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Abstract
A novel measure of noncompactness is defined in variable exponent Lebesgue
spaces Lp(·) on an unbounded domain R

+ and its properties are examined. Using the
fixed point method, we apply that measure to study the existence theorem for
nonlinear integral equations. Our results can be handily applied in studying various
types of (differential, integral, functional, and partial differential) equations in
Lp(·)-spaces. The Lp(·)-spaces are natural extensions of classical constant exponent
Lebesgue spaces Lp, which allows us to bypass several restrictions that were
previously discussed in the literature.
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1 Introduction
Variable exponent Lebesgue spaces Lp(·) are a proper tool to study the models with non-
standard growth condition such as elasticity theory [19], electrorheological fluids [32],
fluid mechanics [14], differential equations and variational problems [8], image restora-
tion [21], or nonlinear elastic mechanics [34]. The integral provides the model of energy
in fluid dynamics [11] in the form

∫
ω

∣∣Du(t)
∣∣p(t) dt,

where the exponent is a function of the electric field and Du is a symmetric portion of the
gradient of the velocity field.

It is beneficial and useful to analyze and investigate the solutions of many types of (dif-
ferential, integral, functional, and partial differential) equations in various function spaces
using the technique of measures of noncompactness (MNCs) related with fixed point the-
orems, see [3, 6, 10, 12, 23–26, 31].

That technique has lately been developed in many research papers by constructing new
MNCs in numerous function spaces and applying these results to study the solutions of
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various types of problems in the considered spaces. Recall that the MNCs were demon-
strated and defined in the Banach algebras C(I), BC(R+) [5], in the space of regular func-
tions [9, 17, 22], in the space of all locally integrable functions L1

loc(R+) [28], in the space of
Lebesgue integrable functions L1(RN ) [7], in the classical Lebesgue spaces Lp(RN ) [1, 27],
and in the Sobolev space W k,1(I) [20]. We extend and generalize the above results to the
case of Lp(·)(R+)-spaces.

To fulfill this gap, we construct a regular measure of noncompactness in Lp(·)-spaces
on unbounded domain R

+ and apply it with the help of Darbo’s fixed point approach in
studying the following integral equation in the studied spaces:

x(t) = g(t) + f1
(
t, x(t)

)
+

∫ ∞

0
K(t, s)f2

(
s, x(s)

)
ds. (1.1)

The importance of studying Lp(·)-spaces is that they are logical extensions of classical
constant exponent Lp-spaces, and the investigations of the solutions of the integral equa-
tions are naturally studied in these spaces. The Lp(·)-spaces are not rearrangement invari-
ant, the translation operator is not bounded, Young’s convolution inequality does not hold
when compared to the theory of Lp-spaces (cf. [13, Sect. 3.6]).

Moreover, that technique is simple to use when examining the solutions of various kinds
of problems in Lp(·)(R+), which has a wide range of applications that can be utilized to get
beyond the restrictions of Lp-spaces.

2 Notation and auxiliary facts
Let R = (–∞,∞) and R

+ = [0,∞). By Lp(·)(R+) we denote the space of functions f (t) on R
+

s.t.

Ip(f ) =
∫ ∞

0

∣∣f (t)
∣∣p(t) dt < ∞,

where p(t) is a measurable function on R
+ with values in [0,∞) and define p– =

ess inft>0 p(t) and p+ = ess supt>0 p(t).
The spaces Lp(·)(R+) = Lp(·) are the Banach spaces with the norm

‖f ‖p(·) = ‖f ‖Lp(·)(R+) = inf

{
λ > 0 : Ip

(
f
λ

)
≤ 1

}
, (2.1)

which corresponds to the well-known Luxemburg norm in Orlicz spaces. If p(x) = p is a
constant function, then norm (2.1) coincides with the usual Lp-norm.

The next concepts will be useful and helpful with the framework.
The Hölder inequality is written as follows in Lp(·) [11]: If we assume that f and g are in

Lp(·) and Lq(·), respectively, we have f · g ∈ L1(R+), where 1
p(·) + 1

q(·) = 1, and

∫ ∞

0

∣∣f (t)g(t)
∣∣dt ≤ kp(·)‖f ‖p(·)‖g‖q(·),

where 1 ≤ p(·) ≤ ∞ and 1 < kp(·) ≤ 4.

Proposition 2.1 [15, Remark 2.1] Suppose that the sequence {xk} ⊂ Lp(·) converges in norm
to h ∈ Lp(·). Then there exists a subsequence {hkj} and g ∈ Lp(·) such that the subsequence
converges pointwise a.e. to h and, for almost every t ∈R

+, |hkj (t)| ≤ g(t).
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Definition 2.2 Consider that a function f (t, x) : R+ × R → R fulfills the Carathéodory
conditions i.e. it is continuous in x for almost all t ∈ R

+ and measurable in t for any x ∈
R. The superposition (Nemytskii) operator Ff can thus be denoted for each measurable
function x in the following manner:

Ff (x)(t) = f
(
t, x(t)

)
, t ∈R

+.

Lemma 2.3 [18] If Ff : Lp(·) → Lq(·), then Ff is continuous and bounded, and there is a
constant b ≥ 0 and a nonnegative function a ∈ Lq(·) such that, for t ∈ R

+ and x ∈ R, the
following inequality holds:

∣∣f (t, x)
∣∣ ≤ a(t) + b|x|p(t)/q(t). (2.2)

On the other hand, if f (t, x) satisfies (2.2), then Ff : Lp(·) → Lq(·), and thus Ff is continuous
and bounded.

Next, let us assume that (E,‖ · ‖) is a Banach space that has zero element denoted by θ

and that Br = B(r, θ ) denotes a ball with a radius r and a center at θ .
Let N E and ∅ 
= ME be, respectively, the subfamily containing all relatively compact

sets of E and the family of all nonempty and bounded subsets of E. Convex closed hull and
closure of a set Y are denoted by the symbols Conv Y and Y , respectively.

Definition 2.4 [4] The function μ : ME → [0,∞) is called a measure of noncompactness
(MNC) in E if it fulfills:

(1) The family kerμ = {X ∈ME : μ(X) = 0} is nonempty and kerμ ⊂N E .
(2) Y ⊂ X ⇒ μ(Y ) ≤ μ(X).
(3) μ(Y ) = μ(Y ).
(4) μ(ConvY ) = μ(Y ).
(5) μ(λY + (1 – λ)Y ) ≤ λμ(Y ) + (1 – λ)μ(Y ), for λ ∈ [0, 1].
(6) If ∅ 
= Yn ⊂ E is a sequence of closed and bounded sets, Yn = Y n s.t. Yn+1 ⊂ Yn,

n = 1, 2, 3, . . . , and limn→∞ μ(Yn) = 0, then Y∞ =
⋂∞

n=1 Yn 
= ∅.
We say that an MNC is regular if it additionally satisfies the following axioms:

(7) μ(Y ∪ X) = max{μ(Y ),μ(X)}.
(8) μ(Y + X) ≤ μ(Y ) + μ(X).
(9) μ(λY ) = |λ|μ(Y ), for λ ∈R.

(10) kerμ = N E .

Examples of MNCs that fit all the axioms listed above are the Kuratowski and Hausdorff
MNCs [4].

It will be necessary to use the following Darbo’s fixed point theorem.

Theorem 2.5 [4] Let ∅ 
= Q ⊂ E be a bounded, closed, and convex set and let V : Q → Q
be a continuous mapping that is a contraction with respect to the MNC μ i.e. there exists
k ∈ [0, 1) s.t.

μ
(
V (X)

) ≤ kμ(X)

for any nonempty X ⊂ E. Then V has at least one fixed point in Q.
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3 Construction of MNC in the space Lp(·)

In this section, we establish a new measure of noncompactness in Lp(·) and investigate its
properties. We begin by introducing an extension of the well-known Riesz–Kolmogorov
compactness criterion in Lp(·).

Definition 3.1 A subset F of Lp(·) is called precompact if its closure is compact.

The Riesz–Kolmogorov compactness criterion in Lp(·) can be stated as follows (cf. [19,
Theorem 5] and [16, Theorem 2.1]).

Lemma 3.2 Let F be a subset of Lp(·), then the family F is precompact in Lp(·) if and only
if the following conditions hold:

(i) F is bounded,
(ii) ∀ε>0 ∃δ>0 ∀h<δ ∀f ∈F ‖f (· + h) – f (·)‖p(·) < ε,

(iii) ∀ε>0 ∃T>0 ∀f ∈F ‖f ‖Lp(·)[T ,∞) < ε.

Theorem 3.3 Assume that ∅ 
= X ⊂ Lp(·) is a bounded set. For x ∈ X and ε > 0, let

ω(x, ε) = sup
{∥∥x(· + h) – x(·)∥∥p(·) : |h| < ε

}
,

ω(X, ε) = sup
{
ω(x, ε) : x ∈ X

}
,

ω(X) = lim
ε→0

ω(X, ε).

Also, let

dT (X) = sup
{‖x‖Lp(·)[T ,∞) : x ∈ X

}
,

d(X) = lim
T→∞ dT (X).

Then μ(X) = ω(X) + d(X) : MLp(·) →R
+ represents an MNC in Lp(·).

Proof First, we begin by demonstrating the validity of axiom (1) of Definition 2.4.
Consider X ∈ MLp(·) such that μ(X) = 0. Let η > 0 be arbitrary. Since μ(X) = 0, then

limε→0 ω(X, ε) = 0. Therefore, for all η > 0, there exists δ > 0 such that ω(X, δ) < η, and this
indicates that

∥∥x(· + h) – x(·)∥∥p(·) < η

for all x ∈ X and h ∈R
+ such that |h| < δ. Since η > 0 is arbitrary, we get

lim
h→0

∥∥x(· + h) – x(·)∥∥p(·) = 0

uniformly in x ∈ X. Again, keeping in mind that μ(X) = 0, we have

lim
T→∞ dT (X) = 0,

and so for ε > 0, there exists T > 0 such that

‖x‖Lp(·)[T ,∞) < ε for all x ∈ X.
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Thus, from Lemma 3.2 we infer that the closure of X ∈ Lp(·) is compact and kerμ ⊂
N Lp(·) . The proof of axiom (2) is clear.

Now, suppose that X ∈ MLp(·) and (xn) ⊂ X such that xn → x ∈ X̄ in Lp(·). From the
definition of ω(X, ε) we have

∥∥xn(· + h) – x(·)∥∥p(·) ≤ ω(X, ε)

for any n ∈ N and |h| < ε. Letting n → ∞, we get

∥∥x(· + h) – x(·)∥∥p(·) ≤ ω(X, ε) for any |h| < ε,

then

lim
ε→0

ω(X̄, ε) ≤ lim
ε→0

ω(X, ε)

implies that

ω(X̄) ≤ ω(X). (3.1)

Similarly, we may demonstrate that d(X̄) ≤ d(X), so from equation (3.1) and axiom (2) we
get μ(X̄) ≤ μ(X) satisfies axiom (3) of Definition 2.4.

Axioms (4) and (5) can be proved similarly by using the inequality

∥∥λx + (1 – λ)x
∥∥

p(·) ≤ λ‖x‖p(·) + (1 – λ)‖x‖p(·).

To demonstrate axiom (6), let us assume that {Xn} is a sequence of closed and nonempty
sets from MLp(·) , where Xn+1 is a subset of Xn for n = 1, 2, . . . , and limn→∞ μ(Xn) = 0. Now,
for any n ∈ N, take xn ∈ Xn. We claim that F = {xn} is a compact set in Lp(·). To prove the
claim, we need to check conditions (ii) and (iii) of Lemma 3.2.

Let ε > 0 be fixed. Since limn→∞ μ(Xn) = 0, there exists k ∈N such that μ(Xk) < ε. Hence,
we can find δ1 > 0 and T1 > 0 such that

ω(Xk , δ1) < ε and dT1 (Xk) < ε.

Thus, for all n ≥ k and |h| ≤ δ1, we get

ω(Xn, δ1) < ε and dT1 (Xn) < ε.

The set {x1, x2, . . . , xk–1} is compact, hence there exist δ2 > 0 and T2 > 0 such that

ω(Xn, δ2) < ε and dT2 (Xn) < ε

for all 1 ≤ n ≤ k. If we choose δ < min{δ1, δ2} and set T = max{T1, T2}, then

ω(F ) = lim
δ→0

ω(F , δ) = 0 and d(F ) = lim
T→∞ dT (F ) = 0.
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Consequently, μ(F ) = 0, indicating that F is compact. It follows that there exists a subse-
quence {xnj} and x0 ∈ Lp(·) such that xnj → x0, and since for all xn ∈ Xn, Xn+1 ⊂ Xn and Xn

is closed for all n ∈N, we have

x0 ∈
∞⋂
i=1

Xn = X∞,

and this completes the theorem’s proof. �

We now analyze the regularity of μ.

Theorem 3.4 The measure of noncompactness μ given in Theorem 3.3 is regular.

Proof Suppose that X, Y ∈ Lp(·). Since for all ε > 0, λ > 0, T > 0 we have

ω(Y ∪ X, ε) ≤ max
{
ω(Y , ε),ω(X, ε)

}
,

ω(Y + X, ε) ≤ ω(Y , ε) + ω(X, ε),

ω(λY , ε) ≤ λω(Y , ε)

and

sup
x∈Y∪X

‖x‖Lp(·)[T ,∞) ≤ sup
{

sup
x∈Y

‖x‖Lp(·)[T ,∞), sup
x∈X

‖x‖Lp(·)[T ,∞)

}
,

sup
x∈Y +X

‖x‖Lp(·)[T ,∞) ≤ sup
x∈Y

‖x‖Lp(·)[T ,∞) + sup
x∈X

‖x‖Lp(·)[T ,∞),

sup
x∈λY

‖x‖Lp(·)[T ,∞) ≤ λ sup
x∈Y

‖x‖Lp(·)[T ,∞),

axioms (7), (8), and (9) hold. To show that (10) holds, suppose that X ∈ N Lp(·) . Thus, the
closure of X in Lp(·) is compact, and hence from Lemma 3.2, for any ε > 0, there exists T > 0
such that dT (X) < ε and also ω(X) < ε uniformly in x ∈ X. From the first conclusion, for all
η > 0, there exists δ > 0 such that ‖x(· + h) – x(·)‖p(·) < η for any |h| < δ. Then, for all x ∈ X,
we have

ω(x, δ) = sup
{∥∥x(· + h) – x(·)∥∥p(·) : |h| < δ

} ≤ ε.

Therefore,

ω(X, δ) = sup
{
ω(x, δ) : x ∈ X

} ≤ ε,

which proves

lim
δ→0

ω(X, δ) = 0 (3.2)

and

lim
T→∞ dT (X) = 0. (3.3)

Now from (3.2) and (3.3), axiom (10) holds. �



Metwali Journal of Inequalities and Applications        (2023) 2023:157 Page 7 of 14

4 Applications
In this section, we use the results obtained in Sect. 3 to investigate the existence of solu-
tions for the nonlinear integral equation (1.1).

The operator H can be defined as follows:

x = H(x) = g + Ff1 (x) + Ax,

where

Ax = K0 ◦ Ff2 , K0x(t) =
∫ ∞

0
K(t, s)x(s) ds

and the superposition operators Ffi , i, i = 1, 2, are the same as in Definition 2.2.
Equation (1.1) will be handled based on the following set of presumptions:

(i) g(·) ∈ Lp(·).
(ii) For i = 1, 2, suppose that fi : R+ ×R→R satisfies Carathéodory conditions and

there exist constants bi ≥ 0 and functions ai ∈ Lq(·) such that

∣∣fi(t, 0)
∣∣ ≤ ai(t)

and

∣∣fi(t, x) – fi(s, y)
∣∣ ≤ ∣∣ai(t) – ai(s)

∣∣ + bi|x – y|p(s)/q(s)

for all t, s ∈R
+ and x, y ∈R.

(iii) Let K : R+ ×R
+ → R be measurable and there exist functions g1 ∈ Lp(·) and

g2 ∈ Lq′(·), 1
p(·) + 1

q′(·) = 1 such that |K(t, s)| ≤ g1(t)g2(s) for all t, s ∈ R
+ and

∣∣K(t1, s) – K(t2, s)
∣∣ ≤ g2(s)

∣∣g1(t1) – g1(t2)
∣∣, t1, t2, s ∈R

+.

(iv) For M > 1, let r be a constant satisfying the inequalities

‖g‖p(·) +
(
M‖a1‖q(·) + b1Mr(p/q)±)

+ kq(·)‖g1‖p(·)‖g2‖q′(·)
(‖a2‖q(·) + b2r(p/q)±) ≤ r

and

b1M · (2r)(p/q)± ≤ 1,

where the + sign occurs when r ≥ 1 and the – sign occurs in the case r ≤ 1.

Remark 4.1 Under assumption (iii), the linear integral operator K0x(t) =
∫ ∞

0 K(t, s)x(s) ds
maps Lq(·) into Lp(·).

Proof By utilizing assumption (iii) and the Hölder inequality, we have

∣∣K0x(t)
∣∣ ≤

∫ ∞

0

∣∣K(t, s)
∣∣∣∣x(s)

∣∣ds
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≤
∫ ∞

0
g1(t)g2(s)

∣∣x(s)
∣∣ds

≤ kq(·)g1(t)‖g2‖q′(·)‖x‖q(·), q′(·) =
q(·)

q(·) – 1
.

Therefore,

‖K0x‖p(·) ≤ kq(·)‖g1‖p(·)‖g2‖q′(·)‖x‖q(·), (4.1)

then we get our claim. �

Remark 4.2 Under assumption (ii), we have that the superposition operator Ffi : Lp(·) →
Lq(·) and is continuous.

Proof From assumption (ii), for i = 1, 2, we have

∣∣fi(t, x)
∣∣ ≤ ∣∣fi(t, x) – fi(t, 0)

∣∣ +
∣∣fi(t, 0)

∣∣ ≤ bi|x|p(t)/q(t) +
∣∣fi(t, 0)

∣∣
�⇒ ∣∣fi(t, x)

∣∣ ≤ ai(t) + bi|x|p(t)/q(t).

Since ai ∈ Lq(·), i = 1, 2, and by utilizing Lemma 2.3, we get our claim. �

Proposition 4.3 [8] Since p(t) ≤ q(t), t ∈R
+, the operator Ff1 : Lp(·) → Lp(·) is well defined,

bounded, and continuous and

∥∥xp(·)/q(·)∥∥
q(·) ≤ ‖x‖(p/q)±

p(·) .

Theorem 4.4 Let assumptions (i)–(iv) be satisfied, then equation (1.1) has at least one
solution x ∈ Lp(·)(R+).

Proof We will carry out the proof in a number of steps.
Step I. We will show that the operator H is well defined on Lp(·) and is continuous.
At the outset, according to (ii) and Remark 4.2, we have that the operators Ffi : Lp(·) →

Lq(·), where i = 1, 2, and they are continuous. Furthermore, according to Proposition 4.3,
the operator Ff1 : Lp(·) → Lp(·) and is continuous.

Now, we will prove that property for the operator A = K0 ◦ Ff2 .
Considering our underlying presumptions and Remark 4.2 with the Hölder inequality,

we have
∫ ∞

0

∫ ∞

0

∣∣K(t, s)f2
(
s, x(s)

)∣∣ds dt

≤
∫ ∞

0

∫ ∞

0

∣∣K(t, s)
∣∣(a2(s) + b2

∣∣x(s)
∣∣p(s)/q(s))ds dt

≤
∫ ∞

0
kq(·)

∥∥K(t, ·)∥∥q′(·)
∥∥a2 + b2|x|p(·)/q(·)∥∥

q(·) dt

≤ kq(·)
(‖a2‖q(·) + b2

∥∥xp(·)/q(·)∥∥
q(·)

)∫ ∞

0

∥∥g1(t)g2(·)∥∥q′(·) dt

≤ kq(·)
(‖a2‖q(·) + b2‖x‖(p/q)±

p(·)
)
kp(·)‖g1 · ‖g2‖q′(·)‖p(·)‖1‖p′(·)
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= kq(·)kp(·)‖g1‖p(·)‖g2‖q′(·)‖1‖p′(·)
(‖a2‖q(·) + b2‖x‖(p/q)±

p(·)
)
, (4.2)

where p′(·) = p(·)
p(·)–1 . Then A(Lp(·)(R+)) ⊂ L1(R+).

We will now demonstrate that A(Lp(·)) ⊂ Lp(·). Using Remark 4.1 and Remark 4.2 again,
we derive that, for almost every t ∈R

+,

∥∥∥∥
∫ ∞

0
K(·, s)f2

(
s, x(s)

)
ds

∥∥∥∥
p(·)

≤
∥∥∥∥
∫ ∞

0
K(·, s)

(
a2(s) + b2

∣∣x(s)
∣∣p(s)/q(s))ds

∥∥∥∥
p(·)

≤ ‖kq(·)‖K(t, ·)‖q′(·)‖a2 + b2|x|p(·)/q(·)‖q(·)‖p(·)

≤ kq(·)
(‖a2‖q(·) + b2

∥∥xp(·)/q(·)∥∥
q(·)

)‖g1 · ‖g2‖q′(·)‖p(·)

= kq(·)‖g1‖p(·)‖g2‖q′(·)
(‖a2‖q(·) + b2‖x‖(p/q)±

p(·)
)
. (4.3)

Then A(Lp(·)) ⊂ Lp(·).
We shall now demonstrate that the operator A is continuous between indicated spaces.
To accomplish this, let us select the sequence (xn) ⊂ Lp(·) such that

lim
n→∞‖xn – x‖p(·) = 0.

We will demonstrate that A(xn) → A(x) in Lp(·) as n → ∞. To accomplish this, it is suffi-
cient to demonstrate that any sequence (xn) has a subsequence denoted by (xnk ) such that
A(xnk ) → A(x) in Lp(·) as k → ∞.

Take (xnk ) ⊂ (xn). It follows by Proposition 2.1 that there is a subsequence (xnk ) such that

xnk → x almost everywhere in R
+ (4.4)

and there exists h ∈ Lp(·) satisfying

∣∣xnk (t)
∣∣ ≤ h(t) almost every t ∈R

+ for all k ∈N. (4.5)

Since the function K(t, s)f2(s, ·) : R →R is continuous, from (4.4), we deduce that

K(t, s)f2
(
s, xnk (s)

) → K(t, s)f2
(
s, x(s)

)
for almost every t, s ∈R

+.

Now, based on presumption (ii) with inequality (4.5), we have for almost every t, s ∈R
+,

∣∣K(t, s)f2
(
s, xnk (s)

)∣∣ ≤ K(t, s)
(
a2(s) + b2

∣∣h(s)
∣∣p(s)/q(s)).

As before, we can show that for almost every t ∈ R
+ the function t → K(t, s)(a2(s) +

b2|h(s)|p(·)/q(·)) lies in L1(R+).
Consequently, using the Lebesgue dominated theorem, we obtain

∫ ∞

0
K(t, s)f2

(
s, xnk (s)

)
ds →

∫ ∞

0
K(t, s)f2

(
s, x(s)

)
ds



Metwali Journal of Inequalities and Applications        (2023) 2023:157 Page 10 of 14

for almost every t ∈R
+. Moreover, by using Remark 4.1 and (4.5), we have

∥∥∥∥
∫ ∞

0
K(t, s)f2

(
s, xnk (s)

)
ds

∥∥∥∥
p(·)

≤ kq(·)‖g1‖p(·)‖g2‖q′(·)
(‖a2‖q(·) + b2‖h‖(p/q)±

p(·)
)
.

Consequently, the Lebesgue dominated theorem implies that

∥∥A(xnk ) – A(x)
∥∥

p(·) → 0,

then we obtain that ‖A(xn) – A(x)‖p(·) → 0,
which implies that A maps continuously Lp(·) → Lp(·). Finally, by assumption (i), we have

that the operator H maps Lp(·) → Lp(·) and is continuous.
Step II. We will construct an invariant set Br , where r is as in assumption (iv). We shall

first show that the operator H is bounded in Lp(·) i.e.

∥∥H(x)
∥∥

p(·) ≤ ‖g‖p(·) +
∥∥Ff1 (x)

∥∥
p(·) +

∥∥A(x)
∥∥

p(·).

To do this, we use assumptions (ii) and (iii) and the following facts: (i) the Lp(·)-norm is
order preserving, (ii) the triangle inequality, (iii) the embedding Lq(·) ⊂ Lp(·) since p(·) ≤
q(·) (see [11, Theorem 2.45 and Corollary 2.48]), which implies that there exists M > 1
such that, for all a1 ∈ Lq(·), ‖a1‖p(·) ≤ M‖a1‖q(·). Then we have

∥∥H(x)
∥∥

p(·) ≤ ‖g‖p(·) +
∥∥a1 + b1|x|p(·)/q(·)∥∥

p(·)

+ kq(·)‖g1‖p(·)‖g2‖q′(·)
∥∥Ff2 (x)

∥∥
q(·)

≤ ‖g‖p(·) +
(‖a1‖p(·) + b1

∥∥xp(·)/q(·)∥∥
p(·)

)

+ kq(·)‖g1‖p(·)‖g2‖q′(·)
∥∥a2 + b2|x|p(·)/q(·)∥∥

q(·)

≤ ‖g‖p(·) +
(
M‖a1‖q(·) + b1M

∥∥xp(·)/q(·)∥∥
q(·)

)

+ kq(·)‖g1‖p(·)‖g2‖q′(·)
(‖a2‖q(·) + b2

∥∥xp(·)/q(·)∥∥
q(·)

)

≤ ‖g‖p(·) +
(
M‖a1‖q(·) + b1M‖x‖(p/q)±

p(·)
)

+ kq(·)‖g1‖p(·)‖g2‖q′(·)
(‖a2‖q(·) + b2‖x‖(p/q)±

p(·)
)
.

Thus, H : Lp(·) → Lp(·). It follows from our assumption (iv) that the following inequality has
a positive solution r such that

∥∥H(x)
∥∥

p(·) ≤ ‖g‖p(·) +
(
M‖a1‖q(·) + b1Mr(p/q)±)

+ kq(·)‖g1‖p(·)‖g2‖q′(·)
(‖a2‖q(·) + b2r(p/q)±) ≤ r,

which implies that H : Br → Br is continuous.
Step III. It is obvious that Br is a bounded, closed, and convex set in Lp(·).
Step IV. We will demonstrate that H is a contraction in terms of the MNC μ.
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Assume that ∅ 
= X ⊂ Br and fixed arbitrary constant ε > 0. Then, for arbitrary x ∈ X and
for t, h ∈R and |h| ≤ ε, we have

∣∣(Hx)(t + h) – (Hx)(t)
∣∣

≤ ∣∣g(t + h) – g(t)
∣∣ +

∣∣Ff1 (x)(t + h) – Ff1 (x)(t)
∣∣ +

∣∣A(x)(t + h) – A(x)(t)
∣∣

≤ ∣∣g(t + h) – g(t)
∣∣ +

∣∣f1
(
t + h, x(t + h)

)
– f1

(
t, x(t)

)∣∣

+
∫ ∞

0

∣∣K(t + h, s) – K(t, s)
∣∣∣∣f2

(
s, x(s)

)∣∣ds

≤ ∣∣g(t + h) – g(t)
∣∣ +

(∣∣a1(t + h) – a1(t)
∣∣ + b1

∣∣x(t + h) – x(t)
∣∣p(t)/q(t))

+
∫ ∞

0

∣∣g1(t + h) – g1(t)
∣∣∣∣g2(s)

∣∣∣∣a2(s) + b2
∣∣x(s)

∣∣p(s)/q(s)∣∣ds

≤ ∣∣g(t + h) – g(t)
∣∣ +

(∣∣a1(t + h) – a1(t)
∣∣ + b1

∣∣x(t + h) – x(t)
∣∣p(t)/q(t))

+ kq(·)
∣∣g1(t + h) – g1(t)

∣∣ · ‖g2‖q′(·)
(‖a2‖q(·) + b2r(p/q)±)

.

Therefore,

∥∥(Hx)(· + h) – (Hx)(·)∥∥p(·)

≤ ∥∥g(· + h) – g(·)∥∥p(·)

+
∥∥a1(· + h) – a1(·)∥∥p(·) + b1

∥∥∣∣x(· + h) – x(·)∣∣p(·)/q(·)∥∥
p(·)

+
∥∥kq(·)

∣∣g1(· + h) – g1(·)∣∣ · ‖g2‖q′(·)
(‖a2‖q(·) + b2r(p/q)±)∥∥

p(·)

≤ ∥∥g(· + h) – g(·)∥∥p(·)

+
(
M

∥∥a1(· + h) – a1(·)∥∥q(·) + Mb1
∥∥∣∣x(· + h) – x(·)∣∣p(·)/q(·)∥∥

q(·)
)

+ kq(·)
∥∥g1(· + h) – g1(·)∥∥p(·)‖g2‖q′(·)

(‖a2‖q(·) + b2r(p/q)±)

≤ ∥∥g(· + h) – g(·)∥∥p(·)

+
(
M

∥∥a1(· + h) – a1(·)∥∥q(·) + Mb1
∥∥x(· + h) – x(·)∥∥(p/q)±

p(·)
)

+ kq(·)
∥∥g1(· + h) – g1(·)∥∥p(·)‖g2‖q′(·)

(‖a2‖q(·) + b2r(p/q)±)

≤ ∥∥g(· + h) – g(·)∥∥p(·)

+
(
M

∥∥a1(· + h) – a1(·)∥∥q(·) + Mb1(2r)(p/q)±∥∥x(· + h) – x(·)∥∥p(·)
)

+ kq(·)
∥∥g1(· + h) – g1(·)∥∥p(·)‖g2‖q′(·)

(‖a2‖q(·) + b2r(p/q)±)
,

where

∥∥x(· + h) – x(·)∥∥(p/q)±
p(·) =

∥∥x(· + h) – x(·)∥∥(p/q)±–1
p(·)

∥∥x(· + h) – x(·)∥∥p(·)

≤ (2r)(p/q)±∥∥x(· + h) – x(·)∥∥p(·).
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Thus we obtain

ω(HX, ε) ≤ ω(g, ε) +
(
Mω(a1, ε) + b1M · (2r)(p/q)±ω(x, ε)

)

+ kq(·)‖g2‖q′(·)
(‖a2‖q(·) + b2r(p/q)±)

ω(g1, ε).

Also we have ω(g, ε) → 0, ω(a1, ε) → 0, and ω(g1, ε) → 0 as ε → 0. Then we obtain

ω(HX) ≤ b1M · (2r)(p/q)± · ω(X). (4.6)

Next, let us fix an arbitrary number T > 0. Then, using our hypotheses, for an arbitrary
function x ∈ X we have

‖HX‖Lp(·)[T ,∞) ≤ ‖g‖Lp(·)[T ,∞)

+
(
M‖a1‖Lq(·)[T ,∞) + b1M(2r)(p/q)±‖x‖Lp(·)[T ,∞)

)

+ kq(·) · ‖g1‖Lp(·)[T ,∞)‖g2‖q′(·)
(‖a2‖q(·) + b2r(p/q)±)

.

Also we have ‖g‖Lp(·)[T ,∞) → 0, ‖a1‖Lq(·)[T ,∞) → 0, and ‖g1‖Lp(·)[T ,∞) → 0 as T → ∞, we
have

d(HX) ≤ b1M · (2r)(p/q)± · d(X). (4.7)

Combining (4.6) and (4.7), we have

μ(HX) ≤ b1M · (2r)(p/q)± · μ(X).

From the above inequality and by recalling all the above established properties, we can
apply Theorem 2.5, which finishes the proof. �

5 Particular cases and examples
Let us recall some examples and particular cases of our outcomes that were covered and
studied in earlier publications.

Example The tools of the weak MNC related to the fixed point theorem for contractions
in the space L1(0, 1) were utilized for studying the existence of integrable solutions of the
Hammerstein and Urysohn integral equations (cf. [2])

x(t) = g(t) +
∫ 1

0
k(t, s)f

(
s, x(s)

)
ds,

x(t) = g(t) +
∫ 1

0
u
(
t, s, x(s)

)
ds.

Example The authors in [28] constructed a new MNC in the space L1
loc(R+) of all real

functions locally integrable on R
+, and they utilized that method together with a family of

MNCs to investigate the existence of solutions of the nonlinear Volterra integral equation

x(s) = f
(

s,
∫ s

0
u
(
s, t, x(t)

)
dt

)
.
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Example The authors in [1] examined a set of nonlinear functional integral equations
using a new MNC on Lp(RN )(1 ≤ p < ∞) together with Darbo’s fixed point theorem

x(s) = g
(
s, x(s)

)
+

∫
RN

k(s, t)(Qx)(t) dt,

where Q is an operator mapping the space Lp(RN ) into itself.

Example The Urysohn integral equations were examined in Orlicz spaces Lϕ(I) in [29, 30]

x(t) = g(t) +
∫

I
u
(
t, s, x(s)

)
ds, t ∈ I.

The case of Hammerstein integral equations were also discussed in Orlicz spaces in [33].

Example The existence and uniqueness of the solutions of Volterra integral equations
with Carathéodory functions having diverse growth behaviors

x(s) = g
(
s, x(s)

)
+ λ

∫ b

a
u
(
s, t, x(t)

)
dt, s ∈ (a, b),λ ∈R

were studied in [8] in Lp(·)(a, b) by using degree theory and fixed point approach.

Example In [20], the authors presented a new MNC in the Sobolev spaces W k,1(I) and
used it to investigate the existence of solutions of the integral-differential equation

x(t) = p(t) + q(t)x(t) +
∫

I
k(t, s)g

(
t, x(s),

∂u
∂t1

(s), . . . ,
∂u
∂tn

(s), Tu(s)
)

ds.
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