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Abstract
We investigate the regression problem in supervised learning by means of the weak
rescaled pure greedy algorithm (WRPGA). We construct learning estimator by
applying the WRPGA and deduce the tight upper bounds of the K-functional error
estimate for the corresponding greedy learning algorithms in Hilbert spaces.
Satisfactory learning rates are obtained under two prior assumptions on the
regression function. The application of the WRPGA in supervised learning
considerably reduces the computational cost while maintaining its powerful
generalization capability when compared with other greedy learning algorithms.
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1 Introduction
The applications of greedy algorithms to supervised learning have sparked great research
interest because they have appealing generalization capability with lower computing bur-
den than typical regularized methods, particularly in large-scale dictionary learning prob-
lem [1–6]. Big data sets for the most traditional learning algorithms frequently cause
slow machine performance. To tackle this problem, many researchers [1–3, 7, 8] advo-
cate greedy learning algorithms, which have greatly improved learning performance.

The approximation abilities of greedy-type algorithms for frames or more dictionaries
D were investigated in [7, 9–12], as well as various applications, see [3, 7, 13–19]. The
pure greedy algorithm (PGA) can realize the best bilinear approximation, see [20, 21].
Although the PGA is outstanding at computing, the main problem is that it lacks optimal
convergence properties for a general dictionary, and consequently the slower convergence
rate than the best nonlinear approximation [11, 21–23] corrupts its learning performance.
To improve the approximation rate, the orthogonal greedy algorithm (OGA), the relaxed
greedy algorithm (RGA), the stepwise projection algorithm (SPA), and their weak versions
have been proposed. It was shown that these greedy algorithms all achieved the optimal
rate O(m– 1

2 ) for approximating the elements in the class A1(D), which will be defined in
(14), where m is the iteration number, see [9, 11].

Both the OGA and the RGA have recently been employed successfully in machine learn-
ing [1–3, 7, 8]. For example, Barron et al. [7] established the optimal convergence rate
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O(n/ log n)– 1
2 ), where n is the sample size. To reduce the OGA’s computational load, Fang

et al. [1] investigated the learning performance of the orthogonal super greedy algorithm
(OSGA) and derived the almost same rate as the orthogonal greedy learning algorithm
(OGLA). All these results demonstrate that each greedy learning algorithm has its advan-
tages and disadvantages.

We study the applications of weak greedy algorithms to least squares regression in su-
pervised learning. It is well known that the weak type are easier to implement than the
usual greedy algorithms, see [12]. Specifically, the weak rescaled pure greedy algorithm
(WRPGA), one fairly simple modification of the PGA, is the goal of our investigation, see
[24, 25]. When compared to the OGA and the RGA, the WRPGA can also furthermore re-
duce the computational load. The best rate O(m– 1

2 ) for functions in the basic sparse class
has been proved [24]. Motivated by research results of [24], we proceed to use the same
method employed for the RPGA in [24] to deduce the error bound of the K-functional
estimate in the Hilbert space H for the WRPGA. The WRPGA is a simple greedy algo-
rithm with good approximation ability. Based on this, we propose the weak rescaled pure
greedy learning algorithm (WRPGLA) for solving the kernel-based regression problems in
supervised learning. Using the WRPGA’s proven approximation result, we can derive that
the WRPGLA has the almost same learning rate as the OGLA. Our results show that the
WRPGLA further cuts down the computational complexity even more without reducing
generalization capabilities.

The paper is organized as follows. In Sect. 2, we review least squares regression learning
theory and the WRPGA. In Sect. 3, we propose the WRPGLA and state the main theorems
on the error estimates. Section 4 is devoted to proofs of the main results. We present the
convergence rates under two smoothness assumptions on the regression function fρ in the
last section.

2 Preliminaries
Some preliminaries are presented in this section. Sections 2.1 and 2.2 provide a fast
overview of least squares regression learning and the WRPGA, respectively.

2.1 Least squares regression
In this paper, the approximation problem is addressed in the following statistical learning
context. Let X be a compact metric space and Y = R. Let ρ be a Borel probability measure
on Z = X × Y . The generalization error for a function f : X → Y is defined by

E(f ) =
∫

Z

(
f (x) – y

)2 dρ, (1)

which is minimized by the following regression function:

fρ(x) =
∫

Y
y dρ(y|x),

where ρ(·|x) is the conditional distribution induced by ρ at x ∈ X. In regression learning,
ρ is unknown, and what one can know is a set of samples z = {zi}n

i=1 = {(xi, yi)}n
i=1 ∈ Zn that

are drawn independently and identically according to ρ . The goal of learning is to find a
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good approximation fz of fρ , which minimizes the empirical error

Ez(f ) = ‖y – f ‖2
n :=

1
n

n∑
i=1

(
f (xi) – yi

)2. (2)

Denote the Hilbert space of the square integrable functions defined on X with respect
to the measure ρX by L2

ρX
(X), where ρX is the marginal measure of ρ on X. It is clear from

the definition of fρ(x) that for each x ∈ X,
∫

Y (fρ(x) – y) dρ(y|x) = 0. For any f ∈ L2
ρX

(X), it
holds that

E(f ) =
∫

Z

(
f (x) – fρ(x) + fρ(x) – y

)2 dρ

=
∫

X

(
f (x) – fρ(x)

)2 dρX +
∫

Z

(
fρ(x) – y

)2 dρ

+ 2
∫

X

(
f (x) – fρ(x)

)
dρX

∫
Y

(
fρ(x) – y

)
dρ(y|x)

=
∫

X

(
f (x) – fρ(x)

)2 dρX + E(fρ).

Therefore,

E(f ) – E(fρ) = ‖f – fρ‖2 (3)

with the norm ‖ · ‖

‖f ‖ =
(∫

X

∣∣f (x)
∣∣2dρX

) 1
2

. (4)

The prediction accuracy of learning algorithms is measured by E(‖fz – fρ‖2).
We will assume |y| ≤ B for a positive real number B < ∞ almost surely. In this paper, we

construct the learning estimator fz by applying the WRPGA and estimate E(‖fz – fρ‖2). So,
in the following subsection, we recall this algorithm.

2.2 Weak rescaled pure greedy algorithm
We shall restrict our analysis to the situation in which approximation takes place in a real,
separable Hilbert space H with the inner product 〈·, ·〉H and the norm ‖ · ‖ := ‖ · ‖H =
〈·, ·〉 1

2
H. Let D ⊂ H be a given dictionary satisfying ‖g‖ = 1 for every g ∈ D, g ∈ D implies

–g ∈D and Span(D) = H.
Petrova developed the rescaled pure greedy algorithm (RPGA) to enhance the PGA’s

convergence rate, which simply rescales fm at the mth greedy step, see [24]. We begin by
describing the weak rescaled pure greedy algorithm (WRPGA) also introduced by Petrova
in [24].

WRPGA({tm},D):
Step 0: Let f0 := 0.
Step m (m ≥ 1):
(1) If f = fm–1, then terminate the iterative process and define fk = fm–1 = f for k ≥ m.
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(2) If f �= fm–1, then choose a direction ϕm ∈D such that

∣∣〈f – fm–1,ϕm〉∣∣ ≥ tm sup
ϕ∈D

∣∣〈f – fm–1,ϕ〉∣∣, (5)

where {tm}∞m=1 is a weakness sequence and tm ∈ (0, 1].
Let

λm := 〈f – fm–1,ϕm〉, (6)

f̂m := fm–1 + λmϕm, (7)

sm :=
〈f , f̂m〉
‖f̂m‖2

. (8)

The m step approximation fm is defined as

fm = smf̂m, (9)

and proceed to Step m + 1.

Remark 1 When tm = 1, this algorithm is the RPGA. Note that if the supremum is not
attained, one can select tm < 1 and proceed with the algorithm. In this case, it is easier to
choose ϕm. If the output at the mth greedy step was f̂m rather than fm = smf̂m, this would be
the PGA. The WRPGA uses smf̂m, which is just suitable scaling of f̂m, and thus increases
the rate to O(m– 1

2 ) for functions in the closure of the convex hull of D.

3 Weak rescaled pure greedy learning
We shall provide the WRPGLA for regression. From the definition of the WRPGA, com-
puting supϕ∈D |〈f – fm–1,ϕ〉| may result in computation difficulty. Therefore we compute
only over the truncation of the dictionary, which is a finite subset of D. Let D1 ⊂ D2 ⊂
· · · ⊂D. Then Dm is the truncation of D with the cardinality #(Dm) = m. Here we assume
that

m ≤ m(n) :=
⌊

na⌋ for some fixed a ≥ 1. (10)

Then the WRPGLA is defined by the following simple processes.
WRPGLA:
Step 1: We apply the WRPGA for Dm to the function y(xi) = yi by utilizing the norm

‖ · ‖n associated with the empirical inner product, that is,

‖f ‖n :=

(
1
n

n∑
i=1

∣∣f (xi)
∣∣2

) 1
2

.

Step 2: The algorithms establish the approximation fz,k := fk to the data at the kth greedy
step. Then, we define our estimator as fz := Tfz,k∗ , where Tu := TB min{B, |u|} sgn(u) and

k∗ := arg min
k>0

{
‖y – Tfz,k‖2

n + κ
k log n

n

}
, (11)

where the constant κ ≥ κ0 = 2568B4(a + 5), which will be discussed in proof of Theorem 1.
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Remark 2 First, when k = 0, it follows from f0 = 0 and |y| ≤ B that κ
k log n

n ≤ B2. This sug-
gests that k∗ is not larger than Bn

κ
. Second, from the definition of the estimator, we observe

further that the computing cost of the kth greedy step is less than O(na). For the WRPGA,
it only requires an additional computation of sm.

To discuss the approximation properties of WRPGLA, we introduce the class of func-
tions

A0
1(D, M) :=

{
f =

∑
k∈�

ck(f )ϕk : ϕk ∈ D, #(�) < ∞,
∑
k∈�

∣∣ck(f )
∣∣ ≤ M

}
, (12)

and

A1(D, M) = A0
1(D, M). (13)

Then

A1(D) =
⋃
M>0

A1(D, M) (14)

and

‖f ‖A1(D) := inf
{

M : f ∈A1(D, M)
}

. (15)

We also use the following K-functional:

K(f , t) := K
(
f , t,H,A1(D)

)
:= inf

h∈A1(D)

{‖f – h‖H + t‖h‖A1(D)
}

, t > 0. (16)

Since all the constants in this work depend at most on κ0, B, and a, we denote all of them
by C for simplicity of notation. Now we take H = L2

ρX
(X) with the norm defined by (4).

Then, we provide our main results on the generalization error bounds for the WRPGLA.

Theorem 1 There exists κ0 depending only on B and a such that if κ ≥ κ0, then for all k > 0
and h ∈ Span(Dm), the learning estimator by applying the WRPGA satisfies

E
(‖fz – fρ‖2) ≤ 8

‖h‖2
A1(Dm)∑k
i=1 t2

i
+ 2‖fρ – h‖2 + C

k log n
n

. (17)

Furthermore, we have

E
(‖fz – fρ‖) ≤ 2K

(
fρ , 2

( k∑
i=1

t2
i

)– 1
2
)

+ C
k log n

n
. (18)

Applying Theorem 1 with ti = t0 for all i ≥ 1 and 0 < t0 ≤ 1, we get the following theorem.

Theorem 2 Under the assumptions of Theorem 1, if ti = t0 for all i ≥ 1 and 0 < t0 ≤ 1, then
we have

E
(‖fz – fρ‖2) ≤ 8

‖h‖2
A1(Dm)

kt2
0

+ 2‖fρ – h‖2 + C
k log n

n
. (19)
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Furthermore, we have

E
(‖fz – fρ‖) ≤ 2K

(
fρ , 2k– 1

2 t–1
0

)
+ C

k log n
n

. (20)

4 Proofs of the main results
To prove Theorem 1, we establish a lemma on the upper error bound for the WRPGA.

Lemma 4.1 If f ∈H, h ∈A1(D), then the output (fm)m≥0 of the WRPGA satisfies

em := ‖f – fm‖ ≤ 2K

(
f ,

( m∑
k=1

t2
k

)–1/2)
, m = 0, 1, 2, . . . . (21)

Proof In terms of the definition of K-functional, we just need to prove that for f ∈H and
h ∈A1(D),

e2
m ≤ ‖f – h‖2 +

4∑m
k=1 t2

k
‖h‖2

A1(D), m = 1, 2, . . . . (22)

Since A0
1(D, M) is dense in A1(D, M), it suffices to prove (22) for functions h that

are finite sums
∑

j cjϕj with
∑

j |cj| ≤ M. We fix ε > 0 and select a representation for
h =

∑
ϕ∈D cϕϕ, such that

∑
ϕ∈D

|cϕ | < M + ε. (23)

Denote

am := e2
m – ‖f – h‖2, m = 1, 2, . . . . (24)

The nonincreasing of {em}∞m=0 implies that {am}∞m=0 is also a nonincreasing sequence.
Then we discuss these two cases separately.
Case 1: a0 := ‖f ‖2 – ‖f – h‖2 ≤ 0. Then, for every m ≥ 1, we have am ≤ 0. Therefore

inequality (22) holds true.
Case 2: a0 > 0. Assume that am–1 > 0, m ≥ 1. Note that fm is the orthogonal projection

of f onto the linear space spanned by f̂m, it implies

〈f – fm, fm〉 = 0, m ≥ 0. (25)

This together with the selection of ϕm implies

e2
m–1 = 〈f – fm–1, f – fm–1〉

= 〈f – fm–1, f 〉
= 〈f – fm–1, f – h〉 + 〈f – fm–1, h〉
≤ em–1‖f – h‖ +

∑
ϕ∈D

cϕ〈f – fm–1,ϕ〉
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≤ em–1‖f – h‖ + t–1
m

∣∣〈f – fm–1,ϕm〉∣∣ ∑
ϕ∈D

|cϕ |. (26)

By (23), we get

e2
m–1 ≤ 1

2
(
e2

m–1 + ‖f – h‖2) + t–1
m

∣∣〈f – fm–1,ϕm〉∣∣(M + ε). (27)

Let ε → 0. Therefore

∣∣〈f – fm–1,ϕm〉∣∣ ≥ tm(e2
m–1 – ‖f – h‖2)

2M
. (28)

It has been proved in [24] that

e2
m ≤ e2

m–1 – 〈f – fm–1,ϕm〉2, m = 1, 2, . . . . (29)

Then, using the assumption that am–1 > 0, we have

e2
m ≤ e2

m–1 –
t2
ma2

m–1
4M2 . (30)

It yields

am ≤ am–1

(
1 –

t2
mam–1

4M2

)
. (31)

In particular, for m = 1, we have

a1 ≤ a0

(
1 –

t2
1a0

4M2

)
. (32)

Case 2.1: 0 < a0 < 4M2

t2
1

. Since ψ(t) := t(1 – t2
1 t

4M2 ) on (0, 4M2

t2
1

) has maximum M2

t2
1

, it follows
that

am ≤ ψ(a0) ≤ M2

t2
1

≤ 4M2

t2
1

.

Therefore, either all {am}∞m=0 ⊂ (0, 4M2

t2
1

) and then satisfy (31), or we know that am∗ ≤ 0 for
some m∗ ≥ 1. The analysis for m ≥ m∗ is therefore the same as in Case 1. For the positive
elements in {am}∞m=0, by applying Lemma 2.2 from [24] with l = 1, rm = t2

m, B = 4M2

t2
1

, J = 0,
and r = 4M2, we obtain

am ≤ 4M2

t2
1 +

∑m
k=1 t2

k
≤ 4M2∑m

k=1 t2
k

, (33)

which gives inequality (22).
Case 2.2: a0 ≥ 4M2

t2
1

. It follows from (32) that a1 < 0. That is, e2
1 < ‖f – h‖2, which yields

(22) due to monotonicity. Lemma 4.1 is proved. �

Now we prove Theorem 1.
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Proof of Theorem 1 As shown in [5], ‖fz – fρ‖2 can be decomposed as

‖fz – fρ‖2 ≤ S1 + S2 + S3

+ 2
(

‖y – fz‖2
n + κ

k∗ log n
n

– ‖y – Tfz,k‖2
n – κ

k log n
n

)
, (34)

where

S1 := ‖fz – fρ‖2 – 2
(

‖y – fz‖2
n – ‖y – fρ‖2

n + κ
k∗ log n

n

)
,

S2 := 2
(‖y – fz,k‖2

n – ‖y – h‖2
n
)
,

S3 := 2
(

‖y – h‖2
n – ‖y – fρ‖2

n + κ
k log n

n

)
, (35)

and h ∈ Span{Dm}.
We firstly estimate the bound of S1. To do this, we introduce 	,

	 =
{

z : z ∈ Zn,‖fz – fρ‖2 ≥ 2
(

‖y – fz‖2
n – ‖y – fρ‖2

n + κ
k∗ log n

n

)}
. (36)

Let Prob(	) be the probability that the sample point is a member of the set 	. Then from
|y| ≤ B and the definition of fρ and fz, we have

E(S1) ≤ 6B2 Prob(	). (37)

For S2, according to Lemma 4.1, we get

‖y – fz,k‖2
n – ‖y – h‖2

n ≤ 4
‖h‖2

An
1∑m

k=1 t2
k

, (38)

where

An
1(D) :=

{
h : h =

∑
i∈�

cn
i ‖gi‖n

gi

‖gi‖n
, h ∈A1(D)

}
(39)

and

‖h‖An
1 (D) := inf

h

{∑
i∈�

∣∣cn
i
∣∣ · ‖gi‖n, h ∈An

1(D)
}

. (40)

It has been proved in Lemma 3.4 of [7] that

E
(‖h‖2

An
1

) ≤ ‖h‖2
A1 , (41)

which implies

E(S2) ≤ 8
‖h‖2

A1∑m
k=1 t2

k
. (42)
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For S3, from the property of mathematical expectation and (1), we have

E
(‖y – h‖2

n – ‖y – fρ‖2
n
)

= E
(∣∣y – h(x)

∣∣2) – E
(∣∣y – fρ(x)

∣∣2)

= E(h) – E(fρ). (43)

This together with (3) yields

E(S3) = 2‖fρ – h‖2 + 2κ
k log n

n
. (44)

Combining (37), (42), with (44), we obtain

E
(‖fz – fρ‖2) ≤ 6B2 Prob(	) + 8

‖h‖2
A1∑m

k=1 t2
k

+ 2‖fρ – h‖2 + 2κ
k log n

n
. (45)

Next we bound Prob(	). To this end, we need the following known result in [10].

Lemma 4.2 Let F be the class of functions F = {|f | ≤ B} for some fixed constant B. For all
n and α,β > 0, we have

Prob
{∃f ∈F : ‖f – fρ‖2

ρX
≥ 2

(‖y – f ‖2
n – ‖y – fρ‖2

n
)

+ α + β
}

≤ 14 sup
x

N

(
β

40B
,F , L1(�vx)

)
exp

(
–

αn
2568B4

)
, (46)

where x = (x1, . . . , xn) ∈ Xn and N (t,F , L1(�vx)) is the covering number for the class F by
balls of radius t in L1(�vx), with �vx := 1

n
∑n

i=1 δxi the empirical discrete measure.

We define G� := Span{g : g ∈ � ⊂ D} and Fk :=
⋃

�⊂Dm ,#(�)≤k{Tf : f ∈ G�}. Consider the
probability

pk = Prob

{
∃f ∈Fk : ‖f – fρ‖2 ≥ 2

(
‖y – f ‖2

n – ‖y – fρ‖2
n + κ

k log n
n

)}
.

Applying Lemma 4.2 to Fk with α = κ
k log n

n , β = 1
n , and κ > 1, we get

pk ≤ 14 sup
x

N

(
1

40Bn
,Fk , L1(�vx)

)
exp

(
–κ

k log n
2568B4

)

= 14 sup
x

N

(
1

40Bn
,Fk , L1(�vx)

)
n– κk

2568B4 . (47)

Lemma 3.3 of [7] provides the upper bound for N (t,Fk , L1(�vx)), which implies

pk ≤ Cnakn2(k+1)n– κk
2568B4 . (48)

Let κ ≥ κ0 = 2568B4(a + 5). Then the above inequality yields

pk ≤ Cn–3k+2 ≤ Cn–2. (49)
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So we have

Prob(	) ≤
∑

1≤k≤ Bn
κ

pk ≤ C
n

. (50)

By substituting the bound (50) of Prob(	) into (45), we get

E
(‖fz – fρ‖2) ≤ 8

‖h‖2
A1∑m

k=1 t2
k

+ 2‖fρ – h‖2 + C
k log n

n
. (51)

Next we derive the K-functional result of the upper bound (51). It is known from the
property of variance that

E2(‖fz – fρ‖) ≤ E
(‖fz – fρ‖)2. (52)

Combining (51) with (52), we have

E(‖ fz – fρ ‖) ≤
√

8
‖ h ‖2

A1∑m
k=1 t2

k
+ 2 ‖ fρ – h ‖2 +C

k log n
n

≤ 2
(

2 ‖ h ‖A1

(
∑m

k=1 t2
k )1/2 + ‖ fρ – h ‖

)
+ C

k log n
n

≤ 2K

(
fρ , 2

( m∑
k=1

t2
k

)–1/2)
+ C

k log n
n

. (53)

This completes the proof of Theorem 1. �

5 Convergence rate and universal consistency
In this section, we analyze Theorem 2 under two different prior assumptions on fρ . We
begin with the definitions of A1(Dm), A1,r , and Bp,r .

We define the space A1(Dm) to be the space Span{Dm} with the norm ‖ ·‖A1(Dm) defined
by (15). Note that now D is replaced by Dm.

For r > 0, we then introduce the space

A1,r =
{

f : ∀m,∃h = h(m) ∈ Span{Dm},‖h‖A1(Dm) ≤ C,‖f – h‖ ≤ Cm–r}, (54)

where ‖ · ‖A1,r is the minimum value of C such that (54) holds.
Furthermore, we present the following space:

Bp,r := [H,A1,r]θ ,∞, 0 < θ < 1, (55)

with 1
p = 1+θ

2 . From the definition of interpolation spaces in [26], we know that f ∈
[H,A1,r]θ ,∞ if and only if for any t > 0,

K(f , t,H,A1,r) := inf
h∈A1,r

{‖f – h‖H + t‖h‖A1,r

} ≤ Ctθ . (56)

The minimum C such that (56) holds true is defined as the norm on Bp,r .
Now we first consider fρ ∈A1,r .
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Corollary 5.1 Under the assumptions of Theorem 2, if fρ ∈A1,r with r > 1
2a , then we have

E
(‖fz – fρ‖2) ≤ C

(
1 + ‖fρ‖A1,r

)
t–1
0

(
n

log n

)– 1
2

. (57)

Proof From the definition of A1,r , there exists h := h(m) ∈ Span{Dm} for every m that sat-
isfies

‖h‖A1(Dm) ≤ M

and

‖fρ – h‖ ≤ Mm–r ,

where M := ‖fρ‖A1,r .
Theorem 2 thus implies

E
(‖fz – fρ‖2) ≤ C min

k>0

(
M2

kt2
0

+ M2n–2ar +
k log n

n

)
. (58)

Moreover, the mild restriction 2ar ≥ 1 with a arbitrarily large allows us to remove the
term M2n–2ar in (58). To balance the errors in (58), we take k := � (M+1)2

t2
0

n
log n� 1

2 . Then the
desired result (57) can be obtained. �

Next we consider fρ ∈ Bp,r .

Corollary 5.2 Under the assumptions of Theorem 2, if fρ ∈ Bp,r with r > 1
2a , then we have

E
(‖fz – fρ‖2) ≤ Ct–p

0
(
1 + ‖fρ‖Bp,r

)p
(

n
log n

)–1+ p
2

. (59)

Proof By (56), if f ∈ Bp,r , then for any t > 0, we can find a function f̃ ∈A1,r that satisfies

‖f̃ ‖A1,r ≤ ‖f ‖Bp,r tθ–1 (60)

and

‖f – f̃ ‖ ≤ ‖f ‖Bp,r tθ . (61)

For f̃ ∈A1,r , according to (54), there exists h := h(m) ∈ Span{Dm} for every m that satisfies

‖h‖A1(Dm) ≤ ‖f̃ ‖A1,r (62)

and

‖f̃ – h‖ ≤ ‖f̃ ‖A1,r m–r . (63)
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The relations (60), (62), and (63) imply

‖h‖A1(Dm) ≤ ‖f ‖BP,r tθ–1 (64)

and

‖f̃ – h‖ ≤ ‖f ‖Bp,r tθ–1m–r . (65)

Then combining (61) with (65), we obtain

‖f – h‖ ≤ ‖f ‖Bp,r

(
tθ + tθ–1m–r). (66)

From (64) and (66), there exists h := h(m) ∈ Span{Dm} for every m and t > 0 that satisfies

‖h‖A1(Dm) ≤ Mtθ–1

and

‖fρ – h‖ ≤ M
(
tθ + tθ–1m–r),

where M = ‖fρ‖Bp,r .
Therefore, Theorem 2 with t = k– 1

2 implies

E
(‖fz – fρ‖2) ≤ C min

k>0

(
M2t–2

0 k1– 2
p + M2(k

1
2 – 1

p + k1– 1
p n–ar)2 +

k log n
n

)
. (67)

The condition 2ar ≥ 1 also enables us to eliminate the term involving n–ar . Then, by taking
k := � (M+1)2

t2
0

n
log n� p

2 in (67), we obtain the desired result (59). �

Then we show the universal consistency of the WRPGLA.

Theorem 3 Under the assumptions of Theorem 2, if the dictionaryD is complete in L2
ρX

(X),
for any fρ , we have

lim
n→+∞ E

(‖fz – fρ‖2) = 0. (68)

Proof Since D is complete in L2
ρX

(X), we can find h ∈ Span{Dm} satisfying ‖fρ – h‖ ≤ ε,
where ε > 0 and n is big enough. It follows from Theorem 2 that

E
(‖fz – fρ‖2) ≤ C min

k>0

(‖h‖2
A1(Dm)

kt2
0

+ ε2 +
k log n

n

)
. (69)

To balance the first and third error term, we choose k := n 1
2 t–1

0 , which implies

E
(‖fz – fρ‖2) ≤ C

(
ε2 + t–1

0 n– 1
2 log n

)
. (70)
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Thus, for n sufficiently large,

E
(‖fz – fρ‖2) ≤ 2Cε2. (71)

This completes the proof of Theorem 3. �

Remark 3 It is known from [11] that the OGA and the RGA can achieve the optimal con-
vergence rate O(m– 1

2 ) on A1(D). When tk = 1, Lemma 4.1 shows that the WRPGA also
attains the best rate. Meanwhile, we compare the WRPGLA with the OGLA and the re-
laxed greedy learning algorithm (RGLA). For fρ ∈ A1,r , we derive the same convergence
rate O((n log n)–1/2) of the WRPGLA as that of the OGLA and the RGLA in Ref. [7]. For
fρ ∈ Bp,r , when p → 1, the rate O((n log n)–1+ p

2 ) of the WRPGLA can be arbitrarily close
to O((n log n)–1/2).

Moreover, from the viewpoint of the computational complexity, for the WRPGLA, the
approximant fk is constructed by solving a one-dimensional optimization problem since
fk is an orthogonal projection of f onto Span{f̂k}. On the other hand, the OGLA is more
expensive to implement since at each step, the algorithm requires the evaluation of or-
thogonal projection on a k-dimensional space, and the output is constructed by solving
a k-dimensional optimization problem. And it is clear that the WRPGLA is simpler than
the RGLA. Thus, the WRPGLA should essentially reduce the complexity and make the
learning process accelerated.

In future research, it would be an interesting project to deduce the error bound of the
WRPGLA in Banach spaces with modulus of smoothness ρ(u) ≤ γ uq, 1 < q ≤ 2 as [24,
27]. Furthermore, Guo and Ye [28, 29] derived the convergence rates of the moving least-
squares learning algorithm for the weakly dependent and nonidentical samples. It remains
open to explore the greedy learning algorithms in the non-i.i.d. and nonidentical sampling
setting.
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