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proposed for solving a G-variational inequality problem and a common fixed-point
problem of a finite family of G-nonexpansive mappings in the framework of Hilbert
spaces endowed with graphs, which extends the work of Tiammee et al. (Fixed Point
Theory Appl. 187, 2015) and Kangtunyakarn, A. (Rev. R. Acad. Cienc. Exactas Fis. Nat,,
Ser. A Mat. 112:437-448, 2018). Under certain conditions, a strong convergence
theorem of the proposed method is proved. Finally, we provide numerical examples
to support our main theorem. The numerical examples show that the speed of the
proposed method is better than some recent existing methods in the literature.
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1 Introduction
Assume that H is a real Hilbert space with an inner product (-,-) and its induced norm
| - II. Let C be a nonempty, closed, and convex subset of H and 7 : C — C be a nonlinear
mapping. A point x € C is called a fixed point of T if Tx =x. Let F(T):={x € C: Tx = x}
be the set of fixed points of 7. The mapping 7T is nonexpansive if | Tx - Ty| < |x - y| for
allx,y e C.

Denote by G = (V(G), E(G)) a directed graph, where V(G) and E(G) are the set of its
vertices and edges, respectively. Assuming that G has no parallel edges, we denote G™! as
the directed graph derived from G by reversing the direction of its edges, i.e.,

E(G™) ={(xy) : (%) € E(G)}.

In 2008, Jachymski [1] studied fixed-point theory in a metric space endowed with a
directed graph by combining the concepts of fixed-point theory and graph theory. The
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following contractive-type mapping with a directed graph was proposed. Given a metric
space (X,d), let G be a directed graph such that the set of its vertices V(G) = X and the set
of its edges E(G) consists of all loops, i.e., A = {(x,%) : x € X} € E(G). Amapping T: X — X
is said to be a G-contraction if it preserves the edges of G, i.e.,

xyeX, Xy €eEG) = (Tk),T(y)eEG)
and there exists « € (0,1) such that for any %,y € X,
%) €EG) = d(T),Ty)) <adx,y).

The generalized Banach contraction principle in a metric space endowed with a directed
graph was also established.
Given a nonempty convex subset C of a Banach space X and a directed graph G with

V(G) = C, then T : C — C is said to be G-nonexpansive if the following conditions hold:

1. T is edge preserving, i.e., (x,y) € E(G) = (Tx, Ty) € E(G) for any x,y € C;

2. (%,9) € E(G)= | Tx - Ty| < ||lx—y| foranyx,y € C.
This mapping was proposed by Tiammee et al. [2] in 2015. Moreover, Tiammee et al. [2]
also introduced Property G and the following Halpern iteration process for finding the set
of fixed points of G-nonexpansive mappings in Hilbert spaces endowed with a directed
graph. Suppose C has Property G. Let {x,} be a sequence generated by xy =« € C and

Xne1 = Putt + (1= B)Txy, n>0, (1)

where {8,} € [0,1] and T : C — C is a G-nonexpansive mapping. If {x,} is dominated by
Pr(ryxo and {x,} dominates xo, then {x,} converges strongly to Pr(r)x, under some suitable
control conditions.

In 2017, Kangtunyakarn [3] suggested G-S-mapping generated by a finite family of G-
nonexpansive mappings and finite real numbers and introduced the following Halpern
iteration associated with G-S-mapping for solving the fixed-point problem of a finite fam-
ily of G-nonexpansive mappings in Hilbert spaces endowed with graphs. Let {x,} be a
sequence generated by xy = u € C and

Xn+l = ,Bnu + (1 - ,Bn)an; n>0, (2)

where {8,} € [0,1], and S is a G-S-mapping. He showed that the sequence {x,} gener-
ated by (2) converges strongly to a point in F(S) = ﬂf\il F(T;) under some suitable control
conditions. Furthermore, in the past few years, several iterative methods have been intro-
duced for solving the fixed-point problem of G-nonexpansive mappings; see [4—8] and the
references therein.

For a given nonlinear operator A : C — H, we consider the following variational inequal-
ity problem of solving x € C such that

(y —x,Ax) >0, 3)

for all y € C. Denote by VI(C,A) the set of solutions of the variational inequality (3). The
variational inequalities were introduced in [9, 10], which has been extensively studied in
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the literature; see [11-13]. It is well known that # solves the problem (3) if and only if %
solves the equation

i=Pc(I-2A)i, VYAa>0.

This work focuses on the following G-variational inequality problem in Hilbert spaces
endowed with graphs, which Kangtunyakarn introduced [14] in 2020. In order to propose
this problem, he combined the concept of problem (3) with graph theory. Given a directed
graph G with V(G) = C, the G-variational inequality problems is to find a point x* € C
such that

(y—a",Ax*) >0, (4)

for all y € C with (x*,y) € E(G), where A is a mapping from C to H. We denote by
G-VI(C,A) the set of all solutions of (4).

Moreover, he also introduced the following G-a-inverse strongly monotone in Hilbert
spaces endowed with graphs: A mapping A : C — H is said to be G-a-inverse strongly
monotone if there exists a positive number « such that

(Ax - Ay,x - y) = o[ Ax - Ay|1%,

for all x,y € C with (x,y) € E(G). For more information on the G-variational inequality
problem and G-«-inverse strongly monotone, see [14].

Furthermore, the following method for solving the G-variational inequality problems
and the fixed-point problem of a G-nonexpansive mapping in Hilbert spaces endowed
with graphs were also introduced in [14]. Let {x,} be a sequence generated by xo =u € C
and

Xp+1 = Ol + ,BnPC(I - )‘A)xn + YuSxy, n>0, (5)

where {a,},{B,},{y.} € [0,1] with &, + B, + v» =1, A € (0,2a), S: C — C is a G-
nonexpansive mapping, and A : C — H is a G-a-inverse strongly monotone operator with
A71(0) #@. Under certain conditions, a strong convergence result of the algorithm (5) in
Hilbert spaces endowed with graphs was shown.

In this paper, motivated by Tiammee et al. [2], Kangtunyakarn [3], and Kangtunyakarn
[14], we study the G-variational inequality problem (4) and introduce a new method for
solving the G-variational inequality problem (4) and fixed-point problems of a finite family
of G-nonexpansive mappings in Hilbert spaces endowed with graphs as follows: Given
u = xg € C, let the sequences {x,} be defined by

Xp+l = PC(I - )\A)(,Bnu + (1 - ﬁn)sxn): n= O) (6)

where {8,} € [0,1], » € (0,2x), A : C — H is a G-a-inverse strongly monotone operator
with A71(0) # ¥, and S is a G-S-mapping generated by a finite family of G-nonexpansive
mappings and finite real numbers. We note that the proposed method (6) reduces to the
iteration process (2) when A = 0, P¢ = I and reduces to the iteration process (1) when A = 0,
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Pc =1, N =1and o} = 1. Under suitable conditions, a strong convergence theorem of the

proposed method is proved. In the last section, we provide numerical examples to support

our main theorem. The main result extends and improves the corresponding results. We

made the following contributions to this research.

3

The proposed method is constructed around the Halpern iteration process in [15] and
the regularization technique in [16]. In this case, our main results is to solve a
common solution of the G-variational inequality problem (G-VI(C,A)) and the
fixed-point problems of a finite family of G-nonexpansive mappings (ﬂf\il F(Ty)),
while the results in Tiammee et al. [2] and Kangtunyakarn [3] are to solve a solution of
the fixed-point problem of a G-nonexpansive mapping (F(7)) and a common solution
of the fixed-point problems of a finite family of G-nonexpansive mappings

(ﬂf\i1 F(T))), respectively.

Under certain mild conditions, the strong convergence of the iterative sequences
generated by the proposed method is established in Hilbert spaces endowed with
graphs.

Numerical examples in finite- and infinite-dimensional spaces are provided to
demonstrate the convergence behavior of our proposed method and the comparison
to the Halpern-type algorithms proposed in Algorithm 5 of Kangtunyakarn [14]. It is
shown that the proposed iterative method has a faster convergence speed (in terms of
CPU time and the number of iterations) than Algorithm 5 of Kangtunyakarn [14] (see
Sect. 4).

This paper is organized as follows. In Sect. 2, we first recall some basic definitions and lem-

mas. In Sect. 3, we propose a modified regularization method and analyze its convergence.

In Sect. 4, some numerical experiments are provided.

2 Preliminaries

For the purpose of proving our theorem, we provide several definitions and lemmas in this

section. For convenience, the following notations are used throughout the paper:

3

3

3

3

.

H denotes a real Hilbert space with an inner product (-, -) and an induced norm || - ||;
C denotes a nonempty, closed, and convex subset of H;

x, — q denotes the strong convergence of a sequence {x,} to g in H;

x, — q denotes the weak convergence of a sequence {x,} to g in H;

G = (V(G), E(G)) denotes a directed graph with V(G) = C and E(G) is convex.

Recall that the (nearest point) projection Pc from H onto C assigns to each x € H, there

exists the unique point Pcx € C satisfying the property

llx — Pex|| = min [|x — yl|.
yeC

The fact that H satisfies Opial’s condition is well known, i.e., for any sequence {x,} with

x, — x, the inequality

lim inf ||x, — x| < lim inf|x, — y||
n—00 n—00

holds for every y € H with y # x.

Lemma 2.1 ([17]) Forany u € H andv € C, Pcu = v ifand only if the inequality (u —v,v —
w) > 0 holds for all w e C.

Page 4 of 25
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Lemma 2.2 Foreveryp,qg€ H.If |p + gl = ||pll + llq||, there exists s > O such that q = sp or
p=3q.

Lemma 2.3 ([18]) Let {z,,} be a sequence of nonnegative real numbers satisfying
Zo1 <1 -a,)z, +1,, Yn>0,

where {a,} is a sequence in (0,1) and {t,} is a sequence of real numbers. If the following
conditions hold:

(1) Z;.zil ay = 00;

(2) limsup,_,,, 2= <0or Yoo lTul < 00,
then, lim,_, o z, = 0.

The following basic definitions of domination in graphs ([19, 20]) are needed to prove
the main theorem.

Given G a directed graph, a set X C V(G) is called a dominating set if there exists x €
X such that (x,z) € E(G) for every z € V(G) \ X, and we say that x dominates z or z is
dominated by x. Let z € V(G), a set X € V(G) is dominated by z if (z,x) € E(G) for any
x € X and we say that X dominates z if (x,z) € E(G) for all x € X. This work assumes that
E(G) contains all loops.

Definition 2.4 (Property G [2]) Let X be a normed space. A nonempty C C X is said to
have the Property G if every sequence {x,} in C converging weakly to x € C, there is a
subsequence {x,, } of {x,} such that (x,,,x) € E(G) for all k € N.

Theorem 2.5 ([2]) Let X be a normed space, and G be a directed graph with V(G) = X.
Let T : X — X be a G-nonexpansive mapping. If X has a Property G, then T is continuous.

Theorem 2.6 ([2]) Let C have the Property G.If T : C — C is a G-nonexpansive mapping,
and F(T) x F(T) C E(G), then F(T) is closed and convex.

Definition 2.7 ([2]) A graph G is called transitive if for any x,y,z € V(G) such that (x,y)
and (y,z) are in E(G), then (x,z) € E(G).

Lemma 2.8 ([14]) Let G be transitive with E(G) = E(G™) and let A : C — H be a G-a-
inverse strongly monotone mapping with A=1(0) # 0. Then, G-VI(C,A) = A™1(0) = F(Pc(I -
AA)), for all . > 0.

Lemma 2.9 ([14]) Let C have a property G and let A : C — H be a G-a-inverse strongly
monotone mapping with F(Pc(I — AA)) x F(Pc(I — LA)) C E(G), for all A € (0,2«). Then,
F(Pc(I —MA)) is closed and convex.

In 2017, Kangtunyakarn [3] introduced the G-S-mapping generated by a finite family of

nonlinear mappings and finite real numbers as follows.

Definition 2.10 ([3]) Foreveryi=1,2,...,N, let T; be a mapping of C into itself. For each

k=1,2,...,N, let ax = (af, &k, a¥) where of, ok, af € [0,1] and of + &% + &% = 1. Define the
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mapping S: C — C as follows:

Lo=1
El = 0[% T1£0 + O[%Eo + Ol;],
Ly = oszzﬁl + a%ﬁl + a%],

Eg = (X?Tgﬁg + C(SEQ + Ol:;[,

N-1 N-1 N-1
EN—I =0 TN—I£N—2 + 0y LN—Z + a3 1,

S= ,CN = (XIIVTN,CN_I + O[é\[,CN_l + Olévl
This mapping is called the G-S-mapping generated by 11, T5,..., Ty and o1, &g, ..., 0N

Lemma 2.11 ([3]) Let {Ti}f\il : C — C be a G-nonexpansive mapping with ﬂﬁl F(T;) the
dominating set. Let oy = (a¥, ok, aX), where of, of, ok € [0, 1] with oX + &k + ok = 1 forall k =
1,2,...,Nand o €(0,1) forall k=1,2,...,N — 1 and & € (0,1], of,a% € [0,1] for all k =
1,2,...,N.Let S: C — C be a G-S-mapping generated by T, T>,..., Ty and a1,a3,...,0N.
Then, F(S) = ﬂf\il F(T;) and S is a G-nonexpansive mapping.

Lemma 2.12 ([3]) Let C have the Property G.If T : C — C is a G-nonexpansive mapping,
then I — T is demiclosed at zero.

3 Main results

In this section, we establish a strong convergence theorem of a regularization algorithm
designed to solve the G-variational inequality problem and the fixed-point problem of a
finite family of G-nonexpansive mappings in a Hilbert space endowed with graphs.

Theorem 3.1 Let H be a Hilbert space and C C H be nonempty, closed, and convex.
Suppose a directed graph G with V(G) = C has Property G, and it is transitive with
E(G) = E(G™) is convex. Let A : C — H be a G-a-inverse strongly monotone operator
with A71(0) # 0. Let {T;}Y, : C — C be a G-nonexpansive mapping with ﬂﬁlF(Ti) the
dominating set. Let ay = (a¥, ok, ak), where of,af,ak € [0,1] with of + ok + ok =1 for
all k=1,2,...,N and o¥ € (0,1) for all k =1,2,...,N - 1 and o € (0,1], o%,a% € [0,1]
forall k=1,2,...,N. Let S: C — C be a G-S-mapping generated by T1,T5,..., Tn and
o1, 0,...,0N. Assume that

N
Q=(")E(T)NG-VI(C,A) #0
i=1
with ﬂf\il F(T;) x ﬂf\il F(T;) CE(G)and G-VI(C,A) x G-VI(C,A) C E(G), and there exists
x0 € C such that (xo, T1xo) € E(G). Let {x,,} be a sequence generated by xo = u € C and

Xp+l = PC(I - )\A)(,Bnu + (1 - ﬁn)sxn): n= O) (7)

where {B,} C [0,1] and X € (0,2a).
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If the following conditions hold.:
(i) limy—oo By =0and Y -, Bu = 00;
(ii) Z:il |Bns1 — Bul < 00;
(iii) (T, Ti1x) € E(G) foralli=1,2,...,N-1andx e C,
then, {x,} converges strongly to Pox,, where Pq, is a metric projection on 2, Poxy is domi-
nated by {x,}, Poxy is dominated by xy, and {x,} dominates x,.

Proof First, we show that
| Pe(t = 3.A)x = Pc(l = 2.4)y| < llx =1, ®)

for all x,y € C with (x,y) € E(G). Indeed, letting x,y € C with (x,y) € E(G), we have

| Pl = 2A)x — Pl = AAYy||* < -y — 1(Ax — Ay)||*

= |lx = ylI* = 2h{x - y, Ax — Ay)
+ A%||Ax — Ay|)?
<Ilx=ylI* = (20 — 1) || Ax — Ay

<llx-yl> )

From Lemmas 2.8 and 2.9, we have G-VI(C, A) is closed and convex. From Lemmas 2.11
and 2.12, we have F(S) = ﬂﬁl F(T;) is closed and convex. Then, €2 is closed and convex.
Moreover, from ﬂf\il F(T;) # ¥ and Lemma 2.11, we have ﬂf\il F(T;) = F(S) and S is a G-
nonexpansive mapping.

Next, we will show that (x,,%,.1) € E(G) for all # > 0.

Put x* = Poxo. Since x* is dominated by {x,}, we have (x,,x*) € E(G) for all n > 0.

Since x* is dominated by {x,}, we have (xo,x*) € E(G).

Since {x,,} dominates x(, we have (x,,xo) € E(G) for all n > 0.

Since E(G) = E(G™Y) and (x,,,%0) € E(G), then (%o, x,) € E(G) for all n > 0.

By the transitivity of E(G) and since (x,,x*), (x*,%0), (%0,%4+1) are in E(G), then
(%4, %441) € E(G) for all » > 0.

Putting y, = B,u + (1 — B,)Sx, for all n > 0, it follows that x,,; = Pc(I — LA)y, for all
n>0.

We now claim that (xo, Sx,,), (x,, Sx,), and (x,, y,,) are in E(G) for all # > 0.

Since E(G) = E(G™1) and (%9, x*) € E(G), we have (x*,x9) € E(G).

We now prove this result by using mathematical induction. By continuing in the same
direction as in Theorem 3.1 [3], we have (xg, Sxg) € E(G).

Since (%9, %0), (%0, Sxo) € E(G), and E(G) is convex, we have (xo, y0) € E(G).

Since S is G-nonexpansive and (xg,%1) € E(G), we obtain (Sxo, Sx1) € E(G).

By the transitivity of E(G) and since (xo, Sxo), (Sxo, Sx1) are in E(G), we obtain (x9, Sx1) €
E(G).

As E(G) is convex and (xg, xo), (%0, Sx1) are in E(G), we have (xo,y,) € E(G).

By the transitivity of E(G) and since (x1, o), (¥, Sx1) are in E(G), we have (x1, Sx1) € E(G).

By the transitivity of E(G) and since (x1,%), (x0,¥1) are in E(G), we have (x1,y1) € E(G).

Suppose that (xo, Sxx) € E(G) for all k > 0. Since (xo,x0), (x0,Sxx) € E(G) and E(G) is
convex, we have (xg, yx) € E(G) for all k > 0.
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Since S is G-nonexpansive and (xx,xx.1) € E(G) for all k > 0, we obtain (Sxy, Sxx.1) €
E(G) for all k > 0.

By the transitivity of E(G) and since (xo, Sxx), (Sxk, Sxx+1) are in E(G) for all k > 0, we
obtain (xg, Sxx,1) € E(G) for all k > 0.

As E(G) is convex and (xg,%0), (%0, Sxk+1) are in E(G) for all k > 0, we have (xo, yki1) €
E(G) for all k > 0.

By the transitivity of E(G) and since (xk.1,%0), (*0, yx+1) are in E(G) for all k > 0, we have
(%k+1,Yk+1) € E(G) for all k > 0.

By the transitivity of E(G) and since (xx41,%0), (¥0,Sxk+1) are in E(G) for all k > 0, we
have (xx,1, Sxxs1) € E(G) for all k > 0.

From induction, we obtain that (xo, Sx,), (x,, Sx,), and (x,,,y,), are in E(G) for all n >
0. Moreover, By the transitivity of E(G) and since (x*, %), (x0,y,) are in E(G), we have
(x*,y,) € E(G) for all n > 0.

From Lemma 2.8, we obtain G-VI(C,A) = A~}(0). Then, x* € A~1(0). Since Ax* = 0, we
have

[Pt =24y =2 |” < 3 - 2" = 24y,
=y =] = 203 = #*, Ay — Ax) + 22| Ayall®
< |l =« |* = 20| Ay, — Ax* | + 221 Ay, 1>
= [l =2 ])* = A(20 = 1)1 Ay, |1

2
S 10
From the definition of x,,, (10), and since S is a G-nonexpansive mapping, we have

[n1 =27 < [y =27
< || Bute + (1 = B)Sxn — x*||
<oty |u—x| + (1= By)| Sxn — &
< oyflu =2 + (1= Bo) | - 27|

< max{”u—x* ,

xl—x*”}. (11)

By using mathematical induction, we conclude that the sequences {x,}, {Pc(I — 2A)y,},
and {Sx,} are all bounded.

From the definition of x,, and (9), we have

%01 = %ull < | PcU = 2A)yu — Pc(I = LAYy, |
= Yn = yuall
< ||Bute + (1 = Ba)Satn — o1t = (1 = 0t1) S |
< 1Bn—atpalllull + (L= B)lISxn — Syt || + 1Bn — 1] 1S ||

<A -BIlxn —xpall + 2M| B — 1l
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where M = max,en{||#|, [|Sx,|}. Applying Lemma 2.3, and conditions (i) and (ii), we have
lim [|%,41 — x| = 0. (12)
n—0oQ

Since x,,,1 = Pc(I — AA)y,, then we also have
lim | Pc( - AA)y, — x| = 0. (13)
n— 00

By the nonexpansiveness of P¢, we obtain

%1 = 2| = | Petl = 2A)y, - Pe(l - 1A)x" |

< =24y, - (1 - 220"
= ||lyn — " = A(Ay, — Ax™) ||2
= ||y,, -x* ||2 - ZA(yn -x*, Ay, —Ax*) +22 ||Ay,, - Ax* ||2 (14)

From the definition of y, and since S is G-nonexpansive, we have

[y =21 < Bullu ="+ @0 = o) Sws —*[
< Bulu=a "+ = ) oo =[]

5,3,,Hu—x*||2+ ||x,,—x*||2. (15)
From (14) and (15), we obtain

[t =" < B =[P+ = |~ 203~ °, Ay~ A%
+ 2| Ay, - Ax* |
< Bulu=' [ + o= | - 20ty - A
+ 1% Ay, — Ax* ||2

< B Hu —x* ”2 + Hx,, —x* H2 —A2a - 1) ”Ay,, - Ax* ”2
It follows that

120 = 1) Ay = A% [P < Bl = + vn =" = oiwas =27

< Bullw =27+ (Jon = 2| + [omer =2 ) 101 = 2l
From the condition (i) and (12), we obtain
lim || Ay, - Ax*| = 0. (16)
n—oQ
From the definition of Pc(I — AA), we have

|Pctl = 2A)y, - &*|” < |Pcll = 2A)y, - Pcll = 2A)" |
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= (1= A, = =24, Pl - 1Ay, - ")
1
= UG =241, - € =208 + | Pt = 241 -

[ =AYy - (=AW — (Pell - Ay, - 2%) ]

1
< Sl =+ [Pett - 24y, - 2|
= [ = Petr =21 = (A - 45') ]
1
< s [Bullu=a + fwa ="+ | Pl = 2AYy =5

~ = Peld = 2A)y, | = 32| Ay, - Ax*|
+ 20yn = Pe = 2A)yn, Ay, — Ax")|

1
SBullu =21+ fwn ="+ |Pett = 2AYy —°

— |y = Pclt = 2A)y,||* - 3| Ay, - Ax*|?

IA

+2M )| yn = PcU = LAy, | | Ay — Ax*||].
It follows that

[t = = |Pctt =)y, s
< Bulu=' [ + o= = [~ Pt = 2

-2 ||Ayy, - Ax* ||2 + 2 Hy,, —Pc(I-21A)y, || ||Ayy, - Ax* || (17)
From (17), we have

”yn ~Pc(I-21A)y, H2 < B ”M —-x* ”2 + (”xn =z + [|%n41 _Z”)”xwrl = %]
+ 24 ||y = Pc( = AA)y, || | Ayn — Ax*|). (18)

From the condition (i) and (12), (16), and (18), we have
lim [[Pc( = 2A)y, — yu | = 0. (19)
Since

190 = %ull < |[yn = Pcl = M)y, || + | Pcl = 2A)y, — %,

)

from (13) and (19), we have
lim ||y, — x| = 0. (20)
n—0oQ

From the definition of y,, condition (i), and (20), we obtain

lim ||x, — Sx,|| = 0. (21)
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Since {x,} is bounded in a Hilbert space H and C has the property G, without loss of
generality, we may assume that there is a subsequence {x,,} of {x,} with {x,, } — o for
some o € C and (x,,, ) € E(G). Since lim,_, o [|y» — %,|| = 0, then we obtain y,, — w as
k — 00. By Lemma 2.12 and (21), we obtain w € F(S). This implies that

w e E(T). (22)

By the transitivity of E(G) and (y,,, %), (%, w) being in E(G), we obtain (y,,, ) € E(G)
forall k € N. Assume that  # Pc(I — AA)w. From Opial’s condition, (9), (19), and (y,,, ) €
E(G), we obtain

likminf Iy, — @l < likminf” Y = Pcl =1 A)o|
< Timinf(|y, — Pl = 2A)y || + |Pcll = 1)y, — Pc(l - 2A)o])

< likminf||ynk -o|.
This is a contradiction. Then, w € F(Pc(I — AA)). Therefore, from Lemma 2.8, we have
w e G-VI(C,A). (23)

From (22) and (23), we can conclude that w € Q.

Since x,,, — w and w € 2, we have

lim sup(x,, —x*, %0 —x*) = lim (x,,k —x*, %0 —x*) = (w —x*, %0 —x*) <0, (24)
n—00 k—o00

where x* = Pqxy. From the definition of x,, and (10), we have

Jwer = [|” = | Pt - 2A)y, - Pell - 2.4)x" |
< o[’

<(1-8) ”xn - ”2 + Zﬁn(xnﬂ —x*,%0 — x*>-

Applying Lemma 2.3, (24), and the condition (i), we can conclude that the sequence {x,}

converges strongly to x* = Pox. This completes the proof. O
In our main results, if we choose N = 1 and ¥ = 1, then we obtain the following result.
Corollary 3.2 Let C have the Property G and G be transitive with E(G) = E(G™). Let A :

C — H be a G-a-inverse strongly monotone operator with A~(0) #¥. Let T: C — C be a

G-nonexpansive mapping. Assume that

Q= F(T)N G-VI(C,A) %
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with F(T) x F(T) C E(G) and G-VI(C,A) x G-VI(C,A) C E(G), and there exists xy € C
such that (x, Txo) € E(G). Let {x,} be a sequence generated by xo = u € C and

X0 € C,
Vn = Burt + (1= B,) Tx, (25)
Xntl = PC(I - )‘A)ynr n=>0,

where {8,} C [0,1] and X € (0,2a).
If the following conditions hold.:
(i) limy—oo Bu=0and Y oo, By = 00;
(i) Y poy 1Bue1 — Bul < 00,
then, {x,} converges strongly to Pox,, where Pg, is a metric projection on 2, Pox is domi-

nated by {x,}, Paxo is dominated by xy, and {x,} dominates x,.
Taking A = 0 and P¢ = I in Theorem 3.1, then we obtain the following result.

Corollary 3.3 Let C have the Property G and G be transitive with E(G) = E(G™). Let
{T,'}f\il : C — C be a G-nonexpansive mapping with ﬂﬁl F(T;) the dominating set. Let
a = (of, of, ak), where of, o, ok € [0,1] with of + ok + ok =1 forall k = 1,2,...,N and
a/f €(0,1) forallk=1,2,...,N — 1 and & € (0,1], aé‘,alg €[0,1] forallk=1,2,...,N. Let
S:C — C be a G-S-mapping generated by T1,Ts,..., Ty and o1, 0, ..., B,. Assume that

N
Q=(")E(T) N G-VI(C,A) #0

i=1

with ﬂﬁl F(T;) x ﬂf\il F(T;) € E(G), and there exists xo € C such that (xo, T1xo). Let {x,}

be a sequence generated by xy = u € C and

X0 € C,
Xpe1 = Buut+ (1= B,)Sx,, n>0,

(26)

where {8,}  [0,1].
If the following conditions hold:
(i) limy—oo By =0and Y-, Bu = 00;
(i) 300, 1Bust — Bul < 005
(iti) (T, Tiy1x) € E(G) foralli=1,2,...,N—-1landx € C,
then, {x,} converges strongly to Pox,, where Pq, is a metric projection on 2, Pox, is domi-

nated by {x,}, Poxy is dominated by x,, and {x,} dominates x,.

Taking A =0, Pc =1, N = 1, and oY = 1 in Theorem 3.1, then we obtain the following

result.

Corollary 3.4 Let C have the Property G and G be transitive with E(G) = E(G™). Let T :
C — C be a G-nonexpansive mapping. Assume that F(T) # ) with F(T) x F(T) C E(G),
and there exists xo € C such that (xo, Txo). Let {x,} be a sequence generated by xo =u € C
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and

X0 € C,
Xp1 = Butt + (1 - ﬂn)Txm n>0,

(27)

where {B8,} < [0, 1].
If the following conditions hold:
(i) limy—oo By =0and > o) By = 00;
(il) Yooy |Bus1 — Bul < 00,
then, {x,} converges strongly to Prr\xo, where Py is a metric projection on F(T), Prryxo
is dominated by {x,}, Pr(r\Xo is dominated by xo, and {x,} dominates x.

Remark 1 We have the following consequences of Theorem 3.1:
1. The results of Kangtunyakarn [3] is a special case of Theorem 3.1 by taking A = 0
and Pc =1.
2. The results of Tiammee et al. [2] is a special case of Theorem 3.1 by taking A =0,
Pc=I,N=1,anda} = 1.

4 Examples and numerical results
In this section, we provide some numerical examples to support our obtained result. To
obtain these results, we recall some lemmas as follows.

Lemma 4.1 [14] Let G = (V(G), E(G)) be a directed graph with V(G) = C dominating z for
all z € C. Let E(G) be convex and G be a transitive with E(G) = E(G™). Let S: C — C be a
G-nonexpansive mapping with F(S) # 0 and F(S) x F(S) C E(G). Then,

() 1-Sis G—%-inverse strongly monotone;

(i) G-VI(C,I - S) = F(S).

We now provide an example to support our main result.

Example 4.2 Let H = R and C = [0, 1.5] with the usual norm ||x —y|| = |x — y| and let G =
(V(G), E(G)) be a directed graph such that V(G) = C, E(G) = {(x,¥) : x,y € [0, 1] with |x —
y| < 1}. Forevery i=1,2,...,N, define the mapping T; : [0,1.5] — [0, 1.5] by

141 H
Z+(1-2)5 ifxeo1],

0 ifx e (1,1.5].

T,»x = (28)

Let S:[0,1.5] — [0,1.5] be a G-S-mapping generated by 71, T5,..., Ty and oy, g, ..., 0,
where

(1 5-1(6-1\5-1(1
ai = 5i’ 5i 6 ’ 5 6

foralli=1,2,...,N and let A : [0,1.5] — R be a mapping defined by

2
X 7

Ax=x—— - —, (29)
4 16

for all x € [0, 1.5].
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Suppose that the sequence {x,} is generated by u = x¢ = é and

1
Xp+l = P[O 1.5] <I - _A) (ﬂnu +(1- ,Bn)an) (30)
where 8, = 2n+2 forall » > 0.
Then, the sequence {x,} converges strongly to PmN T)NG-VI(C,A)XO0 = { }.

Solution. It is clear that A™(0) #, since § € A~ 1(0) and E(G) = E(G™). Letx,y € [0,1.5]

with (x,y) € E(G). It is easy to check that T; is a G-nonexpansive mapping for all i =
., N such that ﬂﬁl F(T;) = {%}. However, it is not nonexpansive, as |x — y| <|Tix— lel

foralli=1,2,...,N, wherex =1,y = 1.1. Let v € V(G) — "X, E(T7). ). Since 3 € MY, E(T,
we have |% —v| < 1. It follows that ﬂﬁ\il F(T;) is the dominating set. Letx € V(G) =1, 1.5] =
[0,1]U (1,1.5]. Then,

Case x € [0,1]. Then,

1

x 1\1 x 1
Tix:21 (1_5)2 and Ti”x:ﬁ-‘—(l_ﬁ)i’

for all i = 1,2,...,N — 1. Since [0,1] is convex, we have Tix, T;,1x € [0,1] for all i =
1,2,...,N — 1. Observe that

<1

——x

|Ti1x — Tix| = 5

2i+1

Then, (T;;1x, Tix) € E(G) foralli=1,2,...,N - 1.
Case x € (1,1.5]. It is obvious that | Tjx — T;,1x| < 1. Then, (Tix, T;;1x) € E(G) for all i =

1,2,...,.N-1.

It is easy to check that 7 is a G-nonexpansive mapping, where 7 x = %2 + 1—76 forallx €
[0,1].

Since Ax = x — Zz - L = -T)x for all x € [0,1], T is a G-nonexpansive mapping

and from Lemma 4.1, we have A is G-3-inverse strongly monotone. Then, NN E(T) N
G-VI(C,A) = {3}.
For every z € [0, 1], we have

1 1
I--A)z=2z--Az
(-5)+3

52 1(/z*> 3 28
=24+ 24 e[0,1].
6 6\ 4 4 48

From the definition of Pc, we have

1
P[O,I.S] <[ — EA)Z S [0, 1], (31)

forall z € [0,1].
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Putting xo = % and y, = Bu + (1 — B,)Sx, for all n > 0, from (31), we have P15 —
iA)xo € [0,1]. This implies that Tixy € [0,1] and |xo — T1x9| < 1. This implies that
(%0, T1%0) € E(G).

From the definition of S and xg = %, we have Sxq € [0, 1]. It follows that (x, Sx) € E(G).

From xy, Sxg € [0, 1] and the definition of y,, we have y, € [0, 1] for all n > 0.

From (31) and y, € [0, 1], we have P 5/(] — éA)yo € [0,1]. This implies that x; € [0,1].

Continuing in this way, we have x,, € [0,1] for all # > 0.

Since PﬂﬁlP(T,v)ﬂG»VI(C,A)xO = {%} and x, € [0,1] for all # > 0, we have |x, — %I < 1. This
implies that (xy,,ng\il F(Ti)mG_W(CA)xO) € E(G). Then, me\:/l FI)NG-VI(C,A)¥0 1 dominated by
{2}

It is obvious that {x,} dominates xy and also Pﬂf\il F(T)NG-VI(C,A) X0 is dominated by xy,
where xg = %. From Theorem 3.1, we have the sequence {x,} converging strongly to

1
P NN, E(T)nG-vI(C,a)¥0 = {3}

We first start with the initial point x( = é. Our testing procedure takes |x,.1 — x,| <
1E — 12 as the stopping condition. Now, a convergence of the algorithm (30) is shown in
Table 1 and visualized in Figs. 1 and 2.

Next, a comparison of algorithm (30) and algorithm (5) of [14] is provided, focusing on
CPU time and the number of iterations for different initial points, as detailed in Table 2.

Moreover, Our testing procedure takes |x,,1 — x,| < 1E — 6 as the stopping condition.

Remark 2 By observing the convergence behavior of Algorithm (30) in Example 4.2, we
conclude that
1. Table 1 and Figs. 1 and 2 show that {x,} converges to a solution, i.e., x, — 1/2 € Q.
The convergence of {x,} of Example 4.2 can be guaranteed by Theorem 3.1.
2. The values of the sequence {x,} with respect to n are also plotted in Fig. 1,

demonstrating that (x,,, %), (*4+1, %) € E(G).

Table 1 Convergence of the algorithm (30) in Example 4.2

n Xn Xp+1 [Xp = Xp+1]

0 0.166666666667 0234169560185 0.067502893519
1 0234169560185 0279645516164 0.045475955979
2 0279645516164 0313633206903 0.033987690739
3 0313633206903 0340160992255 0.026527785352
4 0340160992255 0361372598770 0.021211606515
5 0361372598770 0378608112538 0.017235513769
396 0498263926837 0498268307737 0.000004380900
397 0498268307737 0498272666581 0.000004358844
398 0498272666581 0498277003536 0.000004336955
399 0498277003536 0498281318767 0.000004315230
400 0498281318767 0498285612435 0.000004293668
828,361 0499999171527 0499999171528 0.000000000001
828,362 0499999171528 0499999171529 0.000000000001
828,363 0499999171529 0499999171530 0.000000000001
828,364 0499999171530 0499999171531 0.000000000001
828,365 0499999171531 0499999171532 0.000000000001
828,366 0499999171532 0499999171533 0.000000000001
828,367 0499999171533 0499999171533 0.000000000000

Page 15 of 25
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Figure 1 Visualization of the first one hundred rounds of algorithm (30) in Example 4.2
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Figure 2 Visualization of the error |x, — X»+1| of algorithm (30) in Example 4.2

Table 2 Numerical values of algorithm (30) and algorithm (5) of [14]

Starting point

Algorithm (30)

Algorithm (5) of [14]

X0 = 1/6

X0 = 1/8

X0 = 3/4

No. of Iter.
CPU Time (s)

No. of Iter.
CPU Time (s)

No. of Iter.
CPU Time (s)

781
6.662671

895
7451446

297
2443946

1143
9472705

1294
11.2578180

601
5.194785

3. Foreveryi=1,2,...,N, T; are G-nonexpansive mappings but not nonexpansive.

4. From Table 2, we see that the sequence generated by our algorithm (30) has better

convergence than algorithm (5) of [14] in terms of the number of iterations and the

CPU time.

Next, we give an example in the infinite-dimensional space /, to support some results as
follows.

Example 4.3 Let C := {x = (%1,%2,%3,...) € [ : |x]l, < landx; €[0,1] fori=1,2,3,...}

with the norm x|, = (37 |%:[*)"* and the inner product (x,y) = Y -, x;y; for y =

Page 16 of 25
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Table 3 Convergence of the algorithm (33) in Example 4.3

(2024) 2024:15

n Xn [1%n+1 —XnH/z

0 (0.1666666667, 0.1250000000, 0,0, 0, ...) -

1 (0.0520833333,0.0356445312,0,0,0,...) 0.145305678049104
2 (0.0289080584, 0.0212303748,0,0,0, ...) 0.027292146725652
3 (0.0211989415,0.0157728954,0, 0,0, ...) 0.009445346214247
4 (0.0168688945,0.0125839647,0,0,0, ...) 0.005377600440776
5 (0.0140193120,0.0104711016,0, 0,0, ...) 0.003547437162869
6 (0.0119960131, 0.0089667510, 0,0, 0, ...) 0.002521271327788
7 (0.0104841218,0.0078407665, 0,0,0, ...) 0.001885114422034
8 (0.0093111644, 0.0069662178,0,0,0, ...) 0.001463101033630
9 (0.0083745148,0.0062672882,0, 0,0, ...) 0.001168680937519
10 (0.0076092299, 0.0056958782, 0,0, 0, ...) 0.000955076040639
10 198 (0.0000081708,0.0000061281,0,0,0, ...) 0.000000001001519
10,199 (0.0000081700, 0.0000061275,0,0,0, ...) 0.000000001001323
10,200 (0.0000081692, 0.0000061269, 0,0, 0, ...) 0.000000001001126
10,201 (0.0000081684, 0.0000061263, 0,0,0, ...) 0.000000001000930
10,202 (0.0000081676,0.0000061257,0,0,0,...) 0.000000001000734
10,203 (0.0000081668, 0.0000061251,0,0,0, ...) 0.000000001000538
10,204 (0.0000081660, 0.0000061245, 0,0,0, ...) 0.000000001000342
10,205 (0.0000081652, 0.0000061239, 0,0,0, ...) 0.000000001000145
10,206 (0.0000081644, 0.0000061233,0, 0,0, ...) 0.000000000999950

W1,92:93,...) € Lt |lyll,, < 1landy; € [0,1]. Let G = (V(G),E(GQ)) be such that V(G) = C,
E(G) = {(x,y) : x5,9: € [0, ] with [[x —yll, < ¢ Lfori=1,2,3,...}. Define the mapping T :
C— Cby

1,3,
Tx = 2 §x2,0, 0,0,...), VxeC. (32)
Suppose that the sequence {x,} is generated by u = xo = (%, é, 0,0,0,...) and
Xp+1 = /3,,11 + (1 - lgn)Txnr (33)
where 8, = 2n+2 for all n > 0. Then, the sequence {x,} converges strongly to Pr(r)Xo.

Solution. We can easily show that T is a G-nonexpansive mapping with F(T) = {0},
where 0 = (0,0,0,0,0,...) is the null vector on /5. From the definition of T and u = x¢ =
(é, é,O 0,0,...), we have (xo, TXo) € E(G). Since Pr()Xo = {0} and the definition of x,,, we
have ||x,, - 0l|;, < }) It follows that (x,,, Pr¢rXo) € E(G). Then, Prr)Xo is dominated by {x,,}.
It is obvious that {x,} dominates X, and also Pr(1)X, is dominated by {x,}. From Corol-
lary 3.4, we have the sequence {x,} converging strongly to Prr)xo = {0}. We first start

with the initial point xo = (1, 1,0,0,0,...). The stopping criterion for our testing method

6’ 8’
is taken as ||X,11 — XI5, < 1E — 9. Now, a convergence of the algorithm (33) is shown in

Table 3 and visualized in Fig. 3.

Remark 3 By observing the convergence behavior of Algorithm (30) in Example 4.3, we
conclude that it converges to a solution, i.e., x, — 0 € F(T).

Next, we provide a numerical example to support our results in a two-dimensional space.

Example 4.4 Let H = R? and C = [-2,2] x [-2,2]. Let G = (V(G),E(G)) be a directed
graph, where V(G) = C and E(G) = {(x,y) = ((*1,%2), 1,%2)) : X,y € [-1,1] x [-1,1]}. Let

Page 17 of 25
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Figure 3 Visualization of the convergence and error [|x,+1 = xa|l1, of algorithm (33) in Example 4.3

Pc : H— C be a metric projection defined by
Pc(z1,23) = (max{min{zl, 2}, —2},max{min{zz, 2}, —2}), (34)

forall z = (z1,2;) € H.
Foreveryi=1,2,...,N, let T;: C — C be mappings defined by

X1 1\1 «x 1 1
Ti(x1,%2) = (g + (1 - §> 2ot * (1 - 2”1)1), (35)

for all x1,x5 € C.
Let S: C — C be a G-S-mapping generated by 71, T5,..., Ty and a1, o, ...,a,, where

(1 5-1(6-1\5-1(1
o= 5i’ 5i 6 ’ 5 6 ¢

foralli=1,2,...,N
and let A : C — H be a mapping defined by

3 15 1
Alxy, %) = (xl_ﬁ__ 92——>, (36)

4 32°5 20

for all (x1,x;) € C.
Suppose that the sequence {x"} is generated by u = x° = (x9,49) = (1,0) and

1
X" =Ppe (1 - 5A) (Bau+ (1 - B,)SX"), (37)
where 8, = ﬁ forall m > 0.

Then, the sequence {x"} converges strongly to Pﬂﬁl FT)NG-VI(C ’A)xo = {(%, %)}.

Solution. Itis clear that A~ (0,0) # ), since (3, 1) € A71(0,0) and E(G) = E(G™!). Letx,y €
C with (x,y) € E(G), where x = (x1,%3) and y = (y1,¥2). Then, we have x,y € [-1,1] x [-1,1].
It is easy to verify that 7; are G-nonexpansive mappings for all i = 1,2,...,N such that

N, E(T) = (2, L),
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From the definition of the mapping 4, it is obvious that A is G-1-inverse strongly mono-
tone and G-VI(C,A) = {(%, %L)}. Therefore, ﬂf\il F(T;)NG-VI(C,A) = {(%, %L)}.
From the definition of T; and x € [-1,1] x [-1, 1], we have

X1 1\1 X2 1 1
Tl'XZ —+|1-—= - =t 1-—— —
3i 3i ]2 i+l 2i+1 | 4,
X1 1 \1 x 1 \1
Tinx= 3itl +1- 3itl | 97 gir2 1= 92 g )’

foralli=1,2,...,N —1. Since [-1, 1] is convex, we have T;x, T;,1x € [-1,1] x [-1,1] for all
i=1,2,...,N—1.Then, (T;;1x,T;x) € E(G) foralli=1,2,...,N - 1.

Putting u = x° = (0,1) € [-1,1] x [-1,1] and the definition of Tj, we obtain T1x° €
[-1,1] x [-1,1]. This implies that (x°, T;x°) € E(G). From the definition of S, we have,
Sx% e [-1,1] x [-1,1].

Since u =x° = (1,0), $x° = (1,0), B, = Tl% for all # > 0, we have

and

(Bou+ (1 - Bo)Sx°) = (1,0)

and it follows that

(1 - %A) (Bou + (1 - Bo)Sx°) = (0.859375,0.025000). (38)
From (34) and (38), we have

x' = (x},x7) = Pc (1 - %A) (Bou + (1 - Bo)Sx°) = (0.859375,0.025000). (39)

It follows from (39) that x! € [-1,1] x [-1,1].
Since u = (1,0), Sx! = (0.8114583,0.0587500), L for all n > 0, we have

n = uid

(Bru+ (1 - B1)Sx") = (0.8428819,0.0489583)

and it follows that

(1 - %A) (Bru+ (1 - B1)Sx") = (0.7306692,0.0690625). (40)
From (34) and (40), we have

x> = (x1,%3) = Pc (1 - %A) (Bru+ (1 - B1)Sx") = (0.7306692,0.0690625). (41)

It follows from (41) that x> € [-1,1] x [-1,1].
Continuing in this way, we have x” = (x},x%) € [-1,1] x [-1,1] for all # > 0. This implies
that (x",x°) € E(G).
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Table 4 Convergence of the algorithm (37) in Example 4.2

n n

n X X2 1Xn =Xn+11l
0 1 0 -

1 0.859375 0.025 0.1428299
2 0.7306692 0.0690625 0.1360393
3 0.6493484 0.104429 0.0886784
4 0.601678 0.1309444 0.0545484
50 0.5058484 0.2413978 0.0002141
51 0.505734 0.2415687 0.0002057
52 0.505624 02417329 0.0001976
53 05055182 0.2418908 0.0001901
94 0.5031153 0.2454498 0.0000595
95 0.5030826 0.2454979 0.0000582
96 0.5030505 0.2455451 0.0000570
97 0.5030191 0.2455912 0.0000558
98 0.5029884 0.2456365 0.0000547

Figure 4 Visualization of the convergence of the algorithm (37) in Example 4.4

N .
From (,_; F(T;) N G-VI(C,A) = {(%, i)}, it is easy to see that Pﬂf‘ilF(T,v)ﬂG—VI(CA)XO €
[-1,1] x [-1,1].
Since Pﬂﬁlf(Ti)mG-w(CA)xo € [-1,1] x [-1,1] and x" € [-1,1] x [-1,1] for all n > 0, we
have (x”, P N, F(Ti)ﬂG-VI(C,A)XO) € E(G). Then, P, Ny, F(Ti)ﬂG-VI(C,A)XO is dominated by {x"}.
It is obvious that {x"} dominates x° and also Pﬂbfl F(T)

nG-vicX is dominated by x°,

where x° = {(3, 1)}. From Theorem 3.1, we have the sequence {x"} converging strongly to
11
Py peryngviea® = (0 1))
Now, a convergence of the algorithm (37) is shown in Table 4 and visualized in Figs. 4
and 5.

Remark 4 For the provided Example 4.4, we have the following observations:
1. Table 4 and Figs. 4 and 5 show that {x"} converges to (%, }L). The convergence of
{x"} in Example 4.4 can be guaranteed by Theorem 3.1.
2. The values of the sequence {x"} with respect to # are also plotted in Fig. 4, showing
that (x,x%), (x"*1,x") € E(G).



Khuangsatung et al. Journal of Inequalities and Applications (2024) 2024:15 Page 21 of 25

0.15
0.1
g
i
0.05
0
0 10 20 30 40 5 60 70 8 9 100
Numbers of Iteration
Figure 5 Error plotting of algorithm (37) in Example 4.4

In the following example, we investigate the metric projection onto a half-space
H_(a,B):{z€ H: {(a,z) < B}, where « € H, « #0 and g8 € R. It is obvious that

_ 0By ifla,x) > B,
Py (wp)x = el o) > P (42)
x, if{a,x) < B.

Equality (42) is clear if x € H_(«t, B8), i.e., (&, x) < B (see, [21] for more details).

Example 4.5 Let H = R? and C = {(x1,%2) € R? : —3x; + x5 < 9}. Then, we obtain

x1+3x9-27 3% +9x2+9) if — 3x1 + 9
10’ 10 ’ 1t%2>5,
Pc(x1,%;) = . (43)
(%1, %2), if —3x1 +%3 <9,

for all (x1,%,) € R2.

Let G = (V(G),E(G)) be a directed graph, where V(G) = C and E(G) = {(x,y) =
((x1,%2), 01,92)) : X,y € [0,1] x [0,1]}.

Foreveryi=1,2,...,N, let T;: C — C be mappings defined by

x> %y 1\1
Ti(x1,%2) = (5—:¢ 5 + (1 - §>§>’ (44)

for all (x1,x,) € C.
Let S: C — C be a G-S-mapping generated by 71, T5,..., Ty and o1, 0, ..., &y, where

(1 5-1(6-1\5-1(1
ai = 5i’ 5i 6 ’ 5 6 ¢

foralli=1,2,...,N andlet A : C — H be a mapping defined by

3
X1 4962 2
Alxq, = - — =, 45
(x1,%2) (xl 2’5 5) (45)

for all (x1,x,) € C.
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Suppose that the sequence {x"} is generated by u = x° = (x9,49) = (1,0) and
n+1 1 n
X" =pco(1- EA (Bau + (1 - B,)SX"), (46)

where 8, = ﬁ forall # > 0.

Then, the sequence {x"} converges strongly to Pﬂﬁl FT)NG-VI(C. A)xo ={(o, %)}.

Solution. It is clear that A~ (0,0) # 4, since (0, 3) € A™'(0,0) and E(G) = E(G™). Letx,y €
C with (x,y) € E(G), where x = (x1,%3) and y = (y1,%2). Then, we have x,y € [0,1] x [0, 1].
It is easy to verify that 7; are G-nonexpansive mappings for all i = 1,2,...,N such that
M1 E(T) = {(0, 3)).

From the definition of the mapping 4, it is obvious that A is G-3-inverse strongly mono-
tone and G-VI(C,A) = {(0, %)}. Therefore, ﬂﬁl F(T;) N G-VI(C,A) = {(0, %)}.

From the definition of Tj, it is obvious that T;x, T;,.1x € [0,1] x [0,1] foralli=1,2,...,N -
1. Then, (T;,1x, T;x) € E(G) foralli=1,2,...,N — 1.

Putting u = x° = (1,0) € [0,1] x [0,1] and the definition of T;, we obtain T;x° € [0,1] x
[0,1]. This implies that (x°, T1x°) € E(G). From the definition of S, we have, Sx° € [0,1] x

[O’Sz]l'ce u=x’=(1,0), Sx’ = (1,0), and B, = 5 for all n > 0, we have

(Bou+ (1= Bo)Sx°) = (1,0)
and it follows that

(1 - %A) (Bow + (1 - Bo)SX°) = (0.6250000, 0.2000000). (47)
From (43) and (47), we have

x' = (xh,42) = Pc (1 - %A) (Bow + (1 — Bo)SX°) = (0.6250000,0.2000000). (48)

It follows from (48) that x! € [0,1] x [0, 1].
Since u = (1,0), Sx! = (0.5156250,0.2300000), and 8, = - for all # > 0, we have

2n+4
(Bru+ (1 - B1)Sx") = (0.5963542,0.1916667)
and it follows that
(1 - %A) (Biu+ (1 - B1)Sx") = (0.3246879,0.3150000). (49)
From (43) and (49), we have
x> = (x1,%3) = Pc (1 - %A) (Bru+ (1 - B1)Sx") = (0.3246879,0.3150000). (50)

It follows from (50) that x* € [0,1] x [0, 1].

Page 22 of 25
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Continuing in this way, we have x" = (x},x5) € [0,1] x [0,1] for all # > 0. This implies
that (x,x°) € E(G).

From ﬂZIF(Ti) N G-VI(C,A) = {(0, %)}, it is easy to see that Pﬂﬁlf(T,»)mG-w(c,A)xo €
[0,1] x [0,1].

Since PﬂﬁlF(T,v)ﬂG—VI(C,A)XO € [0,1] x [0,1] and x" € [0,1] x [0,1] for all # > 0, we have
(xn’Pﬂf‘ilF(Ti)ﬁG»VI(C,A)XO) € E(G). This implies that PﬂfilF(Ti)ﬂGW(C’A)XO is dominated by
{x"}.

It is obvious that {x"} dominates x° and also PN, perynG-vicc A)xo is dominated by x°,
where x° = {(0,3)}.

From Theorem 3.1, we have the sequence {x"} converging strongly to

1

Py 1F(T,»)ﬁG»VI(C,A)x0 =10, )}

Now, a convergence of the algorithm (46) is shown in Table 5 and visualized in Figs. 6
and 7.

Table 5 Convergence of the algorithm (46) in Example 4.2

n n

n Xq X5 1Xn =Xn+11l
0 1.0000000 0.0000000 -

1 0.6250000 0.2000000 0.4250000
2 0.3246879 0.3150000 03215779
3 0.1794026 0.3774509 0.1581389
4 0.1139924 04124193 0.0741707
50 0.0080038 04937886 0.0002045
51 0.0078488 0.4939094 0.0001965
52 0.0076997 0.4940257 0.0001890
53 0.0075561 04941375 0.0001820
94 0.0042831 0.4966832 0.0000579
95 0.0042383 04967179 0.0000567
96 0.0041945 04967520 0.0000555
97 0.0041515 04967853 0.0000544
98 0.0041094 0.4968180 0.0000533

100

Figure 6 Visualization of the convergence of the algorithm (46) in Example 4.4
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Figure 7 Error plotting of algorithm (46) in Example 4.4

Remark 5 For the provided Example 4.5, we have the following observations:
1. Table 5 and Figs. 6 and 7 show that {x"} converges to (0, %). The convergence of {x"}
in Example 4.5 can be guaranteed by Theorem 3.1.
2. The values of the sequence {x"} with respect to n are also plotted in Fig. 6, showing
that (x*,x%), (x**1,x") € E(G).
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