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Abstract
This study aims to reconstruct signals that are sparse with a tight frame from
undersampled data by using the �q-minimization method. This problem can be cast
as a �q-minimization problem with a tight frame subjected to an undersampled
measurement with a known noise bound. We proved that if the measurement matrix
satisfies the restricted isometry property with δ2s ≤ 1/2, there exists a value q0 such
that for any q ∈ (0,q0], any signal that is s-sparse with a tight frame can be robustly
recovered to the true signal. We estimated q0 as q0 = 2/3 in the case of δ2s ≤ 1/2 and
discussed that the value of q0 can be much higher. We also showed that when
δ2s ≤ 0.3317, for any q ∈ (0, 1], robust recovery for signals via �q-minimization holds,
which is consistent with the case of �q-minimization without a tight frame.
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1 Introduction
Sparse representation and sparse signal recovery are derived from signal and image pro-
cessing [14, 15, 26] and have been extended to other areas, such as sampling theory [21, 27],
model identification [23, 36], and sensor networks [20, 30, 32]. Most of these applica-
tions search for sparse signals. Here, a signal or vector x is considered s-sparse if ‖x‖0 ≤ s
and ‖ · ‖0 are the �0-norm, which counts the nonzero entries of x. Compressed sensing
is a sparse signal recovery theory that searches for the sparsest signal in an underdeter-
mined linear system Ax = y, where A ∈R

n×N (n � N) is the so-called measurement matrix,
which is usually full rank, whereas y ∈ R

n is the given measurement vector. This proce-
dure can be cast as a �0-minimization problem. However, the �0-minimization problem
is NP-hard [24], some of which can be extended to �1-minimization, replacing ‖x‖0 with
‖x‖1 in �0-minimization. The �1-minimization seeks a slightly sparse solution for y = Ax.
Donoho, Candès, Romberg, and Tao specified the conditions in [4, 5] that solutions of
�1-minimization are the solutions of �0-minimization. Furthermore, �1-minimization is a
linear programming problem that can be solved using certain algorithms [6, 9, 25, 31, 33].

In some other situations, signal x is not sparse itself, but it is sparse under some bases
[29] (such as a Fourier base or wavelet base), frames [11, 12], or redundant dictionaries
[10, 28]. In this study, signal x that was sparse in a tight frame was considered. A tight
frame is defined as follows.
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Definition 1 (Tight frame) [7] Vectors D1, D2, . . . , Dd ∈ R
N are said to be a tight frame if

they satisfy

x =
∑

k

〈x, Dk〉Dk , ∀x ∈R
N .

Sometimes, we also say that the matrix D = (D1, D2, . . . , Dd) ∈R
N×d is a tight frame. For

some signal x, D∗x is either sparse or approximately sparse. In a noisy setting, the sparsity-
seeking question can be expressed as

x = arg min
x∈RN

{∥∥D∗x
∥∥

0 : ‖Ax – y‖ ≤ ε
}

, (1)

where D∗ is the conjugate transpose of D and ε is the energy of the known errors. Its
�1-minimization problem is available accordingly [1, 8, 16, 18],

x = arg min
x∈RN

{∥∥D∗x
∥∥

1 : ‖Ax – y‖2 ≤ ε
}

. (2)

The compliance of the solutions with �0 and �1-minimizations has a sufficient condition
with a coherent tight frame, which is said to be a restricted isometric property adapted to
tight frame D (D-RIP).

Definition 2 (D-RIP) [3] The measurement matrix A satisfies the restricted isometric
property adapted to tight frame D with order s if there exists a positive number δs ∈ (0, 1)
such that

(1 – δs)‖Dx‖2
2 ≤ ‖ADx‖2

2 ≤ (1 + δs)‖Dx‖2
2

holds for ∀x ∈∑s, where
∑

s = {x : ‖x‖0 ≤ s}. Here, δs is the restricted isometric constant
(RIC) of order s.

Let vmax(s) be an operator that returns the s largest coefficients of v ∈ R
N in magnitude,

vmax(s) = arg min
‖ṽ‖0≤k

‖v – ṽ‖2.

If in D-RIP D = Id, where Id is the identity matrix, then D-RIP is the traditional RIP. For
the traditional RIP, Cai and Zhang provided a sharp bound for δ2s in [2] as δ2s <

√
2/2. For

D-RIP, Candès, Eldar et al. showed that Gaussian, sub-Gaussian, and boundary matrices
satisfy the D-RIP with a high probability in [3]. They also proved that when δ2s < 0.08, the
solution of the �1-minimization satisfies

‖x̂ – x‖2 ≤ C0
‖D∗x – (D∗x)max(s)‖1√

k
+ C1ε,

where C0 and C1 are constants, x̂ is the recovered signal and x is the true signal. As shown,
the upper boundary of ‖x̂–x‖2 is controlled by ‖D∗x–(D∗x)max(s)‖1 and ε. If D∗x is s-sparse
or approximately s-sparse and ε is sufficiently small, the error between the recovered signal
and the true signal can be regulated within an acceptable range.
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The dynamic relation between �0 and �1-minimization is not clear. Thus, we studied
�q-minimization with 0 < q < 1 [18, 19, 22]. The �q-minimization problem is

x̂ = arg min
x∈RN

{∥∥D∗x
∥∥

q : ‖Ax – y‖2 ≤ ε
}

. (3)

When q → 0, �q-minimization approximates �0-minimization, while if q → 1, �q-
minimization approximates �1-minimization.

In general, the recovery condition by the �q-minimization (0 < q < 1) is less restrictive
than the �1-minimization. In [34], Zhang and Li proved that if the sensing matrix A satisfies
the D-RIP condition δ2s <

√
2/2, then all signals x with s-sparse with a tight frame can be

recovered exactly via the constrained �1-minimization. For �q-minimization with tight
frame, in [17], Li and Lin showed that for a tight frame D, if δ2s < 1/2, then there exists
q0 = q0(δ2k) ∈ (0, 1], such that for any q ∈ (0, q0), the recovered signal x̂ via �q-minimization
and the true signal x satisfy

‖x̂ – x‖2 ≤ C0
‖D∗x – (D∗x)max(s)‖1

s
1
q – 1

2
+ C1ε,

where C0 and C1 are constants that depend on δ2s and q. However, this result does not
provide the exact value for q0. Subsequently, the D-RIP conditions for �q-minimization
with a tight frame are improved. In [35], Zhang and Li showed that if the sensing matrix
A satisfies the D-RIP with

δ2s <
η

2 – q – η
:= δ(q), (4)

where η ∈ (1 – q, 1 – q
2 ) is the only positive solution of the equation

q
2
η

2
q + η – 1 +

q
2

= 0,

then any s-sparse signal x with a tight frame can be exactly and stably recovered via �q-
minimization in noiseless and noisy cases, respectively. D-RIP condition (4) for �q min-
imization is less restrictive than δ2s <

√
2/2 for �1 minimization. If let p = 1/2, we have

δ2s < 0.859 by (4), which is less restrictive than δ2s <
√

2/2 for �1-minimization.
We provide an example to illustrate that if δ2s >

√
2/2, �1-minimization may fail, but

�q-minimization works. We construct a measurement matrix A ∈R
2×3, and a tight frame

D ∈R
3×5, as follows

A =
1√
4

(√
2

√
2

√
2

0
√

3 –
√

3

)
, D =

⎛

⎜⎜⎝

1 0 0 0 0
0 1/2 – 2+

√
2

4

√
6–4

√
2

4 0
0 2+

√
2

4 1/2 0
√

6–4
√

2
4

⎞

⎟⎟⎠ . (5)

We can calculate that δ2 = 0.75 >
√

2/2. Vectors x(1) = (2, 0, 0)T and x(2) = (0, 1, 1)T have the
same observed vector, namely Ax(1) = Ax(2). We have

D∗x(1) = (2, 0, 0, 0, 0)T ,
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D∗x(2) =
(

0,
1
2

+
2 +

√
2

4
,

1
2

–
2 +

√
2

4
,

√
6 – 4

√
2

4
,

√
6 – 4

√
2

4

)T

.

D∗x(1) and D∗x(2) have the same �1-norm, which means that signal recovery for x(1) through
�1-minimization fails. �q-minimization is necessary in this case. The general solution of
the equations Ax = Ax(1) is x = (2 – 2c, c, c)T , where c is arbitrary real number. We can
derive

∥∥D∗x(1)∥∥q
q = 2q = (2 – 2c + c + c)q ≤ |2 – 2c|q + |c|q + |c|q =

∥∥D∗x
∥∥q

q,

where the first inequality uses the conclusion: if a > 0, b > 0 and 0 < q < 1, then (a + b)q ≤
aq +bq. Hence, we have ‖D∗x(1)‖q < ‖D∗x‖q for 0 < q < 1 and any solution x of the equations
Ax = Ax(1). Therefore, �q-minimization can recover signal x(1).

This study examines signal recovery with a tight frame via �q-minimization for the case
of a restricted isometry constant δ2s < 1/2. The main contribution shows not only the ex-
istence of q0, such that for any q ∈ (0, q0], any s-sparse signal with a tight frame can be
recovered via �q-minimization, but also the exact value q0 = 2/3. A computer also demon-
strated that the value of q0 can be increased to q0 = 0.97.

The remainder of this paper is organized as follows. In Sect. 2, some useful lemmas and
their proofs are outlined, and Sect. 3 presents the main theorems. We provide the proofs
of these main theorems in Sect. 4. Conclusions are presented in Sect. 5.

Notations: Given a signal x = (x1, x2, . . . , xN )T , the �0-norm is the number of its nonzero
entries, that is, ‖x‖0 = Card(supp(x)). Here, Card(·) is the cardinality of a vector and
supp(x) is the support set of x. The �1-norm of vector x is the sum of the absolute val-
ues of its entries, that is, ‖x‖1 =

∑
i≥1 |xi|. We can define its �q-norm with 0 < q < 1 as

‖x‖q = (
∑

i≥1 |xi|q)1/q. We can also define �∞-norm of x as ‖x‖∞ = max1≤i≤N {|xi|} and �–∞-
pseudonorm of x as ‖x‖–∞ = min1≤i≤N {|xi|}, respectively. Given x = (x1, x2, . . . , xN )T ∈R

N ,
xmax(s) denotes the vector that maintains the largest s entries in absolute value, and sets
the others to zero. For a matrix D ∈ R

N×d and index subset T ⊂ {1, 2, . . . , d}, DT is used
as the matrix D restricted to the columns indexed by T , D∗

T is the conjugate trans-
pose of DT and TC is the complement of T in {1, 2, . . . , d}. Given a vector h ∈ R

N , then
D∗h = ((D∗h)1, (D∗h)2, . . . , (D∗h)d)T ∈ R

d . Suppose {j1, j2, . . . , jd} is the rearrangement of
{1, 2, . . . , d} such that vector D∗h is monotonically decreasing in absolute value, that is,
|(D∗h)j1 | ≥ |(D∗h)j2 | ≥ · · · ≥ |(D∗h)jd |, then divide the set {j1, j2, . . . , jd} into some subsets
with cardinality s starting from its head, if the cardinality of the last subset is less than
s then just keep it, that is T0 = {j1, j2, . . . , js}, T1 = {js+1, js+2, . . . , j2s}, T2 = {j2s+1, j2s+2, . . . , j3s},
. . . . Here, let T = T0.

2 Some useful lemmas
First, we provide the relationship between �1 and the �q-norm, which is used to estimate
the error bound.

Lemma 3 ([17]) Let 0 < q ≤ 1, x ∈ R
N ,then

0 ≤ ‖x‖1 –
‖x‖q

N1/q–1 ≤ QqN
(‖x‖∞ – ‖x‖–∞

)
, (6)
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where Qq = q
q

1–q – q
1

1–q . Additionally, Qq is a monotonous and convex function. The two
limitations of this function with q → 0+ and q → 1–, are respectively:

Q0 := lim
q→0+

Qq = 1, Q1 := lim
q→1–

Qq = 0.

The relationship between �2 and the �q-norm is also required during the estimation of
the error bound.

Lemma 4 For a fixed x ∈R
N and 0 < q ≤ 1, the following inequalities hold

0 ≤ ‖x‖2 – N
1
2 – 1

q ‖x‖q ≤ √
N
(

Qq +
1
4

)(‖x‖∞ – ‖x‖–∞
)
. (7)

Proof According to the Cauchy–Schwarz inequality,

‖x‖2 ≥ ‖x‖1√
N

. (8)

In [13], the relationship between the �1 and �2 norms is

‖x‖2 ≤ ‖x‖1√
N

+
√

N
4
(‖x‖∞ – ‖x‖–∞

)
. (9)

Using Lemma 3, inequalities (8) and (9), we can derive the result. �

For index set T ⊂ {1, 2, . . . , N}, denote D∗
T x := (DT )∗x. Suppose that x̂ is the solution to

problem (3) and x ∈R
N satisfies ‖y – Ax‖2 ≤ ε. Let

h = x̂ – x, (10)

then D∗h = ((D∗h)1, (D∗h)2, . . . , (D∗h)d)T . Without generality, let {j1, j2, . . . , jd} be a rear-
rangement of {1, 2, . . . , d} such that

∣∣(D∗h
)

j1

∣∣≥ ∣∣(D∗h
)

j2

∣∣≥ · · · ≥ ∣∣(D∗h
)

jd

∣∣.

Then denote

T = T0 = {j1, j2, . . . , js}, T1 = {js+1, js+2, . . . , j2s},
T2 = {j2s+1, j2s+2, . . . , j3s}, . . . .

(11)

Clearly, D∗h =
∑

j≥0 D∗
Ti

h. Define ω and � as follows

ω :=
‖D∗

T1
h‖q

q∑
i≥1 ‖D∗

Ti
h‖q

q
, (12)

� :=

√√√√
∑

i≥2

∥∥D∗
Ti

h
∥∥2

2 + δ2s

(∑

i≥2

∥∥D∗
Ti

h
∥∥

2

)2

. (13)

Thus, 0 ≤ ω ≤ 1 and
∑

i≥2 ‖D∗
Ti

h‖q
q = (1 – ω)(

∑
i≥1 ‖D∗

Ti
‖q

q).
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Li showed the following lemma in [17], which gives the bound of the �2-norm square of
D∗

Ti
h with i ≥ 2. These results can be obtained from Lemma 4.1 and (3.5) of [17].

Lemma 5 (Lemma 4.1 and inequality (3.5) in [17]) Let 0 < q ≤ 1, h, {Ti, i ≥ 0}, and � be
defined as (10),(11), and (13), respectively, then the following inequalities hold:

∑

i≥2

∥∥D∗
Ti

h
∥∥2

2 ≤ (1 – ω)ω(2–q)/q

s(2–q)/q

(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)2/q

, (14)

∥∥D∗
T0∪T1 h

∥∥2
2 ≤ (2ε + �)2

1 – δ2s
, (15)

where s denotes sparsity.

The bound of the �2-norm of D∗
Ti

h with i ≥ 2 is also required and is given by the following
lemma.

Lemma 6 Let 0 < q ≤ 1, h, {Ti, i ≥ 0}, and ω be defined by (10), (11), and (12). Then,

∑

i≥2

∥∥D∗
Ti

h
∥∥

2 ≤ (1 – ω)1/q + (Qq + 1/4)ω1/q

s1/q–1/2

(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)1/q

. (16)

Proof According to the relation between the �2-norm and �q-norm in Lemma 4, we have

∥∥D∗
Ti

h
∥∥

2 ≤ s1/2–1/q∥∥D∗
Ti

h
∥∥

q +
√

s(Qq + 1/4)
(∥∥D∗

Ti
h
∥∥∞ –

∥∥D∗
Ti

h
∥∥

–∞
)
.

Summing up for i, we have

∑

i≥2

∥∥D∗
Ti

h
∥∥

2 ≤ s1/2–1/q
∑

i≥2

∥∥D∗
Ti

h
∥∥

q +
√

s(Qq + 1/4)
∑

i≥2

(∥∥D∗
Ti

h
∥∥∞ –

∥∥D∗
Ti

h
∥∥

–∞
)

(17)

≤ s1/2–1/q
∑

i≥2

∥∥D∗
Ti

h
∥∥

q +
√

s(Qq + 1/4)
∥∥D∗

T2 h
∥∥∞.

Note that

∥∥D∗
T1 h
∥∥

q =
(∣∣(D∗h

)
s+1

∣∣q + · · · +
∣∣(D∗h

)
2s

∣∣q)1/q ≥ (s∥∥D∗
T2 h
∥∥q

∞
)1/q = s1/q∥∥D∗

T2 h
∥∥∞.

We have

∥∥D∗
T2 h
∥∥∞ ≤ s–1/q∥∥D∗

T1 h
∥∥

q. (18)

By substituting (18) into (17) and combining (12), we can derive

∑

i≥2

∥∥D∗
Ti

h
∥∥

2

≤ s1/2–1/q
∑

i≥2

∥∥D∗
Ti

h
∥∥

q + s1/2–1/q
(

Qq +
1
4

)∥∥D∗
T1 h
∥∥

q
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≤ s1/2–1/q
((∑

i≥2

∥∥D∗
Ti

h
∥∥q

q

)1/q

+
(

Qq +
1
4

)(∥∥D∗
T1 h
∥∥q

q

)1/q
)

≤ s1/2–1/q
(

(1 – ω)1/q
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)1/q

+
(

Qq +
1
4

)
ω1/q

(∑

i≥1

∥∥D∗
T1 h
∥∥q

q

)1/q)

≤ (1 – ω)1/q + (Qq + 1
4 )ω1/q

s1/q–1/2

(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)1/q

. (19)

Note that the second inequality in (19) uses the following conclusion: if a > 0, b > 0 and
0 < q < 1, then (a + b)q ≤ aq + bq. The third inequality in (19) uses the definition of ω in
(12). Moreover, in the first term of the second line in (19),

∑

i≥2

∥∥D∗
Ti

h
∥∥q

q =
∑

i≥1

∥∥D∗
Ti

h
∥∥q

q –
∥∥D∗

T1 h
∥∥q

q =
∑

i≥1

∥∥D∗
Ti

h
∥∥q

q – ω
∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

= (1 – ω)
∑

i≥1

∥∥D∗
Ti

h
∥∥q

q.

Then we obtain the third line in the inequalities (19). The proof is completed. �

Two functions are defined as follows: 0 ≤ ω ≤ 1 and

α(ω) := (1 – ω)ω
2–q

q + δ2s

[
(1 – ω)

1
q +
(

Qq +
1
4

)
ω

1
q

]2

, (20)

β(ω) := α(ω) – (1 – δ2s)ω2/q. (21)

According to the definition of � and lemmas 5 and 6, we derive

�2 =
∑

i≥2

∥∥D∗
Ti

h
∥∥2

2 + δ2s

(∑

i≥2

∥∥D∗
Ti

h
∥∥

2

)2

(22)

≤ s1–2/q(1 – ω)ω2/q–1
(∑

i≥,1

∥∥D∗
Ti

h
∥∥q

q

)2/q

+ δ2ss1–2/q
(

(1 – ω)1/q +
(

Qq +
1
4

)
ω1/q

)2(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)2/q

= s1–2/qα(ω)
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)2/q

,

and we have

s2/q–1�2 – (1 – δ2s)
∥∥D∗

T1 h
∥∥2

q ≤ β(ω)
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)2/q

. (23)

From the fact below

∥∥D∗
T0∪T1 h

∥∥2
2 =
∥∥D∗

T0 h
∥∥2

2 +
∥∥D∗

T1 h
∥∥2

2 ≥ s1–2/q(∥∥D∗
T0 h
∥∥2

q +
∥∥D∗

T1 h
∥∥2

q

)
,
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and by combining Lemma 5, we can derive

∥∥D∗
T0 h
∥∥2

q ≤ s2/q–1∥∥D∗
T0∪T1 h

∥∥2
2 –
∥∥D∗

T1 h
∥∥2

q ≤ s2/q–1(2ε + �)2

1 – δ2s
–
∥∥D∗

T1 h
∥∥2

q,

which means that

(1 – δ2s)
∥∥D∗

T0 h
∥∥2

q ≤ 4s2/q–1ε2 + 4s2/q–1ε� +
(
s2/q–1�2 – (1 – δ2s)

∥∥D∗
T1 h
∥∥2

q

)
.

Substituting inequalities (22) and (23) into the inequality above, we obtain

(1 – δ2s)
∥∥D∗

T0 h
∥∥2

q

≤ 4s2/q–1ε2 + 4εs1/q–1/2
√

α(ω)
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)1/q

+ β(ω)
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)2/q

. (24)

Now, let

ω0 := arg max
{
α(ω) : 0 ≤ ω ≤ 1

}
,

ω1 := arg max
{
β(ω) : 0 ≤ ω ≤ 1

}
,

and

λ :=
α(ω0)
β(ω1)

. (25)

Because of

α(ω0) ≥ α(ω1) = β(ω1) + (1 – δ2s)ω
2q
1 ≥ β(ω1),

we have λ ≥ 1 and

(1 – δ2s)
∥∥D∗

T0 h
∥∥2

q ≤ 4s
2–q

q ε2 + 4εs1/q–1/2
√

α(ω0)
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)1/q

+ β(ω1)
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)2/q

≤ (2s1/q–1/2ε
√

λ
)2 + 2

(
2s1/q–1/2ε

√
λ
)(√

β(ω1)
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)1/q)

+
(√

β(ω1)
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)1/q)2

.

The above inequalities imply that

∥∥D∗
T0 h
∥∥

q ≤ 2

√
λ

1 – δ2s
s1/q–1/2ε +

√
β(ω1)
1 – δ2s

(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)1/q

. (26)
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Therefore, the following conclusion is drawn:

∥∥D∗
T0 h
∥∥q

q ≤ 2qs1–q/2
(

λ

1 – δ2s

)q/2

εq +
(

β(ω1)
1 – δ2s

)q/2(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)
. (27)

Here, the inequality is used again, that is, if a > 0, b > 0, and 0 < q < 1, then (a+b)q ≤ aq +bq.
For any index set � with |�| ≤ s, we have

∥∥D∗x
∥∥q

q ≥ ∥∥D∗x̂
∥∥q

q,
∥∥D∗x

∥∥q
q =
∥∥D∗

�x
∥∥q

q +
∥∥D∗

�c x
∥∥q

q,
∥∥D∗x̂

∥∥q
q =
∥∥D∗

�x̂
∥∥q

q +
∥∥D∗

�c x̂
∥∥q

q,

and

∥∥D∗
�x̂
∥∥q

q =
∥∥D∗

�h + D∗
�x
∥∥q

q ≥ ∥∥D∗
�x
∥∥q

q –
∥∥D∗

�h
∥∥q

q,
∥∥D∗

�c x̂
∥∥q

q =
∥∥D∗

�c h + D∗
�c x
∥∥q

q ≥ ∥∥D∗
�c h
∥∥q

q –
∥∥D∗

�c x
∥∥q

q,

which means that

∥∥D∗
�c h
∥∥q

q ≤ 2
∥∥D∗

�c x
∥∥q

q +
∥∥D∗

�h
∥∥q

q. (28)

Specifically, if the cardinality of � is s, that is, |�| = s, and it satisfies D∗
�x = D∗x –

(D∗x)max(s), then we have

∑

i≥1

∥∥D∗
Ti

h
∥∥q

q =
∥∥D∗

Tc
0
h
∥∥q

q ≤ 2
∥∥D∗

�c x
∥∥q

q +
∥∥D∗

�h
∥∥q

q

≤ 2
∥∥D∗x –

(
D∗x

)
max(s)

∥∥q
q + 2qs1–q/2

(
λ

1 – δ2s

)
εq

+
(

β(ω1)
1 – δ2s

)q/2(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)
.

We can derive

[
1 –
(

β(ω1)
1 – δ2s

)q/2][∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

]

≤ 2qs1–q/2
(

λ

1 – δ2s

)q/2

εq + 2
∥∥D∗x –

(
D∗x

)
max(s)

∥∥q
q. (29)

Define

ρ(q) := min
0≤ω≤1

{
1 – ω2/q–1 + 2ω2/q

1 + ω2/q + [(1 – ω)1/q + (Qq + 1/4)ω1/q]2

}
. (30)
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Denote ( β(ω1)
1–δ2s

)q/2 by σ , that is, σ = ( β(ω1)
1–δ2s

)q/2. When δ2s < ρ(q), to prove 1 – σ > 0 is equiva-
lent to prove β(ω1)/(1 – δ2s) < 1. By the definitions of α(ω) and β(ω), we have

β(ω1)/(1 – δ2s) < 1

⇔ (1 – ω1)ω
2–q

q
1

1 – δ2s
+

δ2s

1 – δ2s

[
(1 – ω1)

1
q +
(

Qq +
1
4

)
ω

1
q
1

]2

– ω
2
q
1 < 1

⇔ (1 – ω1)ω
2–q

q
1 + δ2s

[
(1 – ω1)

1
q +
(

Qq +
1
4

)
ω

1
q
1

]2

– (1 – δ2s)ω
2
q
1 < 1 – δ2s

⇔ δ2s
{

1 + ω
2/q
1 +

[
(1 – ω1)1/q + (Qq + 1/4)ω1/q

1
]2} < 1 – ω

2/q–1
1 + 2ω

2/q
1

⇔ δ2s <
1 – ω

2/q–1
1 + 2ω

2/q
1

1 + ω
2/q
1 + [(1 – ω1)1/q + (Qq + 1/4)ω1/q

1 ]2
.

If δ2s < ρ(q), we have

δ2s < ρ(q) ≤ 1 – ω
2/q–1
1 + 2ω

2/q
1

1 + ω
2/q
1 + [(1 – ω1)1/q + (Qq + 1/4)ω1/q

1 ]2
.

Then we can derive that β(ω1)/(1 – δ2s) < 1. Hence, we know that 1 – σ > 0, if δ2s < ρ(q).
Therefore, by the inequality (29), we have

∑

i≥1

∥∥D∗
Ti

h
∥∥q

q ≤ 2qs1–q/2

1 – σ

(
λ

1 – δ2s

)q/2

εq +
2

1 – σ

∥∥D∗x –
(
D∗x

)
max(s)

∥∥q
q. (31)

The following lemma is simple, but useful for estimating the error bound in the signal
recovery.

Lemma 7 Let 0 < q ≤ 1, then

(
aq + bq)1/q ≤ 21/q–1(a + b), (32)
√

(a +
√

b)2 + c ≤ a +
√

b + c, (33)

hold for all a ≥ 0, b ≥ 0, and c ≥ 0.

Proof Inequality (32) can be shown using Lemma 3 with N = 2, whereas (33) holds if both
sides of the inequality are squared. �

3 Main results
We provide the error bound between the recovered signal x̂ and any solution to Ax = y.
This error bound is measured by the noise term ε and sparse term ‖D∗x – (D∗x)max(s)‖q.

Theorem 8 Let D be the matrix with the columns forming a tight frame and x̂ be the so-
lution of �q-minimization. Then, for any fixed 0 < q ≤ 1 and D-RIP constant δ2s < ρ(q), we
have

‖x̂ – x‖2 ≤ C0ε + C1
‖D∗x – (D∗x)max(s)‖q

s1/q–1/2 , (34)
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where

C0 =
1√

1 – δ2s

{
2 +
(

2
1 – σ

)1/q
√

λ

(
1 +

α(ω0)
1 – δ2s

)}
,

C1 = 21/q–1
(

2
1 – σ

)1/q
√

1 +
α(ω0)
1 – δ2s

. (35)

In this error bound, if the noise term ε = 0, it is a noiseless setting. If there exists a
solution x that is s-sparse with tight frame D, the true signal x is recovered exactly in a
noiseless setting.

Remark 9 In [17], Li and Lin solved the existence problem of q0 to recover a signal with co-
herent tight frames via �q-minimization. However, the q0 was not provided in their paper.
Actually, the value of q0 can be estimated.

If ω = 0, then D∗x = 0, Theorem 8 holds true. For 0 < ω ≤ 1, the following conclusion
can be drawn.

Theorem 10 If the measurement matrix A satisfies the restricted isometry property with
tight frame D and δ2s < 0.3317, then for any q ∈ (0, 1], we have

‖x̂ – x‖2 ≤ C0ε + C1
‖D∗x – (D∗x)max(s)‖q

s1/q–1/2 , (36)

where C0 and C1 are the constants in Theorem 8.

Remark 11 In fact, δ2s can take values much larger than 0.3317, i.e., if δ2s < 0.493, q can
be arbitrary in the range of (0, 1], then �q-minimization recovers the signal robustly with
a coherent tight frame. Thus, the conclusion of Theorem 10 holds. However, this requires
different proof.

In [17], Li and Lin showed that if δ2s < 1/2, there exists a value q0 such that the signals
can be recovered via �q-minimization. The following theorem improves this result and
provides an exact value for q0.

Theorem 12 If the measurement matrix A satisfies the restricted isometry property with
tight frame D and δ2s < 1/2, then there exists a value q0 = 2/3, such that for any q ∈ (0, 2/3],
δ2s < 1/2 ≤ ρ(q) holds. Furthermore,

‖x̂ – x‖2 ≤ C0ε + C1
‖D∗x – (D∗x)max(s)‖q

s1/q–1/2 , (37)

where C0 and C1 are the constants in Theorem 8.

Remark 13 In [17], Li and Lin proved the existence of q0. However, there has been no
estimation of q0 in [17]. For this problem, we not only prove a result similar to that in [17],
but also estimate q0 = 2/3.
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Remark 14 q0 = 2/3 is not the best value for q0, and can be much larger. The curve of ρ(q)
drawn using MATLAB demonstrates that there exists q0 = 0.97 such that δ2s < 1/2 ≤ ρ(q)
holds; thus, Theorem 12 holds. However, this is considerably more difficult to achieve.

4 Proof of main results
We give here the proof procedure for each theorem.

4.1 Proof of theorem 8

Proof Using inequality (15) in Lemma 5, we have

‖x̂ – x‖2
2 = ‖h‖2

2 =
∥∥D∗

T0∪T1 h
∥∥2

2 +
∑

i≥2

∥∥D∗
Ti

h
∥∥2

2 ≤ (2ε + �)2

1 – δ2s
+
∑

i≥2

∥∥D∗
Ti

h
∥∥2

2

≤
(

2ε√
1 – δ2s

+

√
s1–2/qα(ω)(

∑
i≥1 ‖D∗

Ti
h‖q

q)2/q

1 – δ2s

)2

+
∑

i≥2

∥∥D∗
Ti

h
∥∥2

2,

where the last inequality uses the result in (22). Therefore, by Lemma 7, we have

‖h‖2 ≤

√√√√√
(

2ε

1 – δ2s
+

√
s1–2/qα(ω)(

∑
i≥1 ‖D∗

Ti
h‖q

q)2/q

1 – δ2s

)2

+
∑

i≥2

∥∥D∗
Ti

h
∥∥2

2

≤ 2ε√
1 – δ2s

+

√√√√ s1–2/qα(ω)(
∑

i≥1 ‖D∗
Ti

h‖q
q)2/q

1 – δ2s
+
∑

i≥2

∥∥D∗
Ti

h
∥∥2

2

=
2ε√

1 – δ2s
+

1√
1 – δ2s

√√√√s1–2/qα(ω)
(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)2/q

+ (1 – δ2s)
∑

i≥2

∥∥D∗
Ti

h
∥∥2

2

≤ 2ε√
1 – δ2s

+ s1/2–1/q

√
α(ω)

1 – δ2s
+ (1 – ω)ω2/q–1

(∑

i≥1

∥∥D∗
Ti

h
∥∥q

q

)1/q

≤
[

2 +
(

2
1 – σ

)1/q
√

λ

(
α(ω)

1 – δ2s
+ (1 – ω)ω2/q–1

)]
ε√

1 – δ2s

+ 21/q–1

√
α(ω)

1 – δ2s
+ (1 – ω)ω2/q–1

(
2

1 – σ

)1/q ‖D∗x – (D∗x)max(s)‖q

s1/q–1/2

≤ C0ε + C1
‖D∗x – (D∗x)max(s)‖q

s1/q–1/2 ,

where C0 and C1 are given by (35), the second inequality uses the inequality (33) in
Lemma 7, the third inequality uses inequality (14) in Lemma 5, and the fourth inequal-
ity uses inequality (32) in Lemma 7 and (31). �
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4.2 Proof of theorem 10

Proof We discuss the case where 0 < ω ≤ 1. Theorem 8 shows that this conclusion holds
as long as δ2s < 0.3317 ≤ ρ(q). According to the definition of ρ(q),

1 – ω2/q–1 + 2ω2/q

1 + ω2/q + [(1 – ω)1/q + (Qq + 1/4)ω1/q]2 ≥ 1 – ω2/q–1 + 2ω2/q

1 + ω2/q + [(1 – ω)1/q + 5
4ω1/q]2 .

Therefore, Theorem 10 holds if for any 0 < ω ≤ 1 and all q ∈ (0, 1], the following inequality
holds:

1 – ω2/q–1 + 2ω2/q

1 + ω2/q + [(1 – ω)1/q + 5
4ω1/q]2 ≥ 0.3317. (38)

Let a := 1/q ∈ [1, +∞), then let

1 – ω2a–1 + 2ω2a

1 + ω2a + [(1 – ω)a + 5
4ωa]2 ≥ n1

n2
, (39)

for all 0 < ω ≤ 1 and all a ∈ [1, +∞), where n1, n2 ∈ N+ and n1 ≤ n2.
The following procedure estimates the lower bound of n1/n2. Inequality (39) is equiva-

lent to

(n2 – n1) – n2ω
2a–1 + (2n2 – n1)ω2a ≥ n1

[
(1 – ω)a +

5
4
ωa
]2

. (40)

Inequality (40) holds if the infimum on the left is greater than or equal to the supremum
on the right side. Let f (ω, a) = (n2 – n1) – n2ω

2a–1 + (2n2 – n1)ω2a, g(ω, a) = (1 – ω)a + 5
4ωa,

calculate the partial derivatives of the two functions and let them be zeros. Then, we have

⎧
⎨

⎩

∂f
∂ω

= –n2(2a – 1)ω2a–2 + 2(2n2 – n1)aω2a–1 = 0,
∂f
∂a = –2n2ω

2a–1 lnω + 2(2n2 – n1)ω2a lnω = 0,
(41)

⎧
⎨

⎩

∂g
∂ω

= –a(1 – ω)a–1 + 5
4 aωa–1 = 0,

∂g
∂a = (1 – ω)a ln(1 – ω) + 5

4ωa lnω = 0.
(42)

From equations (41) it can be derived that 2an2 = 2an2 –n2, which does not hold because
n2 ∈ N+. Therefore, f (ω, a) has no stationary points. In equations (42), because ∂g

∂a < 0,
g(ω, a) also has no stationary points.

By calculating the value of the bounds, we know that f (ω, a) achieves its minimum value
at a = 1, whereas g(ω, a) has its maximum value at ω = 1. It is not difficult to compute this
for all 0 < ω ≤ 1 and all a ∈ [1, +∞),

inf
ω,a

f (ω, a) =
7n2

2 + 4n2
1 – 12n1n2

4(2n2 – n1)
,

sup
ω,a

g(ω, a) =
25
16

n1.
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Inequality infω,a f (ω, a) ≥ supω,a g(ω, a), i.e., 7n2
2+4n2

1–12n1n2
4(2n2–n1) ≥ 25

16 n1, is equivalent to

41
(

n1

n2

)2

– 98
(

n1

n2

)
+ 28 ≥ 0. (43)

Because 0 < n1/n2 ≤ 1, inequality (43) holds when 0 < n1/n2 ≤ 0.3317. In other words,
0.3317 is the lower bound of ρ(q), so δ2s < 0.3317 ≤ ρ(q) holds. The proof is complete. �

4.3 Proof of theorem 12

Proof Let a := 1/q ∈ [3/2, +∞). According to the definitions of ρ(q) and a, we only need
to prove that for all 0 < ω ≤ 1 and all a ∈ [3/2, +∞), the following inequality holds:

1 – ω2a–1 + 2ω2a

1 + ω2a + [(1 – ω)a + 5
4ωa]2 ≥ 1

2
. (44)

Inequality (44) is equivalent to

1 – 2ω2a–1 + 3ω2a –
[

(1 – ω)a +
5
4
ωa
]2

≥ 0. (45)

Let f (ω, a) = 1 – 2ω2a–1 + 3ω2a – [(1 – ω)a + 5
4ωa]2, then its partial derivative with respect

to a is calculated as

∂f
∂a

= –4ω2a–1 lnω +
23
8

ω2a lnω – 2(1 – ω)2a ln(1 – ω) –
5
2
ωa(1 – ω)a ln

[
ω(1 – ω)

]

=
(

23
8

ω – 4
)

ω2a–1 lnω – 2(1 – ω)2a ln(1 – ω) –
5
2
ωa(1 – ω)a ln

[
ω(1 – ω)

]

> 0.

(46)

Therefore, f (ω, a) has no stationary point and an extreme point at the bounds, and it is
known that f (ω, a) reaches its minimum value at a = 3/2. To prove that f (ω, a) ≥ 0 for all
ω and a, we must prove that for all ω, the following inequality holds,

f
(

ω,
3
2

)
= 3ω – 5ω2 +

39
16

ω3 –
5
2
[
ω(1 – ω)

] 3
2 ≥ 0. (47)

Inequality (47) is equivalent to

(
3 – 5ω +

39
16

ω2
)2

≥ 25
4

ω(1 – ω)3,

and we derive,

9 –
145

4
ω + 58ω2 –

85
2

ω3 +
(

392

162 +
25
4

)
ω4 ≥ 0. (48)

The coefficient of ω4 is separated into two parts,

9 –
145

4
ω + 58ω2 –

85
2

ω3 +
(

382

162 +
25
4

)
ω4 +

392 – 382

162 ω4 ≥ 0. (49)
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Let g(ω) = 9 – 145
4 ω + 58ω2 – 85

2 ω3 + ( 382

162 + 25
4 )ω4, and its derivative is

dg
dω

=
1

16
(
–580 + 1856ω – 2040ω2 + 761ω3).

For 0 < ω ≤ 1, because d2g
dω2 > 0, we have dg

dω
< 0, which means that g(ω) decreases mono-

tonically. Therefore, we know that g(ω) > 0, for any 0 < ω ≤ 1. Because 392–382

162 ω4 > 0, in-
equality (49) holds for any 0 < ω ≤ 1. The proof is complete. �

5 Conclusion
As for the q value problem of sparse signal recovery using �q-minimization, the existence
of q value has been proven, that is, if the measurement matrix satisfies D-RIP with δ2s ≤
1/2, then there exists a value q0 such that for any q ∈ (0, q0], any signal that is s-sparse
with a tight frame can be robustly recovered to the true signal. In this work, we mainly
estimated q0 as q0 = 2/3 in the case of δ2s ≤ 1/2 and discussed that the value of q0 can be
much higher. We also proved that if δ2s ≤ 0.3317, for any q ∈ (0, 1], robust recovery for
signals via �q-minimization holds, which is consistent with the case of �q-minimization
without a tight frame.
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