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Abstract
IfHν = (νn,k)n,k≥0 is the matrix with entries νn,k =

∫
[0,∞)

tn+k

n! dν(t), where ν is a
nonnegative Borel measure on the interval [0,∞), the matrixHν acts on the space of
all entire functions f (z) =

∑∞
n=0 anz

n and induces formally the operator in the
following way:

Hν (f )(z) =
∞∑

n=0

( ∞∑

k=0

νn,kak

)

zn.

In this paper, for 0 < p ≤ ∞, we classify for which measures the operatorHν (f ) is well
defined on Fp and also gets an integral representation, and among them we
characterize those for whichHν is a bounded (resp., compact) operator between Fp

and F∞.

Keywords: Fock spaces; Matrices; Fock Carleson measure

1 Introduction
Throughout this paper, we write A � B for nonnegative quantities A and B if there exists a
constant C (independent of A and B) such that A ≤ CB. The symbol A � B means that both
A � B and B � A. C denotes a finite constant that may change value from one occurrence
to the next.

Let C be the complex plane and H(C) be the class of all entire functions. If 0 < p < ∞,
then the Fock space Fp is the set of all f ∈ H(C) such that

‖f ‖p
p :=

p
2π

∫

C

∣
∣f (z)e– 1

2 |z|2 ∣∣p dA(z) < ∞,

where z = x + iy and dA(z) = dx dy is the Lebesgue area measure on C. Set

F∞ =
{

f ∈ H(C) : ‖f ‖∞ = sup
z∈C

∣
∣f (z)

∣
∣e– 1

2 |z|2 < ∞
}

.

In particular, F2 is a reproducing kernel Hilbert space. The function Kz(w) = ezw is the
reproducing kernel for F2 and

kz(w) =
Kz(w)√
K(z, z)

= ezw– 1
2 |z|2
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is the normalized kernel. Moreover, each ka is a unit vector in Fp, where 0 < p ≤ ∞. Let
f ∞ denote the space of entire functions such that

lim
z→∞ f (z)e– 1

2 |z|2 = 0.

Interested readers can refer to [18] for the theory of Fock spaces.
Let 0 < p, q < ∞, and μ be a nonnegative Borel measure on C. Recall that μ is a (p, q)-

Fock Carleson measure if the identity operator i is bounded from Fp to Lq(e– q
2 |·|2 dμ), i.e.,

there exists some constant C such that, for all f ∈ Fp,

(∫

C

∣
∣f (z)e– 1

2 |z|2 ∣∣q dμ(z)
) 1

q
≤ C‖f ‖p.

When p = q, μ is exactly the Fock Carleson measure for Fp (see [11, 18]). Also, μ is called
a vanishing (p, q)-Fock Carleson measure if

lim
j→∞

∫

C

∣
∣fj(z)e– 1

2 |z|2 ∣∣q dμ(z) = 0

whenever {fj} is a bounded sequence in Fp that converges to 0 uniformly on compact sub-
sets of C as j → ∞.

The matrix Hν = (νn,k)n,k≥0 induces formally an operator (which will also be denoted by
Hν ) on H(C) in the following sense. For any f (z) =

∑∞
n=0 anzn ∈ H(C), by multiplication of

the matrix with the sequence of Taylor coefficients of the function, we can define

Hν(f )(z) =
∞∑

n=0

( ∞∑

k=0

νn,kak

)

zn. (1.1)

If the right-hand side makes sense and defines a function in H(C), then the matrix Hν

induces formally an operator Hν on H(C).
Let D be the open unit disc and H(D) be all of the analytic functions on D. If we replace

H(C) by H(D) in the definition of operators above, there is a rich history of these opera-
tors (which will be denoted by Hν ) on several natural Lp spaces of analytic functions on
D, especially those on the Hardy space and the Bergman space. For example, the Hilbert
operator induced by the Hilbert matrix ( 1

n+k+1 )n,k≥0 has been studied in Hardy spaces [5]
and Bergman spaces [4]; estimates on the norms have also been obtained. More gener-
ally, another approach to the study of Hν on spaces of analytic functions is developed.
Galanopoulos and Peláez introduced Hankel matrix Hν = (

∫
[0,1) tn+k dν(t))n,k≥0, where ν is

a finite nonnegative Borel measure on [0, 1), and also investigated the boundedness and
compactness of the operator induced by Hν on the Hardy space H1 and the Bergman space
A2 in [6]. Chatzifountas, Girela, and Peláez [2] later generalized the operator Hν on Hardy
spaces Hp. In [7, 8], Girela and Merchán also studied the operator Hν acting on certain
möbius invariant spaces on the unit disk such as the Bloch space, BMOA, the analytic
Besov spaces, etc. Recently, Ye and Zhou considered a new operator, called derivative-
Hilbert operator, induced by some Hankel matrix on analytic function spaces on D in
[16, 17]. It turns out that the derivative-Hilbert operator and the Hilbert operator Hν are
closely related. For more results on the operator induced by some Hankel matrix, we refer
to [1, 5, 14, 15].
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From now on, ν denotes a nonnegative Borel measure on [0, ∞). In the Fock space set-
ting, Zhuo et al. [19] considered a special matrix Hν = (νn,k)n,k≥0 with entries

νn,k =
1
n!

∫

[0,∞)
tn+k dν(t)

and characterized those nonnegative Borel measures ν such that the operator Hν was well
defined on the Fock space Fp (0 < p < ∞). Furthermore, Hν was rewritten as

Hν(f )(z) =
∫

[0,∞)
f (t)etz dν(t), z ∈C.

Under this integral representation of Hν , the measures ν for which Hν is a bounded (resp.,
compact) operator from the Fock space Fp into Fq (0 < p, q < ∞) were characterized. The
main purpose of this paper is to extend the operator Hν to be well defined on the Fock
space F∞. With 0 < p ≤ ∞, we are going to obtain some characterizations on those mea-
sures ν such that the operator Hν is bounded or compact from Fp to F∞ and from F∞ to
Fp, respectively.

2 Preliminaries
In this section, we state some lemmas for the proof of our main results. The following
lemma can be found in [13].

Lemma 2.1 Suppose α > 0. For every positive integer n,

∫ ∞

0
rnpe– αp

2 r2
r dr �

(
n!
αn

) p
2

n– p
4 + 1

2 .

The following formula is used many times throughout this paper. See [18, Corollary 2.5]
for a proof.

Lemma 2.2 Suppose α > 0 and β is real. Then

α

π

∫

C

∣
∣eβzw̄∣

∣e–α|z|2 dA(z) = e– β2|w|2
4α

for all w ∈C.

Lemma 2.3 Let f (z) =
∑

anzn be an entire function. Then

f ∈ F∞ ⇒ sup
n∈N

|an|(n!)
1
2 n– 1

4 < ∞.

Proof By Cauchy’s integral formula and Hölder’s inequality, it is easy to see that

|an|rne– r2
2 ≤ sup

|z|=r

∣
∣f

(
reiθ )∣∣e– r2

2
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for every n ∈ N and r > 0, and hence ‖anzn‖∞ � ‖f ‖∞. Note that, by elementary calcula-
tions and Stirling’s formula,

∥
∥zn∥∥∞ =

(
n
e

) n
2 � (n!)

1
2 n– 1

4 .

Thus, for every n,

|an|(n!)
1
2 n– 1

4 � ‖f ‖∞. �

Let D(z, r) denote the Euclidean disk centered at z with radius r. The following basic
estimate for integral averages of functions in Fock spaces can be found in [18, Lemma 2.32].

Lemma 2.4 For any 0 < p < ∞ and r ∈ (0,∞), there exists a positive constant C = C(p, r)
such that, for all z ∈C,

∣
∣f (z)e– 1

2 |z|2 ∣∣p ≤ C
∫

D(z,r)

∣
∣f (z)e– 1

2 |z|2 ∣∣p dA(z)

for all entire functions f .

We also need the following result. See [18, Corollary 2.8] for a proof.

Lemma 2.5 Let 0 < p ≤ ∞ and f ∈ Fp. Then

∣
∣f (z)

∣
∣ ≤ ‖f ‖pe

1
2 |z|2

for all z ∈ C.

Given r > 0, a sequence {ak} in C is called an r-lattice if
⋃∞

k=1 D(ak , r) covers C and the
disks {D(ak , r/3)}∞k=1 are pairwise disjoint. For any δ > 0, there exists a positive integer m
(depending only on r and δ) such that every point in C belongs to at most m of the sets
D(ak , δ), see [18, page 118]. The following three lemmas characterize the (p, q)-Fock Car-
leson measure and vanishing (p, q)-Fock Carleson measure for 0 < p, q < ∞, which can be
found in [9]. For a Borel measure μ on C, define μ̂r(z) = μ(D(z,r))

πr2 . Let t > 0, the t-Berezin
transform of μ is defined by

μ̃t(z) =
∫

C

e– t
2 |z–w|2 dμ(w),

whenever these integrals converge, see [18, page 120].

Lemma 2.6 Let 0 < p ≤ q < ∞, and let μ ≥ 0. Then the following statements are equivalent:
(1) μ is a (p, q)-Fock Carleson measure;
(2) μ̂r(z) is bounded on C for some (or any) r > 0;
(3) μ̃t(z) is bounded on C for some (or any) t > 0. Furthermore,

‖i‖
Fp→Lq(e– q

2 |·|2 dμ)
� ∥

∥μ̂
1
q
r
∥
∥

L∞ � ∥
∥μ̃

1
q
t
∥
∥

L∞ .
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Lemma 2.7 Let 0 < p ≤ q < ∞, and let μ ≥ 0. Then the following statements are equivalent:
(1) μ is a vanishing (p, q)-Fock Carleson measure;
(2) μ̂r(z) → 0 as z → ∞ for some (or any) r > 0;
(3) μ̃t(z) → 0 as z → ∞ for some (or any) t > 0.

Lemma 2.8 Let 0 < q < p < ∞ and let μ ≥ 0. Set s = p
q and s′ to be the conjugate exponent

of s. Then the following statements are equivalent:
(1) μ is a (p, q)-Fock Carleson measure;
(2) μ is a vanishing (p, q)-Fock Carleson measure;
(3) μ̂r(z) ∈ Ls′ (dA) for some (or any) r > 0.

In the light of above three lemmas, the notion of (vanishing) (p, q)-Fock Carleson mea-
sures does not depend on the particular value of p, q, but depends only on the ratio s = p

q
in the case 0 < q < p < ∞. Let �s be the class of all (p, q)-Fock Carleson measures such that
s = p

q and �s
0 be the class of all vanishing (p, q)-Fock Carleson measures such that s = p

q .
When 0 < s ≤ 1 (equivalently, p ≤ q), we simply write � and �0 for �s and �s

0 respectively.
That is,

� =
{
μ ≥ 0 : μ̂r ∈ L∞(C) for some r > 0

}

and

�0 =
{
μ ≥ 0 : lim|z|→∞ μ̂r(z) = 0 for some r > 0

}
.

Notice that �s ⊂ � and �s
0 ⊂ �0 for all s > 0.

3 Conditions such that Hν is well defined on Fp

In this section, we first clarify for which measures the operator Hν is well defined on Fock
spaces and also gets an integral representation. Throughout the paper, a nonnegative Borel
measure μ on [0,∞) can be seen as a Borel measure onC by identifying it with the measure
μ	 defined by

μ	(A) = μ
(
A ∩ [0,∞)

)

for any Borel subset A of C. In this way a positive Borel measure μ on [0,∞) is an a (p, q)-
Fock Carleson measure if and only if there exists a positive constant C such that

∫

(a–r,a+r)
dμ(t) ≤ Cr2

for any a ∈ [0,∞) and any fixed 0 ≤ r < ∞.

Theorem 3.1 Suppose 0 < p ≤ ∞ and ν is a nonnegative Borel measure on [0,∞). If
eε|·|2ν ∈ � for any fixed ε > 1

2 , then the power series in (1.1) is a well defined entire function
for every f ∈ Fp. Furthermore,

Hν(f )(z) =
∫

[0,∞)
f (t)etz dν(t), z ∈C, f ∈ Fp. (3.1)
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Proof The case when 0 < p < ∞ has been proved in [19]. We now consider the case p = ∞.
Suppose that eε|·|2ν ∈ � with any fixed ε > 1

2 , it might as well assume that eε|·|2ν is (1, 1)-
Fock Carleson measure for any 0 < s < ∞ by Lemma 2.5. For any 0 < r < ∞, fix f (z) =
∑∞

n=0 anzn ∈ F∞ and |z| ≤ r. We deduce that, by Lemma 2.2,

∫

[0,∞)

∣
∣f (t)etz∣∣dν(t) ≤ ‖f ‖∞

∫

[0,∞)

∣
∣etz∣∣e

1
2 |t|2 dν(t)

= ‖f ‖∞
∫

[0,∞)

∣
∣etz∣∣e( 1

2 –ε)|t|2 eε|t|2 dν(t)

� ‖f ‖∞
∫

C

∣
∣etz∣∣e( 1

2 –ε)|t|2 dA(t)

� ‖f ‖∞e
|z|2

4ε–2 ≤ ‖f ‖∞e
|r|2

4ε–2 .

So the integral in (3.1) uniformly converges for every domain {z : |z| ≤ r}, the resulting
function is analytic in C and, for every z ∈ C,

∫

[0,∞)
f (t)etz dν(t) =

∞∑

n=0

∫

[0,∞)
f (t)

tn

n!
dν(t)zn =

∞∑

n=0

1
n!

∫

[0,∞)

∞∑

k=0

aktn+k dν(t)zn. (3.2)

By Lemma 2.6, we may assume that eε|·|2ν is (2, 2)-Fock Carleson measure without loss
of generality. This together with Hölder’s inequality and Lemma 2.1 shows that

|νn,k| ≤ 1
n!

∫

[0,∞)
|t|n+k dν(t)

≤ 1
n!

(∫

[0,∞)

∣
∣tke– 1

2 |t|2 ∣∣2eε|t|2 dν(t)
)1/2(∫

[0,∞)

∣
∣tne( 1

2 –ε)|t|2 ∣∣2eε|t|2 dν(t)
)1/2

≤ 1
n!

(∫

C

∣
∣tke– 1

2 |t|2 ∣∣2 dA(t)
)1/2(∫

C

∣
∣tne( 1

2 –ε)|t|2 ∣∣2 dA(t)
)1/2

� 1
n!

(k!)
1
2

(
n!

(ε – 1
2 )n

) 1
2

.

Combining this with Lemma 2.3, we conclude that for every n,

∣
∣
∣
∣
∣

∞∑

k=0

νn,kak

∣
∣
∣
∣
∣
≤ |νn,0a0| + |νn,1a1| + |νn,2a2| +

∞∑

k=3

|νn,kak|

= |νn,0a0| + |νn,1a1| + |νn,2a2| +
∞∑

k=3

|νn+3,k–3ak|

�
(|a0| + |a1| + |a2|

) 1
n!

(
n!

(ε – 1
2 )n

) 1
2

+
1
n!

(
(n + 3)!

(ε – 1
2 )n+3

) 1
2 ∞∑

k=3

|ak|(k!)
1
2 k– 3

2

�
(|a0| + |a1| + |a2|

) 1
n!

(
n!

(ε – 1
2 )n

) 1
2
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+
1
n!

(
(n + 3)!

(ε – 1
2 )n+3

) 1
2 ∞∑

k=3

k– 3
2 + 1

4 sup
k∈N

|ak|(k!)
1
2 k– 1

4

� 1
n!

(
(n + 3)!

(ε – 1
2 )n+3

) 1
2

.

Therefore, the series in (1.1) is well defined for all z ∈C, and

∞∑

k=0

akνn,k =
1
n!

∫

[0,∞)
f (t)tn dν(t).

By (3.2), we obtain

Hν(f )(z) =
∫

[0,∞)
f (t)etz dν(t), z ∈C.

This proves the desired result. �

Theorem 3.2 Suppose that ν is a nonnegative Borel measure on [0,∞) such that

∫

[0,∞)

∫

[0,t)

[
1 + (ts)2]e2ts dν(s) dν(t) < ∞. (3.3)

Then the power series in (1.1) is well defined for every f ∈ F∞ and (3.1) holds.

Proof Assume that ν satisfies (3.3) and fix f (z) =
∑∞

n=0 anzn ∈ F∞. From the definition of
νn,k , it is elementary to check that

∞∑

n=0

∣
∣νn,0a0zn∣∣ = |a0|

∞∑

n=0

(
1
n!

) 1
2 |z|n

(
1
n!

) 1
2
∫

[0,∞)
|t|n dν(t)

≤ |a0|
( ∞∑

n=0

1
n!

|z|2n

) 1
2
( ∞∑

n=0

1
n!

∫

[0,∞)

∫

[0,∞)
|t|n|s|n dν(s) dν(t)

) 1
2

= |a0|
( ∞∑

n=0

1
n!

|z|2n

) 1
2
( ∞∑

n=0

2
n!

∫

[0,∞)

∫

[0,t)
(st)n dν(s) dν(t)

) 1
2

� |a0|
( ∞∑

n=0

1
n!

|z|2n

) 1
2 (∫

[0,∞)

∫

[0,t)
est dν(s) dν(t)

) 1
2

.

The same arguments show that

∞∑

n=0

∣
∣νn,1a1zn∣∣ � |a1|

( ∞∑

n=0

1
n!

|z|2n

) 1
2 (∫

[0,∞)

∫

[0,t)
(st)est dν(s) dν(t)

) 1
2

.

On the other hand, for any n ∈N,

∣
∣
∣
∣
∣

∞∑

k=2

νn,kak

∣
∣
∣
∣
∣
≤

∞∑

k=2

|ak|(k!)
1
2 k– 1

4 k
1
4

(
1
k!

) 1
2 |νn,k|
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≤ sup
k∈N

|ak|(k!)
1
2 k– 1

4

∞∑

k=2

k
1
4

(
1
k!

) 1
2 |νn,k|.

However, by Hölder’s inequality, we have

∞∑

k=2

(
1
k!

) 1
2

k
1
4 |νn,k| =

1
n!

∞∑

k=2

(
1
k!

) 1
2

k
1
4

(∫

[0,∞)
tn+k dν(t)

)2· 1
2

� 1
n!

∞∑

k=2

k
1
4 –1

(
1

(k – 2)!

∫

[0,∞)

∫

[0,t)
(st)k(st)n dν(s) dν(t)

) 1
2

� 1
n!

( ∞∑

k=2

k– 3
2

) 1
2
( ∞∑

k=2

1
(k – 2)!

∫

[0,∞)

∫

[0,t)
(st)k(st)n dν(s) dν(t)

) 1
2

� 1
n!

(∫

[0,∞)

∫

[0,t)
(st)2est(st)n dν(s) dν(t)

) 1
2

.

It follows from Lemma 2.3 and (3.3) that the series
∑∞

k=0 akνn,k is absolutely convergent,
and

∞∑

k=0

akνn,k =
1
n!

∫

[0,∞)
f (t)tn dν(t).

Furthermore,
∣
∣
∣
∣
∣

∞∑

n=0

( ∞∑

k=0

νn,kak

)

zn

∣
∣
∣
∣
∣
�

∞∑

n=0

∣
∣νn,0a0zn∣∣ +

∞∑

n=0

∣
∣νn,1a1zn∣∣

+
∞∑

n=0

((
1
n!

)2 ∫

[0,∞)

∫

[0,t)
est(st)n+2 dν(s) dν(t)

) 1
2 |z|n

≤
( ∞∑

n=0

1
n!

|z|2n

) 1
2 (∫

[0,∞)

∫

[0,t)
e2st dν(s) dν(t)

) 1
2

+

( ∞∑

n=0

1
n!

|z|2n

) 1
2
( ∞∑

n=0

1
n!

∫

[0,∞)

∫

[0,t)
est(st)n+2 dν(s) dν(t)

) 1
2

=
(∫

[0,∞)

∫

[0,t)

[
1 + (ts)2]e2st dν(s) dν(t)

) 1
2
( ∞∑

n=0

1
n!

|z|2n

) 1
2

for each z ∈C. This shows that the power series in (1.1) represents an entire function and

Hν(f )(z) =
∫

[0,∞)
f (t)etz dν(t), z ∈C.

The proof is completed. �

We also obtain the following necessary condition for the operator Hν to be well defined
on Fock spaces.
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Theorem 3.3 Let ν be a nonnegative Borel measure on [0,∞). If the integral

Hν(f )(z) =
∫

[0,∞)
f (t)etz dν(t), z ∈C

converges absolutely for every f ∈ F∞, then e 1
2 |·|2 dν is a (∞, 1)-Fock Carleson measure.

Proof For every f ∈ F∞, the integral
∫

[0,∞) f (t)etz dν(t) converges absolutely for z = 0, we
have

∣
∣
∣
∣

∫

[0,∞)
f (t) dν(t)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

[0,∞)
f (t)e– 1

2 |t|2 e
1
2 |t|2 dν(t)

∣
∣
∣
∣ ≤

∫

[0,∞)

∣
∣f (t)

∣
∣e– 1

2 |t|2 e
1
2 |t|2 dν(t) < ∞.

By the closed graph theorem, the identity mapping is bounded from F∞ into L1(e 1
2 |·|2 dν),

which implies the desired estimate. �

Specializing to the space f ∞, we use duality theorem for f ∞ to obtain the following
result. Recall that (f ∞)∗ = F1 under the pairing

〈f , g〉 =
1
π

∫

C

f (w)g(w)e–|z|2 dA(w).

We refer the interested reader to [18, Theorem 2.26 and page 39] for details.

Theorem 3.4 Let dν be a nonnegative Borel measure on [0,∞). If for any f ∈ f ∞ the inte-
gral

Hν(f )(z) =
∫

[0,∞)
f (t)etz dν(t), z ∈C

converges absolutely, then

∫

[0,∞)

∫

[0,t)
est dν(s) dν(t) < ∞.

Proof By assumption, taking z = 0, there is C > 0 such that

∣
∣
∣
∣

∫

[0,r)
f (t) dν(t)

∣
∣
∣
∣ ≤

∫

[0,r)

∣
∣f (t)

∣
∣dν(t) <

∫

[0,∞)

∣
∣f (t)

∣
∣dν(t) < C

for all r ∈ (0,∞). More specifically, choosing f = 1, we have
∫

[0,∞) dν(t) < ∞, which means
dν is a finite Borel measure. On the other hand, using Hölder’s inequality, we obtain that

∫

[0,r)

∫

C

∣
∣f (z)etz̄∣∣e–|z|2 dA(z) dν(t) ≤ ‖f ‖∞

∫

[0,r)
e

1
2 |t|2 dν(t) < ∞.

Since the set of finite linear combinations of kernel functions is dense in f ∞ [18,
Lemma 2.11] and all kernel functions belong to F2, the reproducing property and Fubini’s
theorem imply that for any f ∈ f ∞,

∫

[0,r)
f (t) dν(t) =

∫

[0,r)

∫

C

f (z)etz̄e–|z|2 dA(z) dν(t)
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=
∫

C

f (z)
∫

[0,r)
etz dν(t)e–|z|2 dA(z) = 〈f , gr〉, (3.4)

where gr(z) =
∫

[0,r) etz dν(t). By the duality relation (f ∞)∗ = F1 and the uniform bounded-
ness principle, we get gr ∈ F1 and supr ‖gr‖1 < C. Since F1 ⊂ f ∞, we replace f by gr in (3.4)
and obtain that

∫

C

∣
∣gr(z)

∣
∣2e–|z|2 dA(z) ≥

∣
∣
∣
∣

∫

C

gr(z)gr(z)e–|z|2 dA(z)
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

[0,r)
gr(t) dν(t)

∣
∣
∣
∣ =

∫

[0,r)

∫

[0,r)
est dν(s) dν(t).

However, Lemma 2.5 implies that

∫

C

∣
∣gr(z)

∣
∣2e–|z|2 dA(z) � ‖gr‖1

∫

C

∣
∣gr(z)e– 1

2 |z|2 ∣∣dA(z) � ‖gr‖2
1 < C.

Combining this with the previous inequality and letting r → ∞, we have

∫

[0,∞)

∫

[0,∞)
est dν(s) dν(t) < C.

This proves the desired result. �

4 The operator Hν acting between Fock spaces
In this section, for 0 < p ≤ ∞, we are going to characterize those measures ν for which
Hν is a bounded (resp., compact) operator from Fp to F∞ or from F∞ to Fp for some
0 < p ≤ ∞. Now, we state the main results as follows.

Theorem 4.1 Suppose 0 < p ≤ ∞. Let ν be a nonnegative Borel measure on [0,∞) such
that eε|·|2ν ∈ � with any fixed ε > 1

2 . Then Hν is bounded from Fp into F∞ if and only if
e|·|2ν ∈ �.

Proof By Theorem 3.1, Hν has an integral representation (3.1). Suppose that Hν is a
bounded operator from Fp into F∞. Fixed r > 0, Lemmas 2.4 and 2.2 show that there is
C > 0 such that

C >
∥
∥Hν(ka)

∥
∥∞ �

∣
∣Hν(ka)(a)e– 1

2 |a|2 ∣∣ =
∫

[0,∞)
eta+ta–|a|2 dν(t)

=
∫

[0,∞)
e–|t–a|2 e|t|2 dν(t) ≥

∫

(a–r,a+r)
e–|t–a|2 e|t|2 dν(t) �

∫

(a–r,a+r)
e|t|2 dν(t) (4.1)

for any a ∈ [0,∞). This proves that e|·|2ν ∈ � by Lemma 2.6.
Conversely, suppose e|·|2ν ∈ �. Given f ∈ Fp, by Lemmas 2.5, 2.2, and 2.6, we have

∣
∣Hν(f )(z)e– 1

2 |z|2 ∣∣ ≤
∫

[0,∞)

∣
∣f (t)etze– 1

2 |z|2 ∣∣dν(t)

≤ ‖f ‖p

∫

[0,∞)

∣
∣etz∣∣e– 1

2 |z|2 e– 1
2 |t|2 e|t|2 dν(t)
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≤ ‖i‖
F1→L1(e

1
2 |·|2 dν)

‖f ‖p

∫

C

∣
∣ewz∣∣e– 1

2 |z|2 e– 1
2 |w|2 dA(w)

� ‖i‖
F1→L1(e

1
2 |·|2 dν)

‖f ‖p

for any z ∈C. Therefore, Hν is bounded from Fp into F∞. This completes the proof of the
theorem. �

Lemma 4.1 Suppose that 0 < p, q ≤ ∞ and Hν is bounded from Fp into Fq. Then Hν is
a compact operator if and only if for any bounded sequence {fn} in Fp, which converges
uniformly to 0 on every compact subset of C, we have Hν(fn) → 0 as n → 0 in Fq.

The proof of Lemma 4.1 is similar to that of Proposition 3.11 in [3]. We omit the details.

Theorem 4.2 Suppose 0 < p ≤ ∞. Let ν be a nonnegative Borel measure on [0,∞) such
that eε|·|2ν ∈ � with any fixed ε > 1

2 . Then Hν is a compact operator from Fp into F∞ if and
only if e|·|2ν ∈ �0.

Proof Assume that Hν is a compact operator from Fp into F∞. It is easy to see that the
function ka(z) → 0 uniformly on compact sets as a → ∞. Using Lemma 4.1, we obtain
that {Hν(ka)} converges to 0 in F∞ when a → ∞. Hence, by (4.1) we deduce that

∫

|t–a|<r
e|t|2 dν(t) → 0, a → ∞.

This proves e|·|2ν ∈ �0.
Conversely, assume that {fn} is a bounded sequence in Fp, and fn uniformly converges to

0 on compact subsets of C as n → ∞. It follows from Lemma 2.5 that

∣
∣Hν(fn)(z)e– 1

2 |z|2 ∣∣ ≤
∫

[0,∞)

∣
∣fn(t)etze– 1

2 |z|2 ∣∣dν(t)

≤ ‖fn‖∞
∫

[0,∞)
e– 1

2 |t–z|2 e|t|2 dν(t)

≤ ‖fn‖p
(̃
e|·|2ν

)
1(z).

Since e|·|2ν ∈ �0 by Lemma 2.7, ˜(e|·|2ν)1(z) → 0 as z → ∞. So, for any ε > 0, there is some
R > 0 such that when |z| ≥ R

∣
∣Hν(fn)(z)e– 1

2 |z|2 ∣∣ ≤ ‖fn‖p
(̃
e|·|2ν

)
1(z) ≤ ε‖fn‖p.

When |z| < R, for the above ε, there is some R1 > 0 such that

∫

|w|≥R1

∣
∣ewz∣∣e– 1

2 |z|2 e– 1
2 |w|2 dA(w) =

∫

|w|≥R1

e– 1
2 |w–z|2 dA(w)

≤ e– 1
4 (R1–R)2

∫

C

e– 1
4 |w–z|2 dA(w)

= e– 1
4 (R1–R)2

∫

C

e– 1
4 |w|2 dA(w) ≤ ε.
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Hence, by Lemma 2.5,

∣
∣Hν(fn)(z)e– 1

2 |z|2 ∣∣

≤ e– 1
2 |z|2

∫

[0,∞)

∣
∣fn(t)etz∣∣e–|t|2 e|t|2 dν(t)

� e– 1
2 |z|2

∫

C

∣
∣fn(w)ewz∣∣e–|w|2 dA(w)

≤ e– 1
2 |z|2

∫

|w|<R1

∣
∣fn(w)ewz∣∣e–|w|2 dA(w) + e– 1

2 |z|2
∫

|w|≥R1

∣
∣fn(w)ewz∣∣e–|w|2 dA(w)

≤
∫

|w|<R1

∣
∣fn(w)

∣
∣e– 1

2 |w–z|2 e–|w|2 dA(w) + e– 1
2 |z|2

∫

|w|≥R1

‖fn‖pe
1
2 |w|2 ∣∣ewz∣∣e–|w|2 dA(w)

≤
∫

|w|<R1

∣
∣fn(w)

∣
∣e– 1

2 |w|2 dA(w) + ‖fn‖pε ≤ (
1 + ‖fn‖p

)
ε,

where the last inequality comes from the assumption that {fn} converges to 0 uniformly
on compact subsets of C as n → ∞. Therefore, by the arbitrariness of ε and Lemma 4.1,
we see that Hν : Fp → F∞ is compact. �

Define the Rademacher functions ψn(t) on [0, 1] by

ψ0(t) =

⎧
⎨

⎩

1, 0 ≤ t – [t] < 1
2 ,

–1, 1
2 ≤ t – [t] < 1;

ψn(t) = ψ0
(
2nt

)
, n > 0.

Then Khinchine’s inequality is the following, which can be found in [12].

Khinchine’s inequality For 0 < p < ∞ there exist constants 0 < ap ≤ Bp < ∞ such that,
for all natural numbers m and all complex numbers c1, c2, . . . , cm, we have

ap

( m∑

n=1

|cn|2
)p/2

≤
∫ 1

0

∣
∣
∣
∣
∣

m∑

n=1

cnψn(t)

∣
∣
∣
∣
∣

p

dt ≤ Bp

( m∑

n=1

|cn|2
)p/2

.

The next lemma is a partial result about atomic decomposition for Fock spaces, which
can be found as Theorem 2.34 in [18].

Lemma 4.2 Let 0 < p ≤ ∞. For λ = {λj}∞j=1 ∈ lp, set

S(λ)(z) =
∞∑

j=1

λjkaj (z), z ∈ C,

then S is a bounded operator from lp to Fp.

Theorem 4.3 Suppose 0 < p < ∞. Let ν be a nonnegative Borel measure on [0,∞) such
that eε|·|2ν ∈ � with any fixed ε > 1

2 . Then the following statements are equivalent:
(i) Hν is a bounded operator from F∞ into Fp;
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(ii) Hν is a compact operator from F∞ into Fp;
(iii) (ẽ|·|2ν)t(z) ∈ Lp(dA) for some (or any) t > 0;
(iv) (ê|·|2ν)r(z) ∈ Lp(dA) for some (or any) r > 0;
(v) The sequence {(ê|·|2ν)r(ak)}∞k=1 ∈ lp for some (or any) r-lattice {ak}∞k=1.

Proof By [10, Lemma 2.3], we get the equivalence of (iii), (iv), and (v). The implication (ii)
⇒ (i) is trivial.

(i) ⇒ (v). Given any bounded sequence {λj}∞j=1 and r-lattice {aj}∞j=1, Lemma 4.2 shows
that f (z) =

∑∞
j=1 λjkaj (z) ∈ F∞ with ‖f ‖∞ � ‖{λj}j‖l∞ . Note that Hν : F∞ → Fp is bounded.

By Khinchine’s inequality and Fubini’s theorem, we have

∫

C

( ∞∑

j=1

∣
∣λjHν(kaj )(z)

∣
∣2

) p
2

e– p
2 |z|2 dA(z)

�
∫

C

∫ 1

0

∣
∣
∣
∣
∣

∞∑

j=1

ψj(t)λjHν(kaj )(z)

∣
∣
∣
∣
∣

p

dte– p
2 |z|2 dA(z)

=
∫ 1

0

∫

C

∣
∣
∣
∣
∣
Hν

( ∞∑

j=1

ψj(t)λjkaj

)

(z)

∣
∣
∣
∣
∣

p

e– p
2 |z|2 dA(z) dt

�
∫ 1

0
‖Hν‖p

F∞→Fp

∥
∥
∥
∥
∥

∞∑

j=1

ψj(t)λjkaj

∥
∥
∥
∥
∥

p

∞
dt

� ‖Hν‖p
F∞→Fp

∥
∥{λj}j

∥
∥p

l∞ ,

where ψj(t) is the jth Rademacher function on [0, 1]. In addition, it follows from Lemma 2.4
and (4.1) that

∫

C

( ∞∑

j=1

∣
∣λjHν(kaj )(z)

∣
∣2

) p
2

e– p
2 |z|2 dA(z)

�
∞∑

k=1

∫

D(ak ,r)

( ∞∑

j=1

∣
∣λjHν(kaj )(z)

∣
∣2

) p
2

e– p
2 |z|2 dA(z)

�
∞∑

k=1

∫

D(ak ,r)

∣
∣λkHν(kak )(z)

∣
∣pe– p

2 |z|2 dA(z)

�
∞∑

k=1

|λk|p
∣
∣Hν(kak )(ak)

∣
∣pe– p

2 |ak |2 �
∞∑

k=1

|λk|p
(̂
e|·|2ν

)
r(ak)p.

Setting βk = |λk|p, then {βk}∞k=1 ∈ l∞. Consequently,

∞∑

k=1

βk
(̂
e|·|2ν

)
r(ak)p � ‖Hν‖p

F∞→Fp
∥
∥{βj}j

∥
∥

l∞ .

The duality argument shows that {̂(e|·|2ν)r(ak)p}∞k=1 ∈ l1, which means {̂(e|·|2ν)r(ak)}∞k=1 ∈ lp.
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(iii) ⇒ (ii). Assume that {fn} is a bounded sequence in F∞, and fn uniformly converges
to 0 on compact subsets of C as n → ∞. It follows from Lemma 2.5 that

∫

C

∣
∣Hν(fn)(z)e– 1

2 |z|2 ∣∣p dA(z) ≤
∫

C

‖fn‖p
∞

∣
∣
∣
∣

∫

[0,∞)
e– 1

2 |t–z|2 e|t|2 dν(t)
∣
∣
∣
∣

p

dA(z)

≤ ‖fn‖p
∞

∫

C

∣
∣(̃e|·|2ν

)
1(z)

∣
∣p dA(z).

Since (ẽ|·|2ν)1(z) ∈ Lp(dA), for any ε > 0, there is some R > 0 such that
∫

|z|≥R

∣
∣Hν(fn)(z)e– 1

2 |z|2 ∣∣p dA(z) ≤ ‖fn‖p
∞

∫

|z|≥R

∣
∣
(̃
e|·|2ν

)
1(z)

∣
∣p dA(z) ≤ ε‖fn‖p

∞.

Note that (ẽ|·|2ν)1(z) ∈ Lp(dA) means (ê|·|2ν)r(z) ∈ Lp(dA), hence (ê|·|2ν)r(z) ∈ L∞(C).
Lemma 2.6 yields that

∫

[0,∞)

∣
∣e

1
2 tz̄∣∣e– 1

4 |t|2 e|t|2 dν(t) ≤
∫

C

∣
∣e

1
2 wz̄∣∣e– 1

4 |w|2 dA(w).

Hence, for the above ε and R, there is some R1 > 0 such that

∫

|z|<R

∣
∣
∣
∣e

– 1
2 |z|2

∫

[R1,∞)

∣
∣etz∣∣e– 1

2 |t|2 e|t|2 dν(t)
∣
∣
∣
∣

p

dA(z)

=
∫

|z|<R

∣
∣
∣
∣

∫

[R1,∞)
e– 1

2 |t–z|2 e|t|2 dν(t)
∣
∣
∣
∣

p

dA(z)

=
∫

|z|<R
e– 1

4 |R1–R|2
∣
∣
∣
∣

∫

[R1,∞)
e– 1

4 |t–z|2 e|t|2 dν(t)
∣
∣
∣
∣

p

dA(z)

≤
∫

|z|<R
e– 1

4 |R1–R|2
∣
∣
∣
∣

∫

[0,∞)
e– 1

4 |t–z|2 e|t|2 dν(t)
∣
∣
∣
∣

p

dA(z)

≤
∫

|z|<R
e– 1

4 |R1–R|2
∣
∣
∣
∣

∫

C

e– 1
4 |w–z|2 dA(w)

∣
∣
∣
∣

p

dA(z)

≤ C
∫

|z|<R
e– 1

4 |R1–R|2 dA(z) ≤ ε.

Together with the fact that fn uniformly converges to 0 on compact subsets of C as n →
∞, we obtain, by Lemma 2.5,

∫

|z|<R

∣
∣Hν(fn)(z)e– 1

2 |z|2 ∣∣p dA(z)

≤
∫

|z|<R

∣
∣
∣
∣e

– 1
2 |z|2

∫

[0,∞)

∣
∣fn(t)etz∣∣e–|t|2 e|t|2 dν(t)

∣
∣
∣
∣

p

dA(z)

≤
∫

|z|<R

∣
∣
∣
∣e

– 1
2 |z|2

∫

[0,R1)

∣
∣fn(t)etz∣∣e–|t|2 e|t|2 dν(t)

∣
∣
∣
∣

p

dA(z)

+
∫

|z|<R

∣
∣
∣
∣e

– 1
2 |z|2

∫

[R1,∞)

∣
∣fn(t)etz∣∣e–|t|2 e|t|2 dν(t)

∣
∣
∣
∣

p

dA(z)

≤
∫

|z|<R

∣
∣
∣
∣e

– 1
2 |z|2

∫

[0,R1)

∣
∣fn(t)etz∣∣e–|t|2 e|t|2 dν(t)

∣
∣
∣
∣

p

dA(z)
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+ ‖fn‖p
∞

∫

|z|<R

∣
∣
∣
∣e

– 1
2 |z|2

∫

[R1,∞)

∣
∣etz∣∣e– 1

2 |t|2 e|t|2 dν(t)
∣
∣
∣
∣

p

dA(z)

≤
∫

|z|<R

∣
∣
∣
∣

∫

[0,R1)

∣
∣fn(t)

∣
∣e– 1

2 |t–z|2 e|t|2 dν(t)
∣
∣
∣
∣

p

dA(z) + ‖fn‖p
∞ε

≤ (
1 + ‖fn‖p

∞
)
ε,

while n is large enough. Therefore, by the arbitrariness of ε and Lemma 4.1, we see that
Hν : F∞ → Fp is compact. �

The following result is a direct consequence of Theorem 4.3 and Lemma 2.8.

Corollary 4.1 Suppose 1 < p < ∞. Let ν be a nonnegative Borel measure on [0,∞) that
satisfies the condition in Theorem 3.1. Then the following statements are equivalent:

(i) Hν is a bounded operator from F∞ into Fp;
(ii) Hν is a compact operator from F∞ into Fp;

(iii) e|·|2ν ∈ �
p

p–1 .
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