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Abstract
In this paper we give a necessary and sufficient condition for the discrete Jensen
inequality to be satisfied for real (not necessarily nonnegative) weights. The result
generalizes and completes the classical Jensen–Steffensen inequality. The validity of
the strict inequality is studied. As applications, we first give the form of our result for
strongly convex functions, then we study discrete quasi-arithmetic means with real
(not necessarily nonnegative) weights, and finally we refine the inequality obtained.
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1 Introduction
By N+ we denote the set of positive integers.

Let C ⊂ R be an interval with nonempty interior. Let FC denote the set of all convex
functions on C.

A fundamental consequence of the notion of a convex set and a convex function is the
following remarkable statement.

Theorem 1 (The discrete Jensen inequality, see [9]) Let C ⊂ R be an interval with
nonempty interior, and let m ∈ N+. Assume that p1, . . . , pm are nonnegative numbers such
that

∑m
i=1 pi > 0, and assume (s1, . . . , sm) ∈ Cm. Then

1
∑m

i=1 pi

m∑

i=1

pisi ∈
[

min
i=1,...,m

si, max
i=1,...,m

si

]
⊂ C, (1)

and for every function f ∈ FC , the inequality

f

(
1

∑m
i=1 pi

m∑

i=1

pisi

)

≤ 1
∑m

i=1 pi

m∑

i=1

pif (si) (2)

holds.
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If f ∈ FC is strictly convex, inequality (2) is strict if the points s1, . . . , sm are not all equal
and the scalars p1, . . . , pm are positive.

The following statement is from Steffensen [11]. Its significance is that it contains con-
ditions under which inclusion (1) and inequality (2) are satisfied even if the numbers
p1, . . . , pn are not all nonnegative.

Theorem 2 (The discrete Jensen–Steffensen inequality, see [9]) Let C ⊂ R be an interval
with nonempty interior, and let m ∈N+. Assume that p1, . . . pm are real numbers such that
∑m

i=1 pi > 0 and

0 ≤
l∑

i=1

pi ≤
m∑

i=1

pi, l = 1, . . . , m, (3)

and assume that (s1, . . . , sm) ∈ Cm is a monotonic m-tuple (either increasing or decreasing).
Then (1) is satisfied, and for every function f ∈ FC inequality (2) holds.

A natural question is whether condition (3) is not only sufficient but also necessary to
satisfy (1) and (2). The answer is not, which is illustrated by the following example.

Example 3 Let C := [0, 3], s1 := 3, s2 := 1, s3 := 0, and p1 := 1, p2 := –5/2, p3 := 2. Then

3∑

i=1

pi > 0, but p1 >
3∑

i=1

pi and p1 + p2 < 0.

Nevertheless,

1
∑3

i=1 pi

3∑

i=1

pisi = 1 ∈ [0, 3],

and for every function f ∈ F[0,3], the inequality

f (1) = f

(
1

∑3
i=1 pi

3∑

i=1

pisi

)

≤ 1
∑3

i=1 pi

3∑

i=1

pif (si) = 2f (3) – 5f (1) + 4f (0)

obviously holds.

Remark 4 From paper [3] comes the statement (adopted by some other papers on the
subject) that conditions

∑m
i=1 pi > 0 and (3) are necessary and sufficient for (1) to be satis-

fied (see Lemma 2 in [3]). The previous example shows that the conditions indicated are
not necessary in general. The proof of the necessity statement of Lemma 2 in [3] is incor-
rect because it proves the satisfaction of each inequality in (3) using a different sequence
(s1, . . . , sm).

Also interesting is the question of when there is a strict inequality in the discrete Jensen–
Steffensen inequality. Nice necessary and sufficient conditions for this problem are given
in [1]. A more complex set of conditions is needed than for the discrete Jensen inequality.
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However, the following answer can be found in some papers (see e.g. [7]): If f is strictly
convex, then inequality (2) is strict unless s1 = · · · = sm. The example below shows that this
is usually not true even when pi �= 0 (i = 1, . . . , m).

Example 5 Let C := [1, 2], s1 := 2, s2 = s3 := 1, and p1 = p3 := 1, p2 := –1. Then the condi-
tions of Theorem 2 are satisfied, s1 �= s2, but for every f ∈ F[1,2]

f

(
1

∑3
i=1 pi

3∑

i=1

pisi

)

= f (2) =
1

∑3
i=1 pi

3∑

i=1

pif (si).

Of course, the case of equality in the previous example can be simply deduced from
Theorem 1 in [1].

In this paper, we give necessary and sufficient conditions for satisfying inequality (2)
in the case when p1, . . . pm are real numbers such that

∑m
i=1 pi > 0. The result generalizes

and completes the discrete Jensen–Steffensen inequality. We consider both the case where
the points in the interval are ordered and the case where they are not. The validity of the
strict inequality is studied. As applications, we first give the form of our result for strongly
convex functions, then we study discrete quasi-arithmetic means with real (not necessarily
nonnegative) weights, and finally we refine the inequality obtained.

2 Preliminary results
Let (X,A) be a measurable space (A always means a σ -algebra of subsets of X). If μ is
either a measure or a signed measure on A, then the real vector space of μ-integrable
real functions on X is denoted by L(μ). The integrable functions are considered to be
measurable. The unit mass at x ∈ X (the Dirac measure at x) is denoted by εx.

The set of all subsets of a set X is denoted by P(X).
Let C ⊂R be an interval with nonempty interior, which is denoted by C◦.
Let (X,A,μ) be a measure space, where μ is a finite signed measure, and let ϕ : X → C

be a function such that ϕ ∈ L(μ). We define FC(ϕ) as the set of all functions f ∈ FC such
that f ◦ ϕ ∈ L(μ).

The following result is a version of the integral Jensen inequality for signed measures. It
is proved in Theorem 12 of [5].

Theorem 6 Let (X,A) be a measurable space, and let μ be a finite signed measure on A
such that μ(X) > 0. Let C ⊂R be an interval with nonempty interior, and let ϕ : X → C be
a μ-integrable function. Then

(a) If
∫

{ϕ≥w}
(ϕ – w) dμ ≥ 0, w ∈ C◦ (4)

and
∫

{ϕ<w}
(w – ϕ) dμ ≥ 0, w ∈ C◦ (5)

are satisfied, then

tϕ,μ :=
1

μ(X)

∫

X
ϕ dμ ∈ C.
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(b) For every function f ∈ FC(ϕ), the inequality

f
(

1
μ(X)

∫

X
ϕdμ

)

≤ 1
μ(X)

∫

X
f ◦ ϕ dμ (6)

holds if and only if (4) and (5) are satisfied.

Let C ⊂R be an interval with nonempty interior. A function g : C → R is called strongly
convex with modulus d > 0 if

g
(
λs + (1 – λ)t

) ≤ λg(s) + (1 – λ)g(t) – dλ(1 – λ)(s – t)2

for all s, t ∈ C and λ ∈ [0, 1].
The following statement is a special case of Lemma 2.1 in paper [10], which describes

the close relationship between convex and strongly convex functions.

Lemma 7 Let C ⊂R be an interval with nonempty interior and d > 0. A function g : C →R

is strongly convex with modulus d if and only if the function g – d · id2
R

is convex.

The next extension of the Jensen–Steffensen inequality for strongly convex functions
comes from [2].

Theorem 8 Let C ⊂ R be an interval with nonempty interior, and let m ∈ N+. As-
sume that p1, . . . pm are real numbers such that

∑m
i=1 pi = 1 and (3) are satisfied. As-

sume that (s1, . . . , sm) ∈ Cm is a monotonic m-tuple (either increasing or decreasing).
Then

m∑

i=1

pisi ∈
[

min
i=1,...,m

si, max
i=1,...,m

si

]
⊂ C,

and for every strongly convex function g : C → R with modulus d > 0, the inequal-
ity

g

( m∑

i=1

pisi

)

≤
m∑

i=1

pig(si) – d
m∑

i=1

pi

(

si –
m∑

i=1

pisi

)2

(7)

holds.

Remark 9 (a) Of course, the previous statement can also be formulated by considering the
weaker condition

∑m
i=1 pi > 0 instead of the condition

∑m
i=1 pi = 1.

(b) As a special case, the discrete Jensen inequality for strongly convex functions is for-
mulated and proved in [8].

We need the following lemma.

Lemma 10 Let C ⊂R be an interval with nonempty interior, and let m ∈N+. Assume that
p1, . . . pm are real numbers and (s1, . . . , sm) ∈ Cm such that

∑m
i=1 pi = 1 and

∑m
i=1 pisi ∈ C.
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Then inequality (7) holds for every strongly convex function g : C → R with modulus d > 0
if and only if the inequality

f

( m∑

i=1

pisi

)

≤
m∑

i=1

pif (si) (8)

holds for every convex function f : C →R.

Proof Assume that (8) holds for every convex function f : C → R, and let g : C → R be a
strongly convex function with modulus d. By Lemma 7, the function g – d · id2

R
is convex,

and hence it satisfies (8), that is,

g

( m∑

i=1

pisi

)

– d ·
( m∑

i=1

pisi

)2

≤
m∑

i=1

pi
(
g(si) – d · s2

i
)
,

which is exactly (7).
Conversely, assume that (7) holds for every strongly convex function g : C → R with

modulus d, and let f : C →R be a convex function. Also, because of Lemma 7, the function
f + d · id2

R
is a strongly convex function with modulus d, and therefore (7) yields that

f

( m∑

i=1

pisi

)

+ d ·
( m∑

i=1

pisi

)2

≤
m∑

i=1

pi
(
f (si) + d · s2

i
)

– d
m∑

i=1

pi

(

si –
m∑

i=1

pisi

)2

,

which gives (8) by an elementary calculation.
The proof is complete. �

3 Main results
We now formulate Theorem 6 for discrete signed measures. First, we assume that the
points in the interval are in monotonic order, because this is the basis of the proof of the
general case, and we need this special case.

Theorem 11 Let C ⊂ R be an interval with nonempty interior, and let m ∈ N+. Assume
p := (p1, . . . , pm) are real numbers such that

∑m
i=1 pi > 0, and s := (s1, . . . , sm) ∈ Cm is a mono-

tonic m-tuple.
Suppose that s is decreasing.
(a) If

l∑

i=1

pisi ≥ sl+1

l∑

i=1

pi, l = 1, . . . , m – 1, (9)

and

sm–l

m∑

i=m+1–l

pi ≥
m∑

i=m+1–l

pisi, l = 1, . . . , m – 1, (10)

are satisfied, then

ts,p :=
1

∑m
i=1 pi

m∑

i=1

pisi ∈ [sm, s1] ⊂ C. (11)
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(b) For every function f ∈ FC , the inequality

f

(
1

∑m
i=1 pi

m∑

i=1

pisi

)

≤ 1
∑m

i=1 pi

m∑

i=1

pif (si) (12)

holds if and only if (9) and (10) are satisfied.
Suppose that s is increasing.
(c) If

l∑

i=1

pisi ≤ sl+1

l∑

i=1

pi, l = 1, . . . , m – 1, (13)

and

sm–l

m∑

i=m+1–l

pi ≤
m∑

i=m+1–l

pisi, l = 1, . . . , m – 1, (14)

are satisfied, then

ts,p ∈ [s1, sm] ⊂ C.

(d) For every function f ∈ FC , inequality (12) holds if and only if (13) and (14) are satisfied.

Proof We first consider the case where s1 ≥ s2 ≥ · · · ≥ sm.
If m = 1, then the statement is obvious, and hence we can suppose that m ≥ 2.
Let X := {1, . . . , m}, and let the set function μ : P(X) →R be defined by

μ :=
∑

i∈X

piεi.

Then (X, P(X),μ) is a measure space with the finite signed measure μ.
Let the function ϕ : X → C be defined by

ϕ(i) := si.

Then ϕ ∈ L(μ) and FC(ϕ) = FC .
Condition (9) implies ts,p ≥ sm, while condition (10) yields ts,p ≤ s1.
Now, by Theorem 6, it is enough to show that (9) is equivalent to (4), and (10) is equiv-

alent to (5).
We prove the first equivalence, the second can be treated in a similar way.
(i) Suppose s1 > s2 > · · · > sm.
Assume that (4) holds, that is,

∫

{ϕ≥w}
(ϕ – w) dμ =

∑

{i∈{1,...,m}|si≥w}
pi(si – w) ≥ 0, w ∈ C◦. (15)
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If sl+1 ≤ w < sl for some l ∈ {1, . . . , m – 1}, then we get from (15) that

∑

{i∈{1,...,m}|si≥w}
pi(si – w) =

l∑

i=1

pi(si – w) =
l∑

i=1

pisi – w
l∑

i=1

pi ≥ 0,

especially

l∑

i=1

pisi – sl+1

l∑

i=1

pi ≥ 0.

It now follows that (9) is satisfied.
Now assume conversely that (9) holds.
If w ≥ s1, then either {ϕ ≥ w} = ∅ or {ϕ ≥ w} = {s1}, and hence (15) is obvious.
If sl+1 ≤ w < sl for some l ∈ {1, . . . , m – 1}, then

∫

{ϕ≥w}
(ϕ – w) dμ =

l∑

i=1

pi(si – w)

≥ min

( l∑

i=1

pi(si – sl),
l∑

i=1

pi(si – sl+1)

)

= min

( l–1∑

i=1

pi(si – sl),
l∑

i=1

pi(si – sl+1)

)

. (16)

By (9), expression (16) is nonnegative.
If w < sm, then by

∑m
i=1 pi > 0 and (9),

∫

{ϕ≥w}
(ϕ – w) dμ =

m∑

i=1

pi(si – w) =
m∑

i=1

pisi – w
m∑

i=1

pi

≥
m∑

i=1

pisi – sm

m∑

i=1

pi =
m–1∑

i=1

pisi – sm

m–1∑

i=1

pi ≥ 0.

(ii) Now we consider the general case.
If either sl+k+2 < sl+1+k = · · · = sl+1 < sl for some l ∈ {1, . . . , m – 3} and k ∈ {1, . . . , m – l – 2}

or sm = · · · = sl+1 < sl for some l ∈ {1, . . . , m – 2} (in this case k = m – l, then

j∑

i=1

pisi ≥ sj+1

j∑

i=1

pi, j = l, . . . , l + k,

is equivalent to

l∑

i=1

pisi ≥ sl+1

l∑

i=1

pi,

and therefore (i) can be applied to the different elements of (si)m
i=1.

We now turn to the case sm ≥ sm–1 ≥ · · · ≥ s1.
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Define

qi := pm–i+1 and ti := sm–i+1, i = 1, . . . , m,

and apply the first part by using q1, . . . qm instead of p1, . . . pm and t1, . . . tm instead of
s1, . . . sm.

The proof is complete. �

Remark 12 Assume that p1, . . . pm are real numbers such that
∑m

i=1 pi > 0 and (3) are sat-
isfied.

(a) If s is decreasing, it follows from Theorem 2 and Theorem 11 that conditions (9) and
(10) must also be satisfied. This can also be easily shown directly by induction on l. If s is
increasing, an analogous remark applies.

(b) We can see that Theorem 11 is a generalization of the discrete Jensen–Steffensen
inequality, and since it contains necessary and sufficient conditions, it is the best result of
this kind.

Remark 13 Assume
∑m

i=1 pi > 0. Conditions (9) and (10), although weaker than condition
(3), are also only sufficient, but not necessary, to satisfy (11). Indeed, let us start again from
Example 3: Let C := [0, 3] and s1 := 3, s2 := 1. Then p1 + p2 + p3 > 0 and (11) are equivalent
to

p1 + p2 + p3 > 0, 3p1 + p2 ≥ 0, 2p2 + 3p3 ≥ 0.

These conditions are satisfied, for example, if p1 := –2, p2 := 8, p3 := –1, but neither (9) nor
(10) hold since in this case the latter conditions imply that p1, p3 ≥ 0.

We now turn to the study of the strict inequality in (12).

Theorem 14 Let C ⊂ R be an interval with nonempty interior, and let m ∈ N+, m ≥ 3.
Assume that p := (p1, . . . pm) are real numbers, and s := (s1, . . . , sm) ∈ Cm is a decreasing
m-tuple. If either

p1 > 0,
m∑

i=2

pi > 0, and s1 > s2 (17)

or

m–1∑

i=1

pi > 0, pm > 0, and sm < sm–1, (18)

and (9) and (10) are satisfied, then for every strictly convex function f ∈ FC , inequality (12)
is strict.

Proof The conditions of Theorem 11(a) are satisfied, and therefore inequality (12) holds
for every f ∈ FC .

Assume that (17) is satisfied.
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We first show that (p2, . . . pm) and (s2, . . . , sm) satisfy conditions analogous to (9) or (10),
that is,

l∑

i=2

pisi ≥ sl+1

l∑

i=2

pi, l = 2, . . . , m – 1, (19)

and

sm–l

m∑

i=m+1–l

pi ≤
m∑

i=m+1–l

pisi, l = 2, . . . , m – 1. (20)

Since p and s satisfy (10), (20) is also obviously true.
By using p1 > 0 and s1 > sl+1, it comes from (9) that

l∑

i=2

pisi =
l∑

i=1

pisi – p1s1 ≥ sl+1

l∑

i=1

pi – p1s1

= sl+1

l∑

i=2

pi – p1(s1 – sl+1) ≥ sl+1

l∑

i=2

pi, l = 2, . . . , m – 1.

It follows from the above that Theorem 11 (a–b) can be applied to (p2, . . . pm) and
(s2, . . . , sm), and it gives that

1
∑m

i=2 pi

m∑

i=2

pisi ∈ [sm, s2], (21)

and for every f ∈ FC , the inequality

f

(
1

∑m
i=2 pi

m∑

i=2

pisi

)

≤ 1
∑m

i=2 pi

m∑

i=2

pif (si) (22)

holds.
Since

1
∑m

i=1 pi

m∑

i=1

pisi =
p1

∑m
i=1 pi

s1 +
∑m

i=2 pi
∑m

i=1 pi

(
1

∑m
i=2 pi

m∑

i=2

pisi

)

,

we obtain from the discrete Jensen inequality by using the conditions in (17), (21), and
(22) that

f

(
1

∑m
i=1 pi

m∑

i=1

pisi

)

<
p1

∑m
i=1 pi

f (s1) +
1

∑m
i=1 pi

f

(
1

∑m
i=2 pi

m∑

i=2

pisi

)

≤ 1
∑m

i=1 pi

m∑

i=1

pif (si).

We can prove similarly if (18) is satisfied.
The proof is complete. �
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Remark 15 The previous result contains the condition for strict inequality given in the
discrete Jensen inequality, and from it we can derive conditions for strict inequality for the
discrete Jensen–Steffensen inequality. Of course, conditions (17) and (18) for the discrete
Jensen–Steffensen inequality are not as sharp as the conditions in Theorem 1 of paper [1].
Their importance lies in the fact that we can say at least sufficient conditions for the strict
inequality in Theorem 11. It may be an interesting problem to give necessary and sufficient
conditions for strict inequality in Theorem 11, but this does not seem to be an easy task.

Conditions (17) and (18) are more related to the conditions of the discrete Jensen–
Steffensen inequality than to the conditions of Theorem 11. It would be interesting if we
could formulate conditions for the strict inequality that are related to conditions (9) and
(10). The following statement illustrates this for m = 3.

Proposition 16 Let C ⊂ R be an interval with nonempty interior. Assume that p :=
(p1, p2, p3) are real numbers such that p1 �= 0, p3 �= 0, and

∑3
i=1 pi > 0, and s := (s1, s2, s3) ∈ C3

is a decreasing 3-tuple. If

p1s1 ≥ p1s2, p1s1 + p2s2 > s3(p1 + p2) (23)

and

p3s2 ≥ p3s3, s1(p2 + p3) > p2s2 + p3s3 (24)

are satisfied, then for every strictly convex function f ∈ FC , the inequality

f

(
1

∑3
i=1 pi

3∑

i=1

pisi

)

<
1

∑3
i=1 pi

3∑

i=1

pif (si)

holds.

Proof For m = 3, conditions (23) and (24) imply conditions (9) and (10), respectively, and
therefore Theorem 11(a) gives that

f

(
1

∑3
i=1 pi

3∑

i=1

pisi

)

≤ 1
∑3

i=1 pi

3∑

i=1

pif (si) (25)

for every f ∈ FC .
From the second inequality in either (23) or (24) it follows that s3 < s1.
Assume p1 < 0 and p3 < 0. Then it comes from the first inequalities in (23) and (24) that

s1 = s2 = s3, which contradicts s3 < s1. It follows that either p1 > 0 or p3 > 0.
(i) Consider the case p2 > 0.
Suppose p1 > 0. If p3 > 0 too, then the result follows from the discrete Jensen inequality.

If p3 < 0, then s2 = s3, and hence

s1(p2 + p3) > p2s2 + p3s3 = s2(p2 + p3),

and this yields that p2 + p3 > 0. We can also apply the discrete Jensen inequality by s2 < s1.
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The case p3 > 0 can be handled similarly.
(ii) Assume p2 ≤ 0 and equality is satisfied in (25).
It is easy to check that

1
∑3

i=1 pi

3∑

i=1

pisi =
p1s1 + p2s2 – s3(p1 + p2)

(p1 + p2 + p3)(s1 – s3)
· s1

+
s1(p2 + p3) – (p2s2 + p3s3)

(p1 + p2 + p3)(s1 – s3)
· s3 = α · s1 + β · s3.

By the second inequalities in (23) and (24), α > 0 and β > 0. Since α + β = 1, we obtain
from the discrete Jensen inequality that

1
∑3

i=1 pi

3∑

i=1

pif (si) = f

(
1

∑3
i=1 pi

3∑

i=1

pisi

)

< α · f (s1) + β · f (s3).

By a simple calculation we obtain from the previous inequality that

p2f (s2)(s1 – s3) < p2f (s1)(s2 – s3) + p2f (s3)(s1 – s2),

and therefore p2 < 0, and thus

f (s2) >
s2 – s3

s1 – s3
f (s1) +

s1 – s2

s1 – s3
f (s3),

which contradicts the discrete Jensen inequality.
The proof is complete. �

Remark 17 (a) Conditions (23) and (24) may be fulfilled even if none of the conditions (17)
and (18) are fulfilled. Really, let

s1 := 2, s2 := 1, s3 := 0, p1 = p3 := 3, p2 := –4.

Then it is easy to check that (23) and (24) are satisfied, but (17) and (18) are not satisfied.
(b) It is worth noting that the method of proof of Proposition 16 is different from that

of Theorem 14.

If points in the interval are not ordered, Theorem 11 can be formulated as follows.

Corollary 18 Let X := {1, . . . , m} for some m ∈N+. Let C ⊂R be an interval with nonempty
interior. Assume that p1, . . . pm are real numbers such that

∑m
i=1 pi > 0, and s := (s1, . . . , sm) ∈

Cm. Let u1 > u2 > · · · > uo be the different elements of s in decreasing order (1 ≤ o ≤ m).
(a) If

∑

{i∈X|si≥ul}
pisi ≥ ul+1

∑

{i∈X|si≥ul}
pi, l = 1, . . . , o – 1, (26)

and

uo–l
∑

{i∈X|si<uo–l}
pi ≥

∑

{i∈X|si<uo–l}
pisi, l = 1, . . . , o – 1, (27)
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are satisfied, then

ts,p :=
1

∑m
i=1 pi

m∑

i=1

pisi ∈
[

min
i=1,...,m

si, max
i=1,...,m

si

]
⊂ C.

(b) For every function f ∈ FC , inequality (12) holds if and only if (26) and (27) are satisfied.

Proof Let

qj :=
∑

{i∈X|si=uj}
pi, j = 1, . . . , o.

Then

∑

{i∈X|si≥ul}
pisi =

l∑

j=1

qjuj,
∑

{i∈X|si≥ul}
pi =

l∑

j=1

qj,

∑

{i∈X|si<uo–l}
pisi =

o∑

j=o+1–l

qjuj,
∑

{i∈X|si<uo–l}
pi =

o∑

j=o+1–l

qj,

and

1
∑m

i=1 pi

m∑

i=1

pisi =
1

∑m
i=1 pi

o∑

j=1

qjuj,
1

∑m
i=1 pi

m∑

i=1

pif (si) =
1

∑m
i=1 pi

o∑

j=1

qjf (uj),

and therefore the result is an immediate consequence of Theorem 11 (a–b).
The proof is complete. �

4 Applications
In this section, the statements are formulated only for decreasing sequences for clarity, but
the results are valid for increasing or general sequences with appropriate reformulation.

The conditions of Theorem 8, as for the Jensen–Steffensen inequality for convex func-
tions, are only sufficient but not necessary for the inequality to be fulfilled. Using our main
result, we can generalize Bakula’s result considerably, obtaining necessary and sufficient
conditions for the strongly convex case as well.

Theorem 19 Let C ⊂ R be an interval with nonempty interior, and let m ∈ N+. Assume
that p := (p1, . . . pm) are real numbers such that

∑m
i=1 pi = 1, and s := (s1, . . . , sm) ∈ Cm is a

decreasing m-tuple. Then inequality (7) holds for every strongly convex function g : C →R

with modulus d > 0 if and only if (9) and (10) are satisfied.

Proof It follows from Theorem 11 (a–b) by applying Lemma 10.
The proof is complete. �

The second application concerns quasi-arithmetic means.
Let C ⊂R be an interval, and let z : C →R be a continuous and strictly monotone func-

tion. If p := (p1, . . . pm) are nonnegative numbers such that
∑m

i=1 pi > 0 and s := (s1, . . . , sm) ∈
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Cm, then the weighted quasi-arithmetic mean is defined by

Az(s, p) := z–1

(
1

∑m
i=1 pi

m∑

i=1

piz(si)

)

. (28)

The quantity (28) is called mean because

Az(s, p) ∈
[

min
i=1,...,m

si, max
i=1,...,m

si

]
.

This property is equivalent to

m∑

i=1

piz(si) ∈
[

min
i=1,...,m

z(si), max
i=1,...,m

z(si)
]

regardless of whether the numbers p1, . . . pm are nonnegative or not.
In the following statement we compare quasi-arithmetic means with real (not necessar-

ily nonnegative) weights.

Theorem 20 Let C ⊂ R be an interval with nonempty interior, and let m ∈ N+. Assume
that p := (p1, . . . pm) are real numbers such that

∑m
i=1 pi > 0, s := (s1, . . . , sm) ∈ Cm is a de-

creasing m-tuple, and h, g : C →R are continuous and strictly monotone functions. Assume
further that

l∑

i=1

piz(si) ≥ z(sl+1)
l∑

i=1

pi, l = 1, . . . , m – 1,

and

z(sm–l)
m∑

i=m+1–l

pi ≥
m∑

i=m+1–l

piz(si), l = 1, . . . , m – 1,

are satisfied, where the function z is either h or g . If
(a) either h ◦ g–1 is convex and h is increasing or h ◦ g–1 is concave and h is decreasing,
(b) either g ◦ h–1 is convex and g is decreasing or g ◦ h–1 is concave and g is increasing,
then

Ag(s, p) ≤ Ah(s, p). (29)

Proof It follows from Theorem 11(a) that

Az(s, p) ∈
[

min
i=1,...,m

z(si), max
i=1,...,m

z(si)
]

for both z = g and z = h, so the expressions on the left- and right-hand sides of (29) are
well defined.

We only prove the case where h ◦ g–1 is convex and h is increasing, the others can be
treated similarly.
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Since h ◦ g–1 is convex, Theorem 11(b) implies that

h ◦ g–1

(
1

∑m
i=1pi

m∑

i=1

pig(si)

)

≤ 1
∑m

i=1pi

m∑

i=1

pih(si).

By applying h–1 to this inequality, we obtain (29).
The proof is complete. �

Finally, a refinement of the generalized discrete Jensen–Steffensen inequality is given.
This is interesting because while there are many refinements for the discrete Jensen in-
equality (see e.g. the book [6] and the references therein), there are relatively few for the
discrete Jensen–Steffensen inequality (see [2, 4], and [12]).

Theorem 21 Let C ⊂ R be an interval with nonempty interior, and let k, m ∈ N+, k < m.
Assume that p := (p1, . . . pm) are real numbers such that

∑k
i=1 pi > 0, and

∑m
i=k+1 pi > 0.

Assume that s := (s1, . . . , sm) ∈ Cm is a decreasing m-tuple.
If

l∑

i=1

pisi ≥ sl+1

l∑

i=1

pi, l = 1, . . . , k – 1,

sk–l

k∑

i=k+1–l

pi ≥
k∑

i=k+1–l

pisi, l = 1, . . . , k – 1,

l∑

i=k+1

pisi ≥ sl+1

l∑

i=k+1

pi, l = k + 1, . . . , m – 1,

and

sm–l

m∑

i=m+1–l

pi ≥
m∑

i=m+1–l

pisi, l = k + 1, . . . , m – 1

are satisfied, then for every function f ∈ FC , the inequalities

f

(
1

∑m
i=1 pi

m∑

i=1

pisi

)

≤
∑k

i=1 pi
∑m

i=1 pi
f

(
1

∑k
i=1 pi

k∑

i=1

pisi

)

+
∑m

i=k+1 pi
∑m

i=1 pi
f

(
1

∑m
i=k+1 pi

m∑

i=k+1

pisi

)

≤ 1
∑m

i=1 pi

m∑

i=1

pif (si) (30)

hold.

Proof We can apply Theorem 11(a), which implies that

1
∑k

i=1 pi

k∑

i=1

pisi ∈ [sk , s1] ⊂ C
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and

1
∑m

i=k+1 pi

m∑

i=k+1

pisi ∈ [sm, sk+1] ⊂ C.

Since

∑k
i=1 pi

∑m
i=1 pi

> 0,
∑m

i=k+1 pi
∑m

i=1 pi
> 0 and

∑k
i=1 pi +

∑m
i=k+1 pi

∑m
i=1 pi

= 1,

from the previous inequalities and the discrete Jensen inequality it follows

1
∑m

i=1 pi

m∑

i=1

pisi ∈ C

and the first inequality in (30).
The second inequality in (30) is obtained by applying Theorem 11(b) to both members

of the sum.
The proof is complete. �

Remark 22 (a) The previous theorem can be extended analogously by splitting the set
{1, . . . , m} into more than two blocks.

(b) The refinement in Theorem 21 shows a technique for obtaining refinements of the
generalized discrete Jensen–Steffensen inequality from refinements to the discrete Jensen
inequality.
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