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Abstract
This paper presents noise-induced transitions in a stochastic avian influenza model
with Allee effect. In the deterministic case, one of three disease-free equilibria is
always globally asymptotically stable in its attractive domain, and there is a unique
endemic equilibrium when the basic reproduction number R0 > 1. In the stochastic
case, a new dynamic phenomenon of noise-induced transition can be observed, that
is, the stochastic trajectory can exit from the neighborhood of the epidemic
equilibrium and pass into the vicinity of the trivial equilibrium. More precisely, in this
paper, based on the stochastic sensitivity function technique, we construct the
confidence ellipse and then estimate the critical value of the noise intensity leading
to extinction. We also propose useful control strategies to prevent the noise-induced
extinction.
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1 Introduction
Avian influenza (bird flu) refers to the disease caused by infection with avian (bird) in-
fluenza (flu) Type A viruses. These viruses naturally spread among wild aquatic birds
worldwide and can infect domestic poultry and other bird and animal species [1]. In-
fluenza A virus can be divided into H subtypes and N subtypes according to different
proteins on the surface of the virus: hemagglutinin (HA) and neuraminidase (NA) [2].
It was formerly believed that avian influenza viruses are distinct from human influenza
viruses and cannot spread easily to human. However, in 1997, cases of human infection
with highly pathogenic avian influenza A (H5N1) virus were reported during an avian in-
fluenza outbreak in Hong Kong, China. After that, infection to human of avian influenza
occurred successively. Influenza A virus has spread from Asia to Europe, Africa, and the
Middle East since 2003 and resulted in millions of poultry infections, hundreds of human
cases and deaths in more than 50% of human cases [3]. Another identified influenza A
viruses associated with human infections are H7N9 viruses, which were first detected in
China in 2013. While human infections with H7N9 viruses are uncommon, they have re-
sulted in severe respiratory illness and death in approximately 40 of reported cases [2].
Data from the Ministry of Agriculture and Rural Affairs shows that in the first quarter of
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2022, there were 1526 cases of avian influenza in the world (excluding wild birds), affecting
21 countries, and a large number of poultry were culled.

In order to prevent the endangerment of wild birds and stop avian influenza from be-
coming a global disease, various mathematical models have been used to analyze the epi-
demiological characteristics of avian influenza and propose useful control measures [4, 5].
Iwami et al. [6] constructed an avian-human influenza epidemic model to investigate re-
lations between the evolution of virulence and an effectiveness of pandemic control mea-
sures after the emergence of mutant avian influenza: one is an elimination policy of in-
fected birds with avian influenza and the other is a quarantine policy of infected humans
with mutant avian influenza. They found that each of these prevention policies may be
ineffective, and the quarantine policy can effectively reduce both human morbidity and
mortality, but the elimination policy increases either human morbidity or mortality in a
worst case situation. Zhang et al. [7] developed a dynamic model of resident birds and
poultry. They concluded that although closing the live poultry trading market is not the
main measure to control the epidemic, but it can control the epidemic to a lower level.

In particular, Liu [8] formulated a classic avian-only influenza model:

⎧
⎨

⎩

dSa(t)
dt = g(Sa(t)) – βaSa(t)Ia(t),

dIa(t)
dt = βaSa(t)Ia(t) – (μa + δa)Ia(t),

(1.1)

where Sa(t) and Ia(t) represent the susceptible and the infective at time t, respectively, βa

is the transmission rate from infective avian to susceptible avian, μa is the natural death
rate of the avian population, δa is the disease-related death rate of infected avian. It is well
known that the population growth rate is related to both population size and available re-
sources, so the logistic growth is more realistic than the constant growth for the wildlife
birds, then g(Sa) = raSa(1 – Sa

Ka
), where ra is the intrinsic growth rate and Ka is the maxi-

mal carrying capacity of the avian population. As one of the main sources for transmitting
disease to humans, avian populations are assumed to experience a strong Allee effect, a
phenomenon in which the species will become extinct when the population density falls
below a certain threshold due to factors such as difficulty in finding a mate, genetic in-
breeding, or a reduction in cooperative interactions [9]. In other words, strong Allee effect
can lead to complex dynamics in epidemic and population models [10]. If the susceptible
avian population is subject to Allee effect, then g(Sa) = raSa(1 – Sa

Ma
)( Sa

ma
– 1), where Ma

is the maximal carrying capacity of the avian population and ma is the critical carrying
capacity of the avian population.

However, populations are inevitably influenced by environmental factors such as cli-
mate, water resources, and diseases. There are different possible approaches to introduce
noise into stochastic differential equations, both from a biological and from a mathemati-
cal perspective. One traditional approach is analogous to that of Beddington and May [11]
who superimposed a one-dimensional white noise process into the density-independent
term. In fact, stochastic models have been employed to study unexpected phenomena that
do not occur in the deterministic models, such as noise-induced transitions [12, 13], noise-
induced chaos [14], and noise-induced complexity [15–17]. Bashkirtseva and Ryashko [18]
studied noise-induced transitions from the zone of coexistence to the zone of extinction
for the stochastically forced predator–prey population model with Allee effect. Bashkirt-
seva et al. [19] considered a phenomenological Hassell mathematical model with Allee
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effect and found that the persistence zone can decrease and even disappear under the
influence of random noise. Yuan et al. [20] considered a stochastically forced producer-
grazer model and studied the phenomenon of noise-induced state switching between two
stochastic attractors in the bistable zone. They constructed the confidence ellipse and
the confidence band to find the configurational arrangement of equilibria and a limit cy-
cle, respectively. Moreover, Ruan [21] introduced a semi-analytical method to explore the
asymptotically convergent behavior of a stochastic avian model with Allee effect and ex-
plored that an increased noise could lead to stability transition from bistability to monos-
tability.

Based on the above discussions, we attempt to study the phenomena of noise-induced
transitions for avian influenza model with Allee effect by using the stochastic sensitivity
function technique. The paper is organized as follows. In Sect. 2, we review the determin-
istic avian influenza model and establish its stochastic version. The analysis and control of
the noise-induced extinction will be presented in Sect. 3. We finally conclude the paper by
some discussions in Sect. 4. Some mathematical background of the stochastic sensitivity
function technique will be briefly outlined in the Appendix.

2 Model formulation
2.1 Deterministic avian influenza model with the Allee effect
To study the influence of noise perturbation on the dynamic behaviors, we recall the well-
defined model (1.1) with the Allee effect and obtain the following deterministic model:

⎧
⎨

⎩

dSa(t)
dt = raSa(t)(1 – Sa(t)

Ma
)( Sa(t)

ma
– 1) – βaSa(t)Ia(t),

dIa(t)
dt = βaSa(t)Ia(t) – (μa + δa)Ia(t).

(2.1)

Define the basic reproduction number by

R0 =
βa(Ma + ma)(μa + δa)
(μa + δa)2 + Mamaβ2

a
.

According to [8, Theorem 3.5], system (2.1) has the following dynamic properties:
• System (2.1) always has three disease-free equilibria given by E0 = (0, 0), E1 = (ma, 0),

E2 = (Ma, 0); if R0 > 1 or, equivalently, ma < μa+δa
βa

< Ma, system (2.1) also has a unique
endemic equilibrium E3 = (S∗

a, I∗
a ), where

S∗
a =

μa + δa

βa
, I∗

a =
ra

βa

(μa + δa)2 + Mamaβ
2
a

Mamaβ2
a

(R0 – 1).

• The disease-free equilibrium E0 of the avian system (2.1) is always globally
asymptotically stable in D1, but the disease-free equilibrium E1 is always unstable. If
ma < μa+δa

βa
< ma+Ma

2 , then system (2.1) has a unique limit cycle in the neighborhood of
the endemic equilibrium E3, which is globally asymptotically stable in D2; if
ma+Ma

2 < μa+δa
βa

< Ma, then the endemic equilibrium E3 is globally asymptotically stable
in D2; if μa+δa

βa
> Ma, then the disease-free equilibrium E2 is globally asymptotically

stable in D2.
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Figure 1 Vector field of deterministic model (2.1) and the separatrix of two attraction domains

Remark 2.1 The authors in [8] divide R
2
+ into two subregions D1 and D2. Here, the vector

field of system (2.1) for the case ma+Ma
2 < μa+δa

βa
< Ma is shown in Fig. 1, in which the dashed-

dotted line is the separatrix of two domains. For a detailed explanation of D1 and D2 above,
please refer to Sect. 3.2.2 of Ref. [8].

In order to reflect the above results intuitively, we further take the following realistic
parameter values from [8] for some numerical simulations. The disease-induced death
rate of the infected avian is δa = 4 × 10–4 per day. The natural death rate μa is about
μa = 3 × 10–3 per day under the assumption that the wild avian can survive eight years.
The intrinsic growth rate of the avian population is ra = 5 × 10–4 per day. The transition
rate from infected avian population to susceptible avian is βa = 1 × 10–6 and the critical
carrying capacity of the avian population is ma = 800. The maximal carrying capacity of
the avian population Ma is regarded as a variable parameter.

(i) Set Ma = 5000, then ma+Ma
2 = 2900 < μa+δa

βa
= 3400 < Ma = 5000, system (2.1) has

two stable states E0 = (0, 0) and E3 = (3400, 5200) (see Fig. 2(a));
(ii) For Ma = 6100, then ma = 800 < μa+δa

βa
= 3400 < ma+Ma

2 = 3450, system (2.1) has two
stable states E0 = (0, 0) and the limit cycle (see Fig. 2(b)). Besides, as Ma increases,
the limit cycle becomes larger (see Fig. 2(c)).

(iii) As Ma increases to 6500, then ma = 800 < μa+δa
βa

= 3400 < ma+Ma
2 = 3650, the limit

cycle disappears and there exists only one stable state E0 = (0, 0) for system (2.1)
(see Fig. 2(d)).

2.2 Stochastic avian influenza model with the Allee effect
In this subsection, we introduce multiplicative noises into deterministic model (2.1) by
perturbing the growth rate ra and the death rate δa by ra + σ Ḃ1(t) and δa + σ Ḃ2(t), respec-
tively, obtaining the stochastic avian influenza model with Allee effect:

⎧
⎨

⎩

dSa(t) = Sa(t)(1 – Sa(t)
Ma

)( Sa(t)
ma

– 1)(ra dt + σ dB1(t)) dt – βSa(t)Ia(t) dt,

dIa(t) = (βSa(t)Ia(t) – (μa + δa)Ia(t)) dt + σ Ia(t) dB2(t),
(2.2)
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Figure 2 The plots are the global phase portraits of the avian system (2.1) with respect to μa+δa
βa

.
(a) Ma = 5000; (b) Ma = 6100; (c) Ma = 6300; (d) Ma = 6500

where Bi(t), i = 1, 2, are mutually independent Brown motions and σ is the noise intensity.
We start with a basic theorem about the well-posedness of the model.

Theorem 2.1 For any given initial value (Sa(0), Ia(0)) ∈ R
2
+, system (2.2) has a unique

global solution (Sa(t), Ia(t)) on t ≥ 0, and the solution will always remain in R
2
+ with prob-

ability 1.

Proof The drift and the diffusion of system (2.2) are locally Lipschitz continuous, for any
initial value (Sa(0), Ia(0)) ∈R

2
+, there is a unique local solution (Sa(t), Ia(t)) ∈ [0, τe), where

τe is the explosion time. To show the solution is global, we only need to verify that τe = ∞
a.s. Let k0 > 0 be sufficiently large so that (Sa(0), Ia(0)) lies within the interval [ 1

k0
, k0] ×

[ 1
k0

, k0]. For each k > k0, define the stoping time

τk = inf

{

t ∈ [0, τe) : min
{

Sa(t), Ia(t)
} ≤ 1

k
or max

{
Sa(t), Ia(t)

} ≥ k
}

.

Throughout this paper, we set inf∅ = +∞. Clearly, τk is increasing as k → ∞. Set τ∞ =
limk→∞ τk , whence τ∞ ≤ τe a.s. If we can prove that τ∞ = ∞ a.s., then τe = ∞ a.s. and
(S(t), I(t)) ∈ R

2
+ a.s. for all t > 0 a.s. Otherwise, there are two constants T > 0 and δ ∈ (0, 1)
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such that

P{τ∞ ≤ T} > δ.

Hence there is an integer k1 ≥ k0 such that for all k ≥ k1

P{τk ≤ T} ≥ δ.

Define a nonnegative C2-function V : R2
+ →R+ by

V (Sa, Ia) = Sa – l – l ln Sa + l ln l + Ia – 1 – ln Ia +
1
v

Sv
a,

where l = μa+δa
βa

, v is the normal number that satisfies 0 < v < 1. By using Itô’s formula, we
have

LV =
(

1 –
l

Sa

)(

raSa

(

1 –
Sa

Ma

)(
Sa

ma
– 1

)

– βaSaIa

)

+
σ 2

2
l
(

1 –
Sa

Ma

)2( Sa

ma
– 1

)2

+
(

1 –
1
Ia

)
(
βaSaIa – (μa + δa)Ia

)
+

1
2
σ 2 + Sv

a

(

ra

(

1 –
Sa

Ma

)(
Sa

ma
– 1

)

– βaIa

)

–
1
2
σ 2(1 – v)Sv

a

(

1 –
Sa

Ma

)2( Sa

ma
– 1

)2

≤ –
σ 2

2M2
am2

a
(1 – v)S4+v

a +
σ 2

2M2
am2

a
S4

a +
σ 2

Mama

(
1

Ma
+

1
ma

)

(1 – v)S3+v
a

–
(

σ 2

Mama

(
1

Ma
+

1
ma

)

+
ra

Mama

)

S3
a –

σ 2

2

(
1

M2
a

+
1

m2
a

+
4

Mama

)

(1 – v)S2+v
a

+
(

(ra + ral)
(

1
Ma

+
1

ma

)

+
σ 2

2

(
1

M2
a

+
1

m2
a

+
4

Mama

))

S2
a

+
(

1
Ma

+
1

ma

)
(
ra + σ 2(1 – v)

)
S1+v

a –
(

ra + ral + βa + σ 2
(

1
Ma

+
1

ma

))

Sa

+ ral + μa + δa +
σ 2

2

≤ M.

Following the proof of the remainder of Theorem in [22, Theorem 2.1], we obtain that
system (2.2) admits a unique positive solution (Sa(t), Ia(t)) ∈R

2
+ for any given initial value

(Sa(0), Ia(0)) ∈R
2
+. �

3 Analysis of the noise-induced transition and control system
3.1 Analysis of the noise-induced transition
Due to the complexity of system (2.2), it is not easy to obtain the analytic formula for the
threshold value of noise intensity determining avian influenza population permanence and
extinction. Under this circumstance, we take endemic equilibrium E3 and the limit cycle
as examples to numerically illustrate the impact of environment noise on the dynamics of
model (2.2).



Guo Journal of Inequalities and Applications        (2023) 2023:149 Page 7 of 18

Figure 3 (a) and (b) Times series for deterministic model (2.1); (c) and (d) Time series for stochastic model
(2.2) with σ = 1× 10–3; (e) and (f ) Time series for stochastic model (2.2) with σ = 1× 10–2

We screen 50 pairs of initial values by even distribution with Sa between 0 and 7000 and
Ia between 0 and 6000, respectively. Parameters γa, δa,μa,βa, and ma are chosen as before.
Set Ma = 5000, then ma+Ma

2 < μa+δa
βa

< Ma, i.e., deterministic model (2.1) has two stable
states, disease-free equilibrium E0 = (0, 0) and endemic equilibrium E3 = (3400, 5200) (see
Fig. 3(a)–(b)). For a weak noise σ = 1 × 10–3, the solution curves of stochastic model (2.2)
starting from the attraction domain D2 will oscillate around the endemic equilibrium E3

(see Fig. 3(c)–(d)). As the noise intensity increases to σ = 1×10–2, the trajectories of model
(2.2) will escape from the neighborhood of E3 into domain D1, and eventually tend to E0

(see Fig. 3(e)–(f )).
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Figure 4 (a) Time series diagrams of system (2.2) with σ = 1× 10–4; (b) Deterministic cycle (solid black) and
trajectories (dashed) of stochastic system (2.2); (c) Time series diagrams of system (2.2) with σ = 1× 10–3; (d)
Deterministic cycle (solid black) and trajectories (dashed) of stochastic system (2.2)

Take Ma = 6100 and initial value (Sa(0), Ia(0)) = (3400, 5460), then for fixed parameters
γa, δa,μa,βa, and ma, ma < μa+δa

βa
< ma+Ma

2 , i.e., system (2.1) has two stable states, disease-
free equilibria E0 = (0, 0) and a limit cycle around E3. For a weak small noise σ = 1 × 10–4,
the stochastic cycle of system (2.2) oscillates around the deterministic limit cycle. When
the noise becomes σ = 1 × 10–3, the trajectories of system (2.2) initially oscillate near the
deterministic limit cycle, but eventually cross the separatrix and enter attraction domain
D1, tending towards E0 (see Fig. 4).

Figure 3 and Fig. 4 show a noise-induced transition from coexistence to extinction. For
different random attractors, there exists the corresponding critical value σ∗ such that when
0 < σ < σ∗, the solution of stochastic model (2.2) oscillates around endemic equilibrium
E3 (or deterministic limit cycle), biologically, both susceptible and infected avian popu-
lations exist; when σ > σ∗, the solution of stochastic model (2.2) eventually tends to E0,
biologically, both susceptible and infected avian populations go extinct.

Consider the following boundary equation without infected avian population:

d̃Sa(t) = S̃a(t)
(

1 –
S̃a(t)
Ma

)(
S̃a(t)
ma

– 1
)

(
ra dt + σ dB1(t)

)
, S̃a(0) ≥ 0. (3.1)

Lemma 3.1 If σ 2 > 4Mamara
(Ma–ma)2 , then the solution S̃a(t) of system (3.1) satisfies limt→∞ S̃a(t) = 0

for any t > 0 with a probability 1.
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Proof An application of Itô’s formula leads to

d ln S̃a(t) =
[

ra

(

1 –
S̃a(t)
Ma

)(
S̃a(t)
ma

– 1
)

–
σ 2

2

(

1 –
S̃a(t)
Ma

)2( S̃a(t)
ma

– 1
)2]

dt

+ σ

(

1 –
S̃a(t)
Ma

)(
S̃a(t)
ma

– 1
)

dB1(t)

=
[

–
σ 2

2M2
am2

a
S̃4

a(t) +
σ 2

Mama

(
1

Ma
+

1
ma

)

S̃3
a(t) –

(
σ 2

2

(
1

M2
a

+
1

m2
a

+
4

Mama

)

+
ra

Mama

)

S̃2
a(t) +

(
ra + σ 2)

(
1

Ma
+

1
ma

)

S̃a(t) –
(

ra +
σ 2

2

)]

dt

+ σ

(

1 –
S̃a(t)
Ma

)(
S̃a(t)
ma

– 1
)

dB1(t). (3.2)

Let the function

f (x) = –
σ 2

2M2
am2

a
x4 +

σ 2

Mama

(
1

Ma
+

1
ma

)

x3

–
(

σ 2

2

(
1

M2
a

+
1

m2
a

+
4

Mama

)

+
ra

Mama

)

x2

+
(
ra + σ 2)

(
1

Ma
+

1
ma

)

x –
(

ra +
σ 2

2

)

.

Then, the derivative of f (x) is

f ′(x) = Ax3 + Bx2 + Cx + D,

where

A = –
2σ 2

M2
am2

a
, B =

3σ 2

Mama

(
1

Ma
+

1
ma

)

,

C = –σ 2
(

1
M2

a
+

1
m2

a
+

4
Mama

)

–
2ra

Mama
, D =

(
ra + σ 2)

(
1

Ma
+

1
ma

)

.

To obtain the monotonicity of the function f (x), we consider the following simple cubic
equation:

Ax3 + Bx2 + Cx + D = 0. (3.3)

Divide the above equation by A and let x = y + Ma+ma
2 , then (3.3) becomes

y3 + Py + Q = 0, (3.4)

here,

P = –
1
4

(Ma – ma)2 +
ra

σ 2 Mama, Q =
1
2

(Ma + ma)3.
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Obviously, the discriminant � = ( Q
2 )2 + ( P

3 )3 > 0, namely, (3.4) has a unique negative real

root y1 = 3

√

– Q
2 +

√

( Q
2 )2 + ( P

3 )3 + 3

√

– Q
2 –

√

( Q
2 )2 + ( P

3 )3. Hence, x1 = y1 + Ma+ma
2 is the unique

real root of (3.3). Therefore, the function f (x) monotonically increases over (–∞, x1) and
monotonically decreases over (x1,∞). In addition, it is easy to see that f (x) is negative if
x ≤ 0, so f (x) gets its maximum value at the positive real number x1.

Integrating equation (3.2) and diving t on its both sides, we get

ln S̃a(t) – ln S̃a(0)
t

=
1
t

∫ t

0
f
(
S̃a(s)

)
ds +

1
t

∫ t

0
σ

(

1 –
S̃a(s)
Ma

)(
S̃a(s)
ma

– 1
)

dB1(s)

≤ f (x1) +
1
t

∫ t

0
σ

(

1 –
S̃a(s)
Ma

)(
S̃a(s)
ma

– 1
)

dB1(s)). (3.5)

By using the same argument in [23, Lemma 3.3], we can show that

lim
t→∞

1
t

∫ t

0
σ

(

1 –
S̃a(s)
Ma

)(
S̃a(s)
ma

– 1
)

dB1(s) = 0, a.s.

Taking the superior limit on both sides of inequality (3.5), then

lim sup
t→∞

ln S̃a(t)
t

≤ f (x1), a.s.

In view of x1 = y1 + Ma+ma
2 , it can be deduced that

f (x1) = –
1
2

(
σ 2

4

(
1

Ma
–

1
ma

)2

–
ra

Mama

)(

y2
1 –

(Ma + ma)2

4

)

–
(

ra +
σ 2

2

)

–
(Ma + ma)3

2
.

It follows from the assumption σ 2 > 4Mamara
(Ma–ma)2 that

lim sup
t→∞

ln S̃a(t)
t

≤ f (x1) < 0, a.s.

This implies that limt→∞ S̃a(t) = 0 a.s. �

Theorem 3.1 If σ 2 > 4Mamara
(Ma–ma)2 , then the susceptible avian population and the infected

avian population go to extinction.

Proof By virtue of Lemma 3.1, we have limt→∞ S̃a(t) = 0 a.s. under the condition σ 2 >
4Mamara
(Ma–ma)2 . Because of the stochastic comparison theorem, we have Sa(t) ≤ S̃a(t) for any
t > 0 with a probability 1. Therefore, limt→∞ Sa(t) = 0 a.s., then limt→∞ Ia(t) = 0 a.s.. This
completes the proof of the theorem. �

Remark 3.1 The condition of Theorem 3.1 is sufficient. In fact, the noise threshold val-
ues leading to the disappearance of random attractors are different due to their different
sensitivity to noise, see Fig. 3 and Fig. 4.
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3.2 Control of the noise-induced extinction
To avoid noise-induced extinction and to estimate the critical value of noise intensity, we
propose a feedback control strategy to analyze the effectiveness of the control strategy by
constructing confidence ellipses of endemic equilibrium E3. For limit cycle, we can discuss
similarly by constructing a confidence band (see literature [18] for details).

Consider the case when system (2.1) has a stable endemic equilibrium E3 = (S∗
a, I∗

a ). De-
fine

F =

(
f11 f12

f21 f22

)

, G =

(
g11 0
0 g22

)

,

where

f11 = –
2ra

Mama
S∗

a
2 +

(
ra

Ma
+

ra

ma

)

S∗
a, f12 = –βaS∗

a, f21 = βaI∗
a , f22 = 0,

and

g11 = g11 = S∗
a

(

1 –
S∗

a
Ma

)(
S∗

a
ma

– 1
)

, g22 = I∗
a .

It follows from (5.5) that the stochastic sensitivity matrix

Wuc =

(
ω11 ω12

ω21 ω22

)

satisfies the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2f11ω11 + f12ω12 + f12ω21 + g2
11 = 0,

f21ω11 + (f11 + f22)ω12 + f12ω22 = 0,

f21ω11 + (f11 + f22)ω21 + f12ω22 = 0,

f21ω12 + f21ω21 + 2f22ω22 + g2
22 = 0.

Then the confidence ellipse equation of uncontrolled stochastic system (2.2) is

〈(
Sa – S∗

a, Ia – I∗
a
)T, W –1

uc
(
Sa – S∗

a, Ia – I∗
a
)T〉

= 2σ 2 ln
1

1 – P
, (3.6)

where P is a fiducial probability. Taking the parameter values as in Fig. 1, the stable epi-
demic equilibrium E3 = (S∗

a, I∗
a ) = (3400, 5200). In this case, the stochastic sensitivity matrix

and its inverse are

Wuc = 109

(
3.5510 –2.6000

–2.6000 8.6809

)

, W –1
uc = 10–9

(
0.3607 0.1080
0.1080 0.1476

)

.

Hence, equation (3.6) is equivalent to the following equation:

0.3607 × 10–9(Sa – 3400)2 + 0.2160 × 10–9(Sa – 3400) × (Ia – 5200)
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Figure 5 (a) Random states of stochastic model (2.2) and confidence ellipse for σ = 1× 10–3; (b) Separatrix
(dashed-dotted) and confidence ellipse for σ = 1× 10–3 (small), 5.1826× 10–3 (middle), and σ = 1× 10–2

(large)

+ 0.1476 × 10–9(Ia – 5200)2 = 2σ 2 ln
1

1 – P
. (3.7)

Fix fiducial probability P = 0.95 and take the noise intensity σ = 1 × 10–3, 5.1826 × 10–3,
and 1 × 10–2, respectively. The plots of the confidence ellipse for uncontrolled stochastic
system (2.2) are presented in Fig. 5. It suggests that for a weak noise intensity, the trajectory
of stochastic system (2.2) belongs to the interior of the confidence ellipse with probability
0.95, as the noise intensity increases, the confidence ellipse begins to enlarge, crosses the
separatrix, and enters the attraction domain D1 of the equilibrium E0, which means that
the trajectory of stochastic system (2.2) leaves the neighborhood of epidemic equilibrium
E3 and eventually tends to the disease-free equilibrium E0. If we define the noise intensity
corresponding to the intersection of confidence ellipse with separatrix as an estimation
of the critical value σ∗, then σ∗ ≈ 5.1826 × 10–3. When σ = 1 × 10–2 > σ∗, the random
trajectories of system (2.2) leave the basin of attractor D2 of E3 and form a stochastic
attractor near the trivial equilibrium E0 (see Fig. 3(e)–(f )).

In the following, we proposed the controlled system of stochastic system (2.2):

⎧
⎪⎪⎨

⎪⎪⎩

dSa(t) = (raSa(t)(1 – Sa(t)
Ma

)( Sa(t)
ma

– 1) + u1(Sa(t), Ia(t)) – βSa(t)Ia(t)) dt

+ σSa(t)(1 – Sa(t)
Ma

)( Sa(t)
ma

– 1) dB1(t),

dIa(t) = (βSa(t)Ia(t) – (μa + δa)Ia(t) + u2(Sa(t), Ia(t))) dt + σ Ia(t) dB2(t),

(3.8)

where (u1(Sa, Ia), u2(Sa, Ia))T is the regulator that takes the form of linear feedback

(
u1(Sa, Ia)
u2(Sa, Ia)

)

= K

(
Sa – S∗

a

Ia – I∗
a

)

,

where K =
( k11 k12

k21 k22

)
is the feedback matrix. We will mainly discuss the two control strate-

gies:

(I) u1(Sa, Ia) �= 0, u2(Sa, Ia) �= 0; (II) u1(Sa, Ia) �= 0, u2(Sa, Ia) = 0.
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Figure 6 (a) Confidence ellipses for uncontrolled stochastic model (2.2)(large) and stochastic model (2.2) with
control strategy I (small); (b) Random states of uncontrolled stochastic model (2.2) (dotted) and controlled
stochastic model (3.8) with control strategy I (solid)

Strategy I. In this case, the matric B defined as (5.6) is B =
( 1 0

0 1

)
. We assign the stochastic

sensitivity matrix

Wc = 109

(
1.5510 –0.6000

–0.6000 1.6809

)

,

which is positive defined, then the inverse of the matrix Wc is

W –1
c = 10–9

(
0.7480 0.2670
0.2670 0.6902

)

.

It follows from (a) of Lemma 5.1 that the feedback matrix

K = –B–1
(

1
2

GW –1 + F
)

=

(
–0.0004 0.0017
–0.0088 0.0093

)

.

Hence, the confidence ellipses for uncontrolled system (2.1) and controlled stochastic
system (3.6) are as shown in Fig. 6(a). In Fig. 6(a), the greater noise intensity makes the
confidence ellipse for uncontrolled system (2.1) partly contain the attraction domain of
the equilibrium E0, which means that the trajectory of stochastic system (3.6) tends to the
disease-free equilibrium E0 eventually. However, feedback control strategy I reduces the
size of the confidence ellipse, making it locate within the attraction basin of the epidemic
equilibrium E3. Namely, control strategy I can prevent the noise-induced extinction so that
both susceptible and infected avian populations may be persistent, as shown in Fig. 6(b).

Strategy II. In this case, the matric B defined as (5.6) is B =
( 1 0

0 0

)
. We assign the stochastic

sensitivity matrix

Wc = 109

(
0.5510 0.0000
0.0000 6.6809

)

,
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Figure 7 (a) Confidence ellipses for uncontrolled stochastic model (2.2)(large) and stochastic model (2.2) with
control strategy II (small); (b) Random states of uncontrolled stochastic model (2.2) (dotted) and controlled
stochastic model (3.8) with control strategy II (solid)

which is positive defined, then the inverse of the matrix Wc is

W –1
c = 10–8

(
0.1805 0.0000
0.0000 0.0150

)

.

It follows from (b) of Lemma 5.1 that the feedback matrix

K = –
1
2

B+(
FW + WFT + G

)(
2I – BB+)

W –1 =

(
–0.0071 0.0030

0.000 0.000

)

.

Then the confidence ellipses for uncontrolled system (2.1) and stochastic system (3.6) with
control strategy II are as shown in Fig. 7(a). Just like control strategy I, control strategy II
prevents the noise-induced extinction of system (2.1) by reducing the size of the confi-
dence ellipse to make it locate within the attraction basin of the epidemic equilibrium E3.

4 Discussion
In this paper, we considered a stochastic avian influenza model with Allee effect. The
global dynamics of the corresponding deterministic model have been comprehensively
analyzed in [8], the bistable result can occur under appropriate parameters. The model
has two attractors, the trivial attractor (the disease-free equilibrium E0) and the nontrivial
attractor (the endemic equilibrium E3 or limit cycle). The solution interval is separated
into two attraction basins, a solution from each basin will eventually approach the attrac-
tor located in that domain. That is to say, the coexistence of the susceptible population and
infective population depends on the initial population size. However, we found a crucial
change of the system from bistability to monostability under random disturbance, the so-
lutions in the attraction domain of the endemic equilibrium (or limit cycle) will eventually
approach the disease-free equilibrium with high probability.

In order to reveal the underlying stability transition for the stochastic system, we take
the attractor E3 as an example to construct confidence ellipses based on the stochastic
sensitivity functions technique. For a weak noise, the confidence ellipses are completely
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contained in the attraction domain of the endemic equilibrium E3, and the random states
belong to the confidence ellipses with large probability. As the noise intensity increases,
the confidence ellipses begin to expand, cross the separatrix, and occupy the attraction
basin of the disease-free equilibrium E0. In this case, the noise-induced extinction occurs.
Biologically, both the susceptible population and the infective population will tend to ex-
tinction even if their initial sizes are located near the attraction domain of the endemic
equilibrium E3.

In order to prevent noise-induced extinction and control influenza at a certain level, we
have proposed feedback control strategies to reduce the confidence ellipse and make it
completely located in the attraction basin of endemic equilibrium. The result agrees with
that in [21] and is helpful to better understand the models in random perspective. Note
that Theorem 2.1 is even new for one-dimensional stochastic avian influenza model with
the Allee effect, and the condition of Theorem 2.1 is novel and less restrictive than those
given in [24]. It should be pointed out that our analytical method could be used to study
the dynamics of various population models and other epidemic models. Moreover, the fol-
lowing issues are still worth further discussion: (1) the critical value of the noise intensity
leading to the extinction of the avian population is estimated by numerical simulation, can
the sufficient and necessary conditions be given theoretically? What are the conditions for
avian population to persist? (2) P-bifurcation is one of the important forms of stochastic
bifurcation, we can try to analyze the phenomenon of stochastic P-bifurcation for model
(2.2) by probability density function.

Appendix
Let us consider the nonlinear controlled stochastic system

dx = f
(
x, u(x)

)
dt + εg

(
x, u(x)

)
dB(t), x, f ∈R

n, u ∈R
m. (5.1)

It is supposed that for u = 0 and ε = 0 the corresponding deterministic system (5.1) has
an equilibrium x̄ whose stability is not assumed. Consider the set of admissible feedbacks
u = u(x) satisfying conditions:

• u(x̄) is continuously differentiable and u(x) = 0;
• u(x) provides an exponential stability of x̄ for the system

dx = f
(
x, u(x)

)
dt (5.2)

in the neighborhood of x̄.
The first condition means that x̄ remains an equilibrium of system (5.2).

Consider the stochastic model without control

dx = f (x) dt + εg(x) dB(t). (5.3)

Then the trajectories of the randomly forced system (5.1) form a corresponding stochastic
attractor with stationary distribution ρ(x, ε), which is given by the Fokker–Planck equa-
tion. In general, it is technically hard to solve this equation. For weak noise, the asymp-
totes based the quasipotential v(x) = limε→0 ε2 logρ(x, ε) are used [25, 26]. The Gaussian
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approximation of ρ(x, ε) can be written as

ρ(x, ε) ≈ C · exp
(

–
(x – x̄, W –1(x – x̄))

2ε2

)

,

where ε2W is the covariance matrix of the stationary distribution. Matrix W is called
stochastic sensitivity function of the equilibrium x̄, and it is the unique solution of the
matrix equation

FW + WFT + G = 0, F =
∂f
∂x

(x̄), G = g(x̄)g(x̄)T . (5.4)

For 2D-case, the corresponding confidence ellipse can be presented by the following equa-
tion:

(
x – x̄, W –1(x – x̄)

)
= 2k2ε2, (5.5)

where ε is noise intensity, k2 = – log(1 – p), and p is a fiducial probability.
Now, we consider u has the form of linear feedback

u(x) = K(x – x̄),

where K = ∂u
∂x (x̄) is the feedback matrix. If K ∈ K = {k|Reλi(F + BK) < 0}, where

B =
∂f
∂u

(x̄, 0), (5.6)

then system (5.1) has a stationary distribution. The connection between the assigned ma-
trix W and the feedback coefficient K follows from the equation

(F + BK)W + W (F + BK)T + G = 0. (5.7)

From the detailed analysis in [27–29], we can obtain the following lemma.

Lemma 5.1 Let the noise in system (5.1) be nonsingular.
(a) Let matrix B be square (n = l) and nonsingular (rankB = n). For any assigned positive

defined matrix W , equation (5.7) has a solution

K = K̄ + B–1W –1 ∈ K, K̄ = –B–1
(

F +
1
2

GW –1
)

, (5.8)

where Z is an arbitrary skew-symmetric n × n matrix.
(b) Let rankB < n. For symmetric and positive defined matrix W satisfying the equation

P2
(
FW + WFT + G

)
P2 = 0, (5.9)

the general solution of equation (5.7) is as follows:

K = K̄ + Z ∈ K, K̄ = B+(
FW + WFT + G

)
(

1
2

P1 – I
)

W –1, (5.10)
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where Z is an arbitrary l × n matrix for which

BZW + WZT BT = 0.

Here, a sign “+” means a pseudoinversion, P1 = BB+ and P2 = I – P1 are project
matrices. Note that if rankB = 1, equation (5.7) has a unique solution K = K̄ .
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