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Abstract
In this paper, the main aim is to consider the boundedness of the nonlinear
commutator [b,Mα ] and the maximal commutatorMα,b on the Lebesgue spaces over
some stratified Lie groupG when the symbol b belongs to the Lipschitz space. As a
result, some new characterizations of the Lipschitz spaces on Lie group via [b,Mα ] and
Mα,b are given.
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1 Introduction and main results
During the last several decades, stratified groups have appeared in quantum physics and
many branches of mathematics dealing with harmonic analysis, several complex variables,
geometry and topology, etc. [13, 29]. Moreover, the stratified groups have such geometric
structure that they inherit many analysis properties from the Euclidean spaces [14, 28].
Apart from this, the study of function spaces on stratified groups is more complicated be-
cause of the distinction between the geometric structures of Euclidean spaces and strat-
ified groups. It is noteworthy that the fractional maximal operator plays an important
role in harmonic analysis and application areas, for instance, partial differential equations
(PDEs) and potential theory, since it is closely related to the Riesz potential operator, which
is a powerful tool to study the smooth function spaces (see [3, 5, 13]). Meanwhile, the
commutators are not only intimately related to the regularity properties of the solutions
of certain partial differential equations [4, 7, 9, 26], but also can produce some charac-
terizations of function spaces [17, 25]. On the other hand, most results of the theory of
distribution functions and Fourier transforms in Euclidean spaces cannot be extended to
groups, so there are still many harmonic analysis problems on stratified Lie groups, which
are worth further research.
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Suppose T is a classical singular integral operator. The Coifman–Rochberg–Weiss type
commutator [b, T] generated by T and a suitable function b is defined by

[b, T]f = bT(f ) – T(bf ). (1.1)

A known result indicates that b ∈ BMO(Rn) (the space of bounded mean oscillation func-
tions) if and only if [b, T] is bounded on Lp(Rn) for 1 < p < ∞. The necessity was given by
Coifman et al. [8] and the sufficiency was obtained by Janson [17]. Furthermore, Janson
[17] also established some characterizations of the Lipschitz space �β (Rn) via commuta-
tor (1.1) and proved that b ∈ �β (Rn) if and only if [b, T] is bounded from Lp(Rn) to Lq(Rn)
for 1 < p < n/β and 1/p – 1/q = β/n with 0 < β < 1 (see also Paluszyński [25]).

Denote by G and R a stratified Lie group and the set of all real numbers, respectively. Let
Q be the homogeneous dimension of G, 0 ≤ α < Q and f : G → R be a locally integrable
function. Defining the fractional maximal function by

Mα(f )(x) = sup
B�x
B⊂G

1
|B|1–α/Q

∫
B

∣∣f (y)
∣∣dy,

where the supremum is chosen over all G-balls B ⊂ G embracing x with radius r > 0, and
|B| represents the Haar measure of the G-ball B (for the notations and notions, see Sect. 2
below). If α = 0, then we simply write M instead of M0, which is the Hardy-Littlewood
maximal function defined as

M(f )(x) = sup
B�x
B⊂G

1
|B|

∫
B

∣∣f (y)
∣∣dy.

Analogous to (1.1), two different forms of commutators generated by the fractional max-
imal function are given below.

Definition 1.1 Let 0 ≤ α < Q and b be a locally integrable function on G.
(i) The maximal commutator of Mα with b defined as

Mα,b(f )(x) = sup
B�x
B⊂G

1
|B|1–α/Q

∫
B

∣∣b(x) – b(y)
∣∣∣∣f (y)

∣∣dy,

where the supremum is chosen over all G-balls B ⊂G embracing x.
(ii) The nonlinear commutators generated by Mα and b is given by

[b, Mα](f )(x) = b(x)Mα(f )(x) – Mα(bf )(x).

We write [b, M] = [b, M0] and Mb = M0,b, when α = 0.
Although [b, T] is a linear operator, [b, Mα] is called a nonlinear commutator since it is

not even a sub-linear operator. It is worth noting that the maximal commutator Mα,b and
the nonlinear commutator [b, Mα] are essentially different from each other. For instance,
Mα,b is not only positive but also sub-linear, while [b, Mα] is neither positive nor sub-linear.

In 1990, Milman and Schonbek [24] used the real interpolation technique to establish
a commutator result that applies to both the Hardy-Littlewood maximal function and a



Wu and Zhao Journal of Inequalities and Applications        (2023) 2023:123 Page 3 of 17

large class of nonlinear operators. In 2000, Bastero et al. [1] proved the necessary and suf-
ficient conditions for the nonlinear commutator [b, M] to be bounded on Lp spaces when
the symbol belongs to BMO(Rn). In 2009, Zhang and Wu [34] further extended the above
results to the commutators of fractional maximal function. Subsequently, Zhang and co-
authors [31, 36] obtained some characterizations of the Lipschitz spaces via the bound-
edness of Mb and [b, M] on Lebesgue spaces and Morrey spaces, and [b, Mα] on Orlicz
spaces, respectively. Recently, Guliyev [15, 16] extended the mentioned results to Orlicz
spaces L�(G) over some stratified Lie group when the symbols belong to BMO(G) spaces
and Lipschitz spaces �β (G) respectively, and obtained separately some characterizations
for certain subclasses of BMO(G) and �β (G). And Liu et al. [21] established the charac-
terization of BMO spaces by the boundedness of some commutators in variable Lebesgue
spaces. Meanwhile, Wu and Zhao [30] extended some results of [31] to stratified Lie group
when the symbols belong to the Lipschitz spaces.

Inspired by the above literature, the purpose of this paper is to study the mapping prop-
erties of the nonlinear commutator [b, Mα] and the maximal commutator Mα,b on the
Lebesgue spaces in the context of some stratified Lie group G when b ∈ �β (G). As a con-
sequence, we give some new characterizations of the Lipschitz spaces in terms of Mα,b and
[b, Mα].

To elaborate on the results, we first give the following notations.
Let α ≥ 0 and f ∈ L1

loc(G), for a given G-ball B∗, defining the fractional maximal function
with regard to B∗ by

Mα,B∗ (f )(x) = sup
B�x

B⊂B∗

1
|B|1–α/Q

∫
B

∣∣f (y)
∣∣dy,

where the supremum is chosen over allG-balls B with x ∈ B ⊂ B∗. We simply replace M0,B∗

by MB∗ when α = 0.
Our main results may be formulated as follows.

Theorem 1.1 Suppose b is a locally integrable function on G. Let 0 < β < 1, 0 < α < Q and
0 < α + β < Q. Then the following assertions are equivalent:

(A.1) b ∈ �β (G) and b ≥ 0.
(A.2) [b, Mα] is bounded from Lp(G) to Lq(G) for all p and q satisfy 1 < p < Q

α+β
and

1
q = 1

p – α+β

Q .
(A.3) [b, Mα] is bounded from Lp(G) to Lq(G) for some p and q such that 1 < p < Q

α+β

and 1
q = 1

p – α+β

Q .
(A.4) For some s ∈ [1,∞), we have

sup
B

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣s dx

)1/s

< ∞. (1.2)

(A.5) (1.2) holds for all s ∈ [1,∞).

Remark 1
(i) When α = 0, the equivalence of (A.1), (A.2), and (A.4) was proved in [30,

Theorem 1.3].
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(ii) Additionally, it was shown in Theorem 1.3 of [30] that b ∈ �β (G) and b ≥ 0 if and
only if

sup
B

|B|–β/Q
(

|B|–1
∫

B

∣∣b(x) – MB(b)(x)
∣∣q dx

)1/q

< ∞ (1.3)

holds (see also Lemma 2.4 below). In contrast to (1.3), (1.2) yields a new
characterization for nonnegative Lipschitz functions.

Now, we consider the mapping properties of Mα,b on Lebesgue spaces over some strat-
ified Lie group G when b belongs to a Lipschitz space.

Theorem 1.2 Let b ∈ L1
loc(G), 0 < β < 1 and 0 < α < α+β < Q. Then the following assertions

are equivalent:
(B.1) b ∈ �β (G).
(B.2) Mα,b is bounded from Lp(G) to Lq(G) for all p, q with 1 < p < Q

α+β
and 1

q = 1
p – α+β

Q .
(B.3) Mα,b is bounded from Lp(G) to Lq(G) for some p, q with 1 < p < Q

α+β
and

1
q = 1

p – α+β

Q .
(B.4) For some s ∈ [1,∞), we have

sup
B

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – bB
∣∣s dx

)1/s

< ∞. (1.4)

(B.5) (1.4) holds for all s ∈ [1,∞).

Remark 2
(i) The equivalence of (B.1), (B.2), and (B.3) was proved in [30, Theorem 1.1] (for

α = 0). The equivalence of (B.1), (B.4), and (B.5) is implied in Lemma 2.3 below.
(ii) When G = R

n, the above equivalence was proved in [33] (see Corollary 1.3).
(iii) When α = 0 and G = R

n, the analogous results in Lebesgue spaces were obtained in
[31] for the case of constant exponent, while in [32, 33] for the case of variable
exponent.

This paper is organized as follows. In Sect. 2, we will recall some basic definitions and
known results. In Sect. 3, we will prove main results.

In this paper, the letter C always represents a constant without relation to the main pa-
rameters involved and whose value may vary from line to line. Moreover, here and here-
after Lp (1 ≤ p ≤ ∞) will always denote the standard Lp-space with respect to the Haar
measure dx, with the Lp-norm ‖ · ‖p. Denote by χE the characteristic function of a mea-
surable set E of G. And for any f ∈ L1

loc(G), set fE = 1
|E|

∫
E f (x) dx.

2 Preliminaries and lemmas
To prove the principal results, we first review some necessary concepts and properties.
Below we give some preliminaries concerning stratified Lie groups (or so-called Carnot
groups). We refer the reader to [3, 13, 28].
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2.1 Lie group G

Definition 2.1 Let m ∈ Z+, G be a finite-dimensional Lie algebra, and [X, Y ] = XY – YX ∈
G be Lie bracket with X, Y ∈ G .

(i) If Z ∈ G is an mth order Lie bracket and W ∈ G , then [Z, W ] is an (m + 1)st order Lie
bracket.

(ii) We call G an m-step nilpotent Lie algebra if m is the smallest integer such that all
Lie brackets of order m + 1 are zero.

(iii) A Lie algebra G is said to be stratified if there exists a direct sum vector space
decomposition

G =
m⊕

j=1

Vj = V1 ⊕ · · · ⊕ Vm (2.1)

such that G is m-step nilpotent, that is,

[V1, Vj] =

⎧⎨
⎩

Vj+1 1 ≤ j ≤ m – 1,

0 j ≥ m

holds.

Since each element of Vj (2 ≤ j ≤ m) is a linear combination of (j – 1)th order Lie bracket
of the elements of V1, it is not difficult to find that the above V1 generates the totality of
the Lie algebra G by taking Lie brackets.

With the help of the related notions of Lie algebra (see Definition 2.1), the following
definition can be obtained.

Definition 2.2 Let G be a finite-dimensional, connected and simply-connected Lie group
associated with Lie algebra G . Then

(i) G is said to be nilpotent if its Lie algebra G is nilpotent.
(ii) G is called stratified if its Lie algebra G is stratified.

(iii) We call G homogeneous if it is a nilpotent Lie group whose Lie algebra G has a
family of dilations {δr}, namely, for r > 0, Xk ∈ Vk (k = 1, . . . , m),

δr

( m∑
k=1

Xk

)
=

m∑
k=1

rkXk ,

which are automorphisms of the Lie algebra.

Remark 3 Let G = G1 ⊃ G2 ⊃ · · · ⊃ Gm+1 = {0} represent the lower central series of G , and
X = {X1, . . . , Xn} be a basis of V1 for G .

(a) (see [37]) One can construct the direct sum decomposition (2.1) by identifying each
Gj as a vector subspace of G and setting Vm = Gm and Vj = Gj \ Gj+1 for
j = 1, . . . , m – 1.

(b) (see [12]) One call the number Q = trace A =
∑m

j=1 j dim(Vj) the homogeneous
dimension of G , where A is a diagonalizable linear transformation of G with positive
eigenvalues.
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(c) (see [37] or [12]) The number Q is also known as the homogeneous dimension of G
since d(δrx) = rQ dx for all r > 0, and

Q =
m∑

j=1

j dim(Vj) =
m∑

j=1

dim(Gj).

The following properties can be found in [27](see Proposition 1.1.1 or Proposition 1.2
in [13]).

Proposition 2.1 Set G be a nilpotent Lie algebra, and G represent its corresponding con-
nected and simply-connected nilpotent Lie group. Then we have

(i) The exponential map exp : G →G is a diffeomorphism. Furthermore, if G is
identified with G via exp, then the group law (x, y) → xy is a polynomial map.

(ii) expλ is called a bi-invariant Haar measure on G if λ is a Lebesgue measure on G (or
a bi-invariant Haar measure dx on G is just the lift of Lebesgue measure on G by
exp).

Thereafter, set Q be the homogeneous dimension of G, y–1 represent the inverse of y ∈
G, and y–1x stand for the group multiplication of y–1 by x. Moreover, the identity element
of the group G is called the origin, represented by e.

A homogenous norm ρ : x → ρ(x) defined on G is a continuous function from G to
[0,∞), which is C∞ on G \ {e} and satisfies

⎧⎪⎪⎨
⎪⎪⎩

ρ(x–1) = ρ(x),

ρ(δtx) = tρ(x) for all x ∈G and t > 0,

ρ(e) = 0.

Moreover, there exists a constant c0 ≥ 1 such that ρ(xy) ≤ c0(ρ(x) + ρ(y)) for all x, y ∈G.
With the norm above, we define the G ball centered at x with radius r by B(x, r) = {y ∈

G : ρ(y–1x) < r}, and by λB represent the ball B(x,λr) with λ > 0, let Br = B(e, r) = {y ∈ G :
ρ(y) < r} be the open ball centered at e and of radius r, which is the mapping image under
δr of B(e, 1). And by �B(x, r) = G \ B(x, r) = {y ∈ G : ρ(y–1x) ≥ r} denote the complement
of B(x, r). Let |B(x, r)| stand for the Haar measure of the ball B(x, r) ⊂ G, and there exists
c1 = c1(G) such that

∣∣B(x, r)
∣∣ = c1rQ, x ∈ G, r > 0.

In addition, the doubling condition is also satisfied by the Haar measure of a homogeneous
Lie group G (see pages 140 and 501, [11]), i.e., ∀x ∈ G, r > 0, ∃C, such that

∣∣B(x, 2r)
∣∣ ≤ C

∣∣B(x, r)
∣∣.

In a stratified Lie group, the most fundamental partial differential operator is the sub-
Laplacian associated to X = {X1, . . . , Xn}, i.e., the second-order partial differential operator
on G given by

L =
n∑

i=1

X2
i .
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In the context of a Lie groups G, when Young function �(t) = tp and its complemen-
tary function 
(t) = tq with 1

p + 1
q = 1, the following results can be inferred from [15] by

elementary calculations.

Lemma 2.1 (Hölder’s inequality on G) Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1, � ⊂G be a mea-
surable set and measurable functions f ∈ Lp(�) and g ∈ Lq(�). Then there exists a positive
constant C such that

∫
�

∣∣f (x)g(x)
∣∣dx ≤ C‖f ‖Lp(�)‖g‖Lq(�).

The following property can also be deduced from [15] by elementary calculations when
Young function �(t) = tp.

Lemma 2.2 (Norms of characteristic functions) Let 0 < p < ∞ and � ⊂G be a measurable
set with finite Haar measure. Then

‖χ�‖Lp(G) = ‖χ�‖WLp(G) = |�|1/p.

2.2 Lipschitz spaces on G

Next we give the definition of the Lipschitz spaces on G, and state some basic properties
and useful lemmas.

Definition 2.3 (Lipschitz-type spaces on G)
(i) Let 0 < β < 1 and ρ be the homogenous norm. We say a function b belongs to the

Lipschitz space �β (G) if there exists a constant C > 0 such that

∣∣b(x) – b(y)
∣∣ ≤ C

(
ρ
(
y–1x

))β

for all x, y ∈G, where the smallest constant C is called the Lipschitz norm of b and
denoted by ‖b‖�β (G).

(ii) (see [22]) Let 0 < β < 1 and 1 ≤ p < ∞. A locally integrable function b is said to
belong to the space Lipβ ,p(G) if there exists a positive constant C, such that

sup
B�x

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – bB
∣∣p dx

)1/p

≤ C,

where the supremum is taken over every ball B ⊂G containing x and
bB = 1

|B|
∫

B b(x) dx. The least constant C satisfying the conditions above shall be
denoted by ‖b‖Lipβ ,p(G).

Remark 4
(a) In addition to the form of Definition 2.3 (i), we also commonly use the form as

following (see [6, 10, 19] et al.)

‖b‖�β (G) = sup
x,y∈G

x �=y

|b(x) – b(y)|
(ρ(y–1x))β

< ∞.

And ‖b‖�β (G) = 0 if and only if b is constant.
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(b) In (ii), when p = 1, we have

‖b‖Lipβ ,1(G) = sup
B�x

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – bB
∣∣dx

)
:= ‖b‖Lipβ (G).

Lemma 2.3 (see [6, 20, 22]) Assume that 0 < β < 1 and b is a locally integrable function
on G.

(i) When 1 ≤ p < ∞, then

‖b‖�β (G) = ‖b‖Lipβ (G) ≈ ‖b‖Lipβ ,p(G).

(ii) Let balls B1 ⊂ B2 ⊂G and b ∈ Lipβ ,p(G) with p ∈ [1,∞). Then there is a positive
constant C depending only on B1 and B2, such that

|bB1 – bB2 | ≤ C‖b‖Lipβ ,p(G)|B2|β/Q.

(iii) When 1 ≤ p < ∞, then there exists a positive constant C depending only on β and p,
such that

∣∣b(x) – b(y)
∣∣ ≤ C‖b‖Lipβ ,p(G)|B|β/Q

holds for any ball B containing x and y.

2.3 Some pointwise estimates and auxiliary lemmas
Hereafter, for a function b defined on G, set

b–(x) := – min{b, 0} =

⎧⎨
⎩

0, if b(x) ≥ 0,

|b(x)|, if b(x) < 0

and b+(x) = |b(x)| – b–(x). Obviously, b(x) = b+(x) – b–(x).
With the help of the proof of Theorem 1.3 in [30], the following characterization for

nonnegative Lipschitz functions can be obtained.

Lemma 2.4 Let 0 < β < 1 and b ∈ L1
loc(G). Then the following assertions are equivalent:

(i) b ∈ �β (G) and b ≥ 0.
(ii) For all 1 ≤ s < ∞, there exists a positive constant C such that

sup
B

|B|–β/Q
(

|B|–1
∫

B

∣∣b(x) – MB(b)(x)
∣∣s dx

)1/s

≤ C. (2.2)

(iii) There is an 1 ≤ s < ∞ such that (2.2) holds.

Proof Since the implication (ii) ⇒ (iii) is naturally true, and the implication (iii) ⇒ (i) has
been proved in [30, Theorem 1.3], so we only need to consider (i) ⇒ (ii).

Suppose assertion (i) is true, i.e., b ∈ �β (G) and b ≥ 0, then we can derive from [30, The-
orem 1.3] that (2.2) holds for arbitrary s with Q/(Q –β) < s < ∞. Using Hölder’s inequality,
it is not difficult to find that (2.2) holds for 1 ≤ s ≤ Q/(Q – β) as well.

Hence, we prove that the implication (i) ⇒ (ii). �
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The following strong type estimate of Mα can be achieved from [18, Proposition A] or
[2, Theorem 1.6] when the weights are constant 1 (see [18, 23] or [2] for more details).

Lemma 2.5 Let 0 < α < Q, 1 < p < Q/α and 1/q = 1/p – α/Q. If f ∈ Lp(G). then there exists
a positive constant C such that

∥∥Mα(f )
∥∥

Lq(G) ≤ C‖f ‖Lp(G).

Remark 5
(a) By Lemma 2.5, if 0 < α < Q, 1 < p < Q/α and f ∈ Lp(G), then Mα(f )(x) < ∞ for almost

every x ∈G.
(b) The above lemma can also refer to Theorem 3.3 in [15] when Young function

�(t) = tp and its complementary function 
(t) = tq with 1/q = 1/p – α/Q.

The following gives the pointwise estimate for [b, Mα] on G when b ∈ �β (G).

Lemma 2.6 Let 0 ≤ α < Q, 0 < β < 1, 0 < α + β < Q and f : G → R be a locally integrable
function. If b ∈ �β (G) and b ≥ 0, then

∣∣[b, Mα](f )(x)
∣∣ ≤ ‖b‖�β (G)Mα+β (f )(x)

holds for arbitrary x ∈G such that Mα(f )(x) < ∞.

Proof Similar to the discussion of Lemma 2.11 in [33]. For any given x ∈ G such that
Mα(f )(x) < ∞, if b ∈ �β (G) and b ≥ 0, we have

∣∣[b, Mα](f )(x)
∣∣ ≤ sup

B�x
B⊂G

1
|B|1–α/Q

∫
B

∣∣b(x) – b(y)
∣∣∣∣f (y)

∣∣dy

≤ ‖b‖�β (G) sup
B�x
B⊂G

1
|B|1–(α+β)/Q

∫
B

∣∣f (y)
∣∣dy

≤ ‖b‖�β (G)Mα+β (f )(x). �

Similar to Lemma 2.3 in [34], we get the following result.

Lemma 2.7 Let 0 ≤ α < Q, B ⊂ G be a given ball, and f be a locally integrable function.
Then, for any x ∈ B, one has

Mα(f χB)(x) = Mα,B(f )(x). (2.3)

Proof Some ideas are taken from [1] and [34]. Reasoning as the discussion of Lemma 2.3
in [34]. For any x ∈ B, it is easy to verify that

Mα(f χB)(x) ≥ Mα,B(f )(x) (2.4)

from the definitions of Mα(f χB)(x) and Mα,B(f )(x).
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So, in order to prove the equality (2.3) is true, we only need to prove the following rela-
tion, namely, for any G-ball B∗ � x, there exist G-ball B′ � x and B′ ⊂ B, such that

1
|B∗|1–α/Q

∫
B∗

∣∣f (y)χB(y)
∣∣dy ≤ 1

|B′|1–α/Q

∫
B′

∣∣f (y)
∣∣dy. (2.5)

In fact, for the case B∗ ∩ B = ∅, it is clear that (2.5) is true since f (y)χB(y) = 0 for any
y ∈ B∗.

Now we divide B∗ ∩ B �= ∅ into two cases to consider.
(a) When the relation between B∗ and B is inclusion. Without loss of generality, let

B∗ ⊃ B, then (2.5) is valid when we take B′ = B = B∗ ∩ B.
(b) When B∗ �⊂ B and B �⊂ B∗, we consider the relation between |B| and |B∗|.

(i) Assume |B| ≤ |B∗|. Then we may take B′ = B ⊃ B∗ ∩ B, so (2.5) is true.
(ii) Assume |B| > |B∗|. Firstly, since B∗ ∩ B is a bounded set in G and x ∈ B∗ ∩ B,

then there exists not only a minimal ball B′′′ containing the intersection B∗ ∩ B,
but also a maximal ball B′′ ⊂ B∗ ∩ B containing x inscribed in the ball B at a
point P, namely, x ∈ B′′ ⊂ B∗ ∩ B, ∂B′′ ∩ ∂B = {P}, B∗ ∩ B ⊂ B′′′, and |B′′′| ≤ |B∗|.
Indeed, when the spherical center of B∗ belongs to B∗ ∩ B, we can take B′′′ = B∗,
otherwise |B′′′| < |B∗|.

Secondly, there is a ball B′ ⊂ B such that x ∈ B′′ ⊂ B′, ∂B′ ∩ ∂B = {P}, and
|B′| = |B′′′| ≤ |B∗|. Let B′ = (B′ ∩ B∗) ∪ (B′ \ B∗) and
B∗ ∩ B = (B′ ∩ B∗) ∪ ((B∗ ∩ B) \ B′) satisfy x ∈ B′′ ⊂ B′ ∩ B∗ and
x /∈ (B′ \ B∗) ∪ ((B∗ ∩ B) \ B′).

Furthermore, for a given ball B, f χB is integrable and finite almost everywhere
since f is a locally integrable function. Observe the fact that B′ \ B∗ is larger than
(B∗ ∩ B) \ B′, and neither contains x. Then there is an � ⊂ B′ \ B∗ such that∫

(B∗∩B)\B′ |f (y)|dy ≤ ∫
�

|f (y)|dy.
Combined with the discussion above, it follows that

1
|B∗|1–α/Q

∫
B∗

∣∣f (y)χB(y)
∣∣dy

=
( |B′|

|B∗|
)1–α/Q 1

|B′|1–α/Q

∫
B∗∩B

∣∣f (y)χB(y)
∣∣dy

≤ 1
|B′|1–α/Q

(∫
B′∩B∗

∣∣f (y)χB(y)
∣∣dy +

∫
(B∗∩B)\B′

∣∣f (y)χB(y)
∣∣dy

)

≤ 1
|B′|1–α/Q

(∫
B′∩B∗

∣∣f (y)χB(y)
∣∣dy +

∫
�

∣∣f (y)χB(y)
∣∣dy

)

≤ 1
|B′|1–α/Q

(∫
B′∩B∗

∣∣f (y)χB(y)
∣∣dy +

∫
B′\B∗

∣∣f (y)χB(y)
∣∣dy

)

=
1

|B′|1–α/Q

∫
B′

∣∣f (y)
∣∣dy.

Therefore, we obtain that (2.5) is valid.
Combining (2.4) and (2.5) together yields (2.3), which completes the proof. �
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Remark 6
(a) Further, by applying Lemma 2.7 and the definition of Mα,B(χB)(x), we have

Mα(χB)(x) = Mα,B(χB)(x) = |B|α/Q.

(b) For the case α = 0, the following results are also valid, namely

M(χB)(x) = MB(χB)(x) = χB(x), M(f χB)(x) = MB(f )(x).

Referring to [1, page 3331] or [34], through elementary calculations and derivations, it
is easy to check that the following assertions are true.

Lemma 2.8 Let b be a locally integrable function on G and B ⊂ G be an arbitrary given
ball.

(i) If E = {x ∈ B : b(x) ≤ bB} and F = B \ E = {x ∈ B : b(x) > bB}. Then the following
equality

∫
E

∣∣b(x) – bB
∣∣dx =

∫
F

∣∣b(x) – bB
∣∣dx

is trivially true.
(ii) Then for any x ∈ B, we have |bB| ≤ |B|–α/QMα,B(b)(x).

3 Proofs of principal results
We now give the proof of the principal results.

3.1 Proof of Theorem 1.1
In order to prove Theorem 1.1, we first consider the following lemma.

Lemma 3.1 Let 0 < β < 1 and 0 < α < Q. Assume that b is a locally integrable function on
G, which satisfies

sup
B

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣s dx

)1/s

< ∞, (3.1)

for some s ∈ [1,∞), then b ∈ �β (G).

Proof Some ideas are taken from [1, 34, 35] and [33].
For any G-ball B ⊂ G, let E = {x ∈ B : b(x) ≤ bB} and F = B \ E = {x ∈ B : b(x) > bB}.

Noticing from Lemma 2.8(ii) that

|bB| ≤ |B|–α/QMα,B(b)(x) ∀x ∈ B.

Then, for any x ∈ E ⊂ B, we have b(x) ≤ bB ≤ |bB| ≤ |B|–α/QMα,B(b)(x). It is clear that

∣∣b(x) – bB
∣∣ ≤ ∣∣b(x) – |B|–α/QMα,B(b)(x)

∣∣, ∀x ∈ E.
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Therefore, by using Lemma 2.8(i), we get

1
|B|1+β/Q

∫
B

∣∣b(x) – bB)
∣∣dx =

1
|B|1+β/Q

∫
E∪F

∣∣b(x) – bB)
∣∣dx =

2
|B|1+β/Q

∫
E

∣∣b(x) – bB)
∣∣dx

≤ 2
|B|1+β/Q

∫
E

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣dx

≤ 2
|B|1+β/Q

∫
B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣dx.

By using Lemma 2.1, (3.1), and Lemma 2.2, we have

1
|B|1+β/Q

∫
B

∣∣b(x) – bB)
∣∣dx ≤ 2

|B|1+β/Q

∫
B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣dx

≤ C
|B|1+β/Q

(∫
B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣s dx

)1/s

‖χB‖Ls′ (G)

≤ C
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣s dx

)1/s

≤ C.

Therefore, by utilizing Lemma 2.3 and Definition 2.3, we complete the proof. �

Now, we prove the mapping properties of the nonlinear commutator [b, Mα] on
Lebesgue spaces over some stratified Lie group G when the symbol b belongs to some
Lipschitz space.

Proof of Theorem 1.1 Since the implications (A.2) ⇒ (A.3) and (A.5) ⇒ (A.4) are easy
to obtain, we only need to verify that (A.1) ⇒ (A.2), (A.3) ⇒ (A.4), (A.4) ⇒ (A.1), and
(A.2) ⇒ (A.5).

(A.1) ⇒ (A.2): Let b ∈ �β (G) and b ≥ 0. We need to verify that [b, Mα] is bounded from
Lp(G) to Lq(G) for all p and q satisfy 1 < p < Q

α+β
and 1

q = 1
p – α+β

Q . For the above p and
arbitrary f ∈ Lp(G), it follows from Remark 5(i) that Mα(f )(x) < ∞ for almost everywhere
x ∈G. According to Lemma 2.6, we get

∣∣[b, Mα](f )(x)
∣∣ ≤ ‖b‖�β (G)Mα+β (f )(x).

Then, assertion (A.2) can be obtained from Lemma 2.5.
(A.3) ⇒ (A.4): Assume that assertion (A.3) is true, that is, there exist p and q such that

[b, Mα] is bounded from Lp(G) to Lq(G). Below we shall validate that (1.2) holds when
s = q.

For any given G-ball B ⊂G and arbitrary x ∈ B, it follows immediately from Lemma 2.7
and Remark 6 that the pointwise relations

Mα(bχB)(x) = Mα,B(b)(x) and Mα(χB)(x) = Mα,B(χB)(x) = |B|α/Q

hold. So, for arbitrary x ∈ B, we have

b(x) – |B|–α/QMα,B(b)(x) = |B|–α/Q(
b(x)|B|α/Q – Mα,B(b)(x)

)
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= |B|–α/Q(
b(x)Mα(χB)(x) – Mα(bχB)(x)

)

= |B|–α/Q[b, Mα](χB)(x).

Observe that [b, Mα] is bounded from Lp(G) to Lq(G) with 1
q = 1

p – α+β

Q . Therefore for
any ball B ⊂G, by applying Lemma 2.2, we obtain

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣q dx

)1/q

≤ |B|–(α+β)/Q–1/q∥∥[b, Mα](χB)
∥∥

Lq(G)

≤ C|B|–(α+β)/Q–1/q‖χB‖Lp(G) ≤ C,

which shows (1.2) holds for s = q, since the ball B ⊂G is arbitrary and C does not depend
on B.

(A.4) ⇒ (A.1): By Lemma 2.4, it sufficiently shows that

sup
B

1
|B|1+β/Q

∫
B

∣∣b(x) – MB(b)(x)
∣∣dx < ∞. (3.2)

For arbitrary fixed ball B ⊂G, we have

1
|B|1+β/Q

∫
B

∣∣b(x) – MB(b)(x)
∣∣dx

≤ 1
|B|1+β/Q

∫
B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣dx

+
1

|B|1+β/Q

∫
B

∣∣|B|–α/QMα,B(b)(x) – MB(b)(x)
∣∣dx

:= I1 + I2.

(3.3)

For I1, by applying statement (A.4), Lemma 2.1 (Hölder’s inequality), and Lemma 2.2,
we get

I1 ≤ 1
|B|1+β/Q

(∫
B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣s dx

)1/s

‖χB‖Ls′ (G)

≤ C
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣s dx

)1/s

≤ C,

where the constant C is not dependent on ball B.
Now we estimate I2. For all x ∈ B, the following pointwise relations can be obtained

immediately from Lemma 2.7 and Remark 6, i.e.,

Mα(χB)(x) = |B|α/Q and Mα(bχB)(x) = Mα,B(b)(x),

and

M(χB)(x) = χB(x) = 1 and M(bχB)(x) = MB(b)(x).
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Thus, for arbitrary x ∈ B, we get

∣∣|B|–α/QMα,B(b)(x) – MB(b)(x)
∣∣

≤ |B|–α/Q∣∣Mα,B(b)(x) – |B|α/Q∣∣b(x)
∣∣∣∣ +

∣∣∣∣b(x)
∣∣ – MB(b)(x)

∣∣
≤ |B|–α/Q∣∣Mα(bχB)(x)–

∣∣b(x)
∣∣Mα(χB)(x)

∣∣
+

∣∣∣∣b(x)
∣∣M(χB)(x) – M(bχB)(x)

∣∣
≤ |B|–α/Q∣∣[|b|, Mα

]
(χB)(x)

∣∣ +
∣∣[|b|, M

]
(χB)(x)

∣∣.

(3.4)

Since statement (A.4) together with Lemma 3.1 yields b ∈ �β (G), which implies |b| ∈
�β (G). Hence, we may apply Lemma 2.6 to [|b|, Mα] and [|b|, M] since |b| ∈ �β (G) and
|b| ≥ 0.

By using Lemma 2.6, Lemma 2.7, and Remark 6, for all x ∈ B, we have

∣∣[|b|, Mα

]
(χB)(x)

∣∣ ≤ ‖b‖�β (G)Mα+β (χB)(x) ≤ C‖b‖�β (G)|B|(α+β)/Q

and

∣∣[|b|, M
]
(χB)(x)

∣∣ ≤ ‖b‖�β (G)Mβ (χB)(x) ≤ C‖b‖�β (G)|B|β/Q.

Thus, it follows from (3.4) that

I2 ≤ C
|B|1+(α+β)/Q

∫
B

∣∣[|b|, Mα

]
(χB)(x)

∣∣dx +
C

|B|1+β/Q

∫
B

∣∣[|b|, M
]
(χB)(x)

∣∣dx

≤ C‖b‖�β (G).

Substituting the above estimates for I1 and I2 into (3.3), we derive (3.2).
(A.2) ⇒ (A.5): Suppose that assertion (A.2) is valid. Inference as in the proof of (A.3) ⇒

(A.4), we know that

sup
B

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣q dx

)1/q

< ∞ (3.5)

holds for arbitrary q for which there is a p satisfying 1
q = 1

p – α+β

Q .
For each s ∈ [1,∞), selecting an r > Q/(Q – β) > 1, we get 1 < rs(Q – β)/Q < rs. Let q = rs

and define p by 1
p = 1

q + α+β

Q . Noticing that

1
s

=
1
rs

+
1

r′s
=

1
q

+
1

r′s
,

by using Lemma 2.1, (3.5), and Lemma 2.2, we have

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣s dx

)1/s

≤ C
|B|1/s+β/Q

(∫
B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣q dx

) 1
q
‖χB‖Lr′s(G)
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≤ C

|B|1/s–1/q– 1
r′s

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – |B|–α/QMα,B(b)(x)
∣∣q dx

) 1
q

≤ C,

which is exactly what we desire.
The proof is completed. �

3.2 Proof of Theorem 1.2
Below we prove the mapping properties of Mα,b on Lebesgue spaces over some stratified
Lie group G, where the symbol b belongs to a Lipschitz space.

Proof of Theorem 1.2 Since the implications (B.2) ⇒ (B.3) and (B.5) ⇒ (B.4) are obvious,
we only need to verify that (B.1) ⇒ (B.2), (B.3) ⇒ (B.4), (B.4) ⇒ (B.1), and (B.2) ⇒ (B.5).

(B.1) ⇒ (B.2): Let b ∈ �β (G), then, employing Definition 2.3 (i), we get

Mα,b(f )(x) ≤ C‖b‖�β (G) sup
B�x

1
|B|1–α/Q

∫
B

∣∣ρ(
y–1x

)∣∣β ∣∣f (y)
∣∣dy

≤ C‖b‖�β (G) sup
B�x

1
|B|1–(α+β)/Q

∫
B

∣∣f (y)
∣∣dy

≤ C‖b‖�β (G)Mα+β (f )(x).

(3.6)

Therefore, assertion (B.2) follows from Lemma 2.5 and (3.6).
(B.3) ⇒ (B.4): For arbitrary fixed ball B ⊂G, one has

∣∣b(x) – bB
∣∣ ≤ 1

|B|
∫

B

∣∣b(x) – b(y)
∣∣dy =

1
|B|

∫
B

∣∣b(x) – b(y)
∣∣χB(y) dy

≤ 1
|B|α/Q Mα,b(χB)(x)

for all x ∈ B. Then, for any x ∈G, we get

∣∣(b(x) – bB
)
χB(x)

∣∣ ≤ 1
|B|α/Q Mα,b(χB)(x).

By using assertion (B.3) and Lemma 2.2, for any ball B ⊂G, one obtains

1
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – bB
∣∣q dx

)1/q

≤ 1
|B|(α+β)/Q

(
1

|B|
∫

B

(
Mα,b(χB)(x)

)q dx
)1/q

≤ C
|B|1/q+(α+β)/Q ‖χB‖Lp(G)

≤ C,

which implies that (1.4) holds for s = q since B is arbitrary and C does not depend on B.
(B.4) ⇒ (B.1): For arbitrary ball B ⊂ G, using Hölder’s inequality (see Lemma 2.1),

Lemma 2.2, and assertion (B.4), we get

1
|B|1+β/Q

∫
B

∣∣b(x) – bB
∣∣dx ≤ C

|B|1+β/Q

(∫
B

∣∣b(x) – bB
∣∣q dx

)1/q(∫
B
χB(x) dx

)1/q′
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≤ C
|B|β/Q

(
1

|B|
∫

B

∣∣b(x) – bB
∣∣q dx

)1/q

≤ C.

Furthermore, it follows from Lemma 2.3 and Definition 2.3 that b ∈ �β (G) since B is an
arbitrary ball in G.

(B.2) ⇒ (B.5): Similar to the course of the proof of (A.2) ⇒ (A.5), thus, we omit it.
The proof of Theorem 1.2 is completed. �

Acknowledgements
The authors cordially thank the anonymous referees who gave valuable suggestions and useful comments that led to the
improvement of this paper.

Funding
Zhao is financially supported by the Scientific Research Fund of AHPU (No.S022022177). Wu is supported in parts by the
project of MNU (No.GP2019006), the project of scientific research team of Education Department of HLJ
(No.1354MSYTD006, 2019-KYYWF-0909), the Reform and Development Foundation for Local Colleges and Universities of
the Central Government (No.2020YQ07), and the MNU (No.D211220637, KCSZKC-2022026, KCSZAL-2022013).

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
All authors contributed equally to this work. All authors read the final manuscript and approved its submission.

Author details
1Department of Mathematics, Mudanjiang Normal University, Mudanjiang 157011, China. 2School of Mathematics,
Physics and Finance, Anhui Polytechnic University, Wuhu 241000, China.

Received: 25 July 2023 Accepted: 18 September 2023

References
1. Bastero, J., Milman, M., Ruiz, F.: Commutators for the maximal and sharp functions. Proc. Am. Math. Soc. 128(11),

3329–3334 (2000)
2. Bernardis, A., Salinas, O.: Two-weight norm inequalities for the fractional maximal operator on spaces of

homogeneous type. Stud. Math. 108(3), 201–207 (1994)
3. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie groups and Potential Theory for Their Sub-Laplacians. Springer,

Heidelberg (2007)
4. Bramanti, M., Cerutti, M.C.: Commutators of singular integrals and fractional integrals on homogeneous spaces.

Contemp. Math. 189, 81–94 (1995)
5. Carneiro, E., Madrid, J.: Derivative bounds for fractional maximal functions. Trans. Am. Math. Soc. 369(6), 4063–4092

(2017)
6. Chen, Y., Liu, L.: Lipschitz estimates for multilinear commutator of singular integral operators on spaces of

homogeneous type. Miskolc Math. Notes 11(2), 201–220 (2010)
7. Chiarenza, F., Frasca, M., Longo, P.:W2,p-Solvability of the Dirichlet problem for nondivergence elliptic equations with

VMO coefficients. Trans. Am. Math. Soc. 336(2), 841–853 (1993)
8. Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103(3),

611–635 (1976)
9. Di Fazio, G., Ragusa, M.A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations

with discontinuous coefficients. J. Funct. Anal. 112(2), 241–256 (1993)
10. Fan, D., Xu, Z.: Characterization of Lipschitz spaces on compact Lie groups. J. Aust. Math. Soc. A 58(2), 200–209 (1995)
11. Fischer, V., Ruzhansky, M.: Quantization on Nilpotent Lie groups. Birkhäuser, Switzerland (2016)
12. Folland, G.: Lipschitz classes and Poisson integrals on stratified groups. Stud. Math. 66, 37–55 (1979)
13. Folland, G., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University

Press, Princeton (1982)
14. Grafakos, L.: Modern Fourier Analysis, 2nd edn. Springer, New York (2009)
15. Guliyev, V.: Some characterizations of BMO spaces via commutators in Orlicz spaces on stratified Lie groups. Results

Math. 77(1), Paper No. 42, 18 pages (2022)
16. Guliyev, V.: Characterizations of Lipschitz functions via the commutators of maximal function in Orlicz spaces on

stratified Lie groups. Math. Inequal. Appl. 26(2), 447–464 (2023)



Wu and Zhao Journal of Inequalities and Applications        (2023) 2023:123 Page 17 of 17

17. Janson, S.: Mean oscillation and commutators of singular integral operators. Ark. Mat. 16(1), 263–270 (1978)
18. Kokilashvili, V., Kufner, A.: Fractional integrals on spaces of homogeneous type. Comment. Math. Univ. Carol. 30(3),

511–523 (1989)
19. Krantz, S.: Lipschitz spaces on stratified groups. Trans. Am. Math. Soc. 269(1), 39–66 (1982)
20. Li, W., Xu, C.: Lipschitz function spaces on spaces of homogeneous type (Chinese). Acta Anal. Funct. Appl. 5(4),

369–373 (2003)
21. Liu, D., Tan, J., Zhao, J.: The characterisation of BMO via commutators in variable Lebesgue spaces on stratified groups.

Bull. Korean Math. Soc. 59(3), 547–566 (2022)
22. Macías, R., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33(3), 257–270 (1979)
23. Macías, R., Segovia, C.: A well behaved quasi-distance for spaces of homogeneous type. Trabajos Mat., Inst. Arg. Mat.

32, 1–18 (1981)
24. Milman, M., Schonbek, T.: Second order estimates in interpolation theory and applications. Proc. Am. Math. Soc.

110(4), 961–969 (1990)
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