)=1+ Z(l + %)I(f(az,ag,...,a,,+1)z”. (2.21)

n=1
For the inverse mappings g = £7%, the FPE for (ﬁ)l‘ﬂg’(w) is:

w 1_‘9, > ny\ g
(@> gw) =1+ Z<1 + E)Kk (b2, b3, ..., b)), (2.22)

n=1

where

1 _
bn+1 = I<]< (n+l)(ﬂ2’ as;.. -7an+l) (k Z 1)
n+1

Furthermore, since & € B‘; (¢7(2)), by the definition of subordination, there exists a
Schwarz function v (z) given by

o0
¥(z) = chz", zeE
n=1

such that
z \'7 ,
(%> £'(2) = ¢:(v(2)
=1+ Z Z QkGﬁ(cl,Q, ez (2.23)
n=1 k=1

Similarly, for ( ﬁ)l‘ﬂ g'(w), there exists another Schwarz function g(w) given by

qw) =) d,w"
n=1
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such that

w \'*
(m) gw) = ga(q(w))

n

=1+) Y Q&i(ddy,...,dy)2" (2.24)
n=1 k

=1

Evaluating the coefficients of equations (2.21) and (2.23), for any # = 2, we obtain

n-1
(1 + %)Gg(ﬂz,ﬂg,...,ﬂ,ﬁ.l)an = Zngﬁ(Cl,Cz,m,Cn—ﬂo (2.25)
k=1

Furthermore, by evaluating the coefficients of equations (2.22) and (2.24), for any n = 2,
we obtain

n-1
(1 + %>ef(b2,b3,...,bn) =Y QCH(dr,dy,...,dy). (2.26)
k=1

Solving for a, and taking the moduli of the coefficients of the Schwarz functions ¥ and g,
we have (see [1])

lcal 1 and  |du| S 1.

Also, from the assumptions that 2 < k < - 1 and a4 = 0; respectively, we obtain

b,=-a,
as well as
n
(1 + E)/gﬂn = Q1¢u1 (2.27)
and
n
—<1 + E)ﬂﬂn = Qldn—l' (228)

Thus, by solving equations (2.27) and (2.28) for a,, and determining the moduli with the
coefficients of the Schwarz functions ¥ (z) and g(w), which are |c,| <1 and |d,| < 1, re-
spectively (see [1]), we obtain

1ol
n+p’

lan] =

This completes the proof of Theorem 2.6. d

Theorem 2.7 [f an analytic function & given by (1.1) belongs to the class Bé (¢7(2)), and if

Q=aQ; (x>0),
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then
(0 < < 2ﬂ+1))
lag) < 1V (1+ﬂ)(ﬂ+2) Q= (B+2) (2.29)
1 (Q > 2£+21 )
las| = 2
and
jas a2 < B+ 1)(5 +2)

where Qy and Q, are given by (1.6).

Proof Taking n =2 in (2.25) and (2.26), we have

(B+1ay = Qi1 (2.30)

and

—(B + Day = Qud1. (2.31)

From (2.30) and (2.31), we obtain

¢ =—d. (2.32)

If we take the moduli of both sides of any of these two equations, for the coefficients of
the Schwarz functions ¥ and g given by

lesl =1 and |dy| =1,

we obtain

las| < 1 (2.33)
For n = 3, equations (2.5) and (2.6) yield

(B - 1)2(ﬁ+2) 24 (B +2)as = Qies + 2 Qi (2.34)
and

B+p)(B+2) @~ (B +2as = Qudy + aQud>, (2.35)

2

respectively. Thus, upon adding (2.34) and (2.35), we obtain

(1+B)(B +2)a3 = Q[ (c2 + ac) + (do + ad?)].
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Using the moduli of the coefficients of the Schwarz functions, we have
1+ B)(B +2Dlasl* < Qu[|ca + act| + |dy + adi|].

Thus, by Lemma 2.1, we have
L+ B)(B +Dlazl” = Q1+ (@ = Dieal” + 1+ (o = Dlr ).

Taking the moduli on both sides and using the fact that
leal 1 and  |du| =1,

we obtain

2,
= T pE

Consequently, we note that

2y y Q
1+B)(B+2) B+1

Multiplying equation (2.34) by (3 + 8) and equation (2.35) by (8 — 1), we obtain

2B +1)(B +2)az = Q[B + B)(c2 + (@)c2) = (B - 1)(ds + (-B)d2)].
Thus, by Lemma 2.1, we have

Q 2 2
las| = m[@ +,3)(1 + (o - 1))|C1| +(B - 1)(1 + (o - 1))|d1| ]

Also, for the coefficients of the Schwarz functions, we obtain

PRE
B+2

Lastly, upon subtracting equation (2.34) from equation (2.35), if we use relation (2.32),
we obtain

B+1D(B+ 2)(“3 —ai) = Q1ler —da|.

For the coefficients of the Schwarz functions v (z) and g(w), we have |¢,| <1 and |d,| <1,

respectively (see [1]), we obtain

Q
(B+1)(B+2)

I

Taking B = 0 in Theorem 2.6, we obtain the following result for the class Sy (¢7(2)).
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Theorem 2.8 Let & € Sx(¢7(2)) be an analytic function given by (1.1). Also, let ay =0 (2 <
k<n-1). Then,

a <120 (reny 1,2).
n
Taking 8 = 0 in Theorem 2.7, we deduce Theorem 2.9 below for the class S5 (¢7(2)).

Theorem 2.9 [fan analytic function & given by (1.1) belongs to the class Sx(7(z)), and if

Q=aQ; (x>0),

then
BV, Ql (0 < Ql S 1)7
las| < o
2 (Ql = 1):
s <%
and
Q
a5 -] < 2.

3 Conclusion

In our present investigation, we have introduced and studied the properties and character-
istics of functions belonging to two new subclasses of the class of bi-Bazilevi¢ functions,
which are related to the Fibonacci-number series and the square-root functions. Under
a special choice of the parameters involved, these two classes of Bazilevi¢ functions are
shown to reduce to two new subclasses of star-like biunivalent functions related with the
Fibonacci-number series and the square-root functions. We have applied the Faber poly-
nomial expansion (FPE) technique in order to find the general coefficient bounds for the
functions belonging to each of these functions’ classes. We have also established bounds
for the initial coefficients for bi-Bazilevi¢ functions and have demonstrated the unex-
pected behavior of these initial coefficients in relation to the square-root functions and
the Fibonacci-number series. The technique described in this article allows us to define
several new subclasses of analytic functions and meromorphic functions connected with
Fibonacci numbers and square-root functions. For these classes, we can determine the
nth coefficient bounds by using the technique of the Faber polynomial. Furthermore, we
can expand this work by incorporating Chebyshev polynomials, quantum calculus, sym-
metric quantum calculus, sigmoid activation functions, linear operators, and differential

operators.
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