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1 Introduction

Fractional calculus has a rich academic history and represents a natural extension of tra-
ditional calculus. Recent advances in fractional calculus can be found in mathematical
physics, biology, chemistry, engineering, signal processing, fluid mechanics, viscoelastic-
ity, mathematical biology, and electrochemistry [1-3]. The well-known RL fractional op-
erators include single kernels and are used to examine and evaluate memory effect phe-
nomena in mathematical physics [4]. Fractional calculus operators with various types of
kernels are important for generalizing classical mathematical inequalities. The kernels in-
volved in other mathematical conceptions serve a critical role in their existence and ap-
plications [5, 6]. Our findings can encompass a wide range of fractional operators as the
kernel includes a strictly increasing function. This allows us to extend and unify numer-
ous previously published results in the literature. A variety of fractional integral operators
that reduce to the traditional RL fractional integral operator have been developed [7-11].
Weighted fractional integral operators are revealed to be bound in the Lebesgue space, and
various classical fractional integral and differential operators are found as special instances
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[12]. Fractional operators are used to generalize integrals, derivatives, and in particular in-
tegrals involving inequalities [13]. We generalize the inequalities for a family of # positive
functions by employing the (k, ¢)-fractional integral operator [14, 15].

Inequalities are a modern mathematical analysis model that depicts the rate of advance-
ment in the mathematical analysis competition [16]. The study of fractional partial and
ordinary differential equations can greatly benefit from Hermite—Hadamard inequalities
that involve fractional integral operators [17, 18]. Fractional integral inequalities have
shown to be one of the most powerful and broad-reaching tools for advancing many fields
of pure and applied mathematics [19, 20]. Due to their distinctive applications in numeri-
cal quadrature, transform theory, probability, and statistical issues, these inequalities have
gained tremendous prominence and relevance during the last few decades [21, 22]. The
Ostrowski inequality holds significant value and utility in the fields of mathematical anal-
ysis, numerical analysis, and engineering [23]. It provides an estimate of the integral mean
of a function [24—26]. Such inequalities are used to derive explicit limits for the perturbed
trapezoidal, midpoint, Simpson, Newton—Cotes, and left and right rectangle rules. These
are also applied to various composite quadrature rules, and the analysis allows for the cal-
culation of the partition necessary for the accuracy of the result to be within a certain
error tolerance [27]. It also specifies the error boundaries of specific mean relations and
numerous numerical quadrature rules of integration [28].

The Ostrowski inequality was first proposed by Ostrowski [29] in 1938 and can be ex-

pressed as follows.

Theorem 1.1 Suppose that y is differentiable function on J°, k1,Ay € J°, A < Ao, and
|y’ (T)| < M for all T € [A1, Ay]. Then we have the following inequality:

1 (9 _ MitAg )2
< + 72
L4 (a-a)?

1 *
‘y(m— | v :|()~2—)»1)M, (11)

where 0 € [A1,Az].

The Hadamard inequality provides an interesting viewpoint on convex functions in the

Cartesian plane as in the following statement.

Theorem 1.2 Suppose that y is positive convex function defined on a real interval J. Then
we have the following inequality for A1, Ay € ] such that Ay < Ay:

A2
y AL+ Ao - 1 / V(0)dr < V(M)‘H’()&z)‘
2 =1 ), 2

To begin, let us review some definitions and notions. The gamma and k-gamma func-
tions can be represented as integrals, as outlined in [10]. Specifically, these functions are

defined as follows.

Definition 1.3 If 9i(u) > 0, then the k-gamma function is defined as

oo ‘L’k
() = / e F dt
0
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with the property

T + k) = T ().
Setting k = 1 yields the classical gamma function.

Let us revisit the definitions of RL fractional integrals and their general forms [30]. The
left- and right-sided RL k-fractional integrals are defined in [10]. The idea of RL fractional
integrals is extended by the (k, ¢)-RL fractional integrals described in [9].

Definition 1.4 The right and left RL fractional integrals of order y > 0 for a continuous

function y; on the finite real interval [A;, 5] is given by

1 8
(‘J% 1) (0) = T

O -0 "n)dr, 0>hi,
(M) A1

and

1 (»
S=vi)0) = —— T-0)""y(r)dr, 0 <A,
(B = o | G- nmd

Definition 1.5 Let y; be a continuous function on the real interval [A1, 15]. Then the right

and left RL k-fractional integrals of order p, k > 0 are defined as

4

()@ =z | @-0F v @ar 0>,
1
and
~M 1 A2 Kr_q
(O = s [ e -0F o<,
0

Definition 1.6 Let y; be a continuous function on [, Ap]. Then the right and left (%, ¢)-

RL fractional integrals of order u, k > 0 are defined as

1-% 00
St (c+1) 7« i1 !
Iy)O0) = ——=——— | (057 =) p(r)dr, 6>1,
A )
and
+ D) E R u_
)@ = D [P e pen) ity e, o<,

kTk(1e)  Jo

where ¢ e R\ {-1}.

The (k, ¢)-weighted RL fractional integrals, which generalize the RL fractional integrals,
are defined in [9].
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Definition 1.7 Let y; be a continuous function on [A1, 5], and let ¢ be a nonzero in-
creasing weight function. Then right and left weighted (k, ¢)-RL fractional integrals of
order u, k >0 are defined as

(c+ 1) ko L(p)

0 3
(3%, 0 11)(6) = /(95”—f“l)rlfga(r)yl(f)dt, 0> A,
1

ka(/L) Al
and
Di%ol@) [* i
(%;;2’0 n)©) = %/ (1“1—9“1)% ltgcr(r)yl(r)dt, 0 < Ay,
K\ 0

where 0(0) #0 and ¢ € R\ {-1}.

An extension of RL fractional integrals for an increasing function is presented in [31],
expressed in the following definition.

Definition 1.8 Let y; be a continuous function on [A1,A;], let y» be a strictly increas-
ing function, and let o be a nonzero increasing weight function. Then the right and left
generalized weighted RL fractional integrals of order i > 0 are defined as

-1 (2] 6 B
(123500 1) (0) = GF(()) A (120) - ()" @@ de, 6>,

and

1 _
(Vz*?‘%m n)©) = UF(/fL)) /9 (12(1) - 12(0))" Yoyt de, 6 <hs,

where o (0) # 0.

Reference [32] presents the Hadamard inequality in fractional form by utilizing RL frac-
tional integrals. The following theorem presents a variant of the fractional Hadamard in-
equality for RL fractional integrals, as defined in Definition 1.4.

Theorem 1.9 Let y be a convex function on [A1, 2], 0 < Ay < Ay, and y € L1[A1,12]. Then
the RL fractional integrals obey the following inequality:

J’(M)‘H’(}xz)‘

y(kl +)\2) - ' +1) [( )ﬁy)()\z)*— (S%y)()q)] = B

2 ) T 20k - A)E

By utilizing generalized RL fractional integrals Farid et al. [33] achieved a generalization
of the Hadamard inequality. The following theorem presents the generalized version of
the Hadamard inequality for generalized RL fractional integrals defined in Definition 1.5.

Theorem 1.10 Let y be a convex function on [A1,A2],0 < Ay < Ay, andy € Li[\1, \2]. Then
the RL k-fractional integrals satisfy the following inequality:

)¥1 +)‘-2 1—‘k(/'l' +k) ~M0 ~M )/()»1) + y()‘-Z)
V( 5 )5 TRY [(,3 fVV)()»z) (“A‘y)()‘l)] —
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Reference [34] illustrates the fractional version of the aforementioned fractional Hada-
mard inequality as follows.

Theorem 1.11 Lety be a convex function on [A1,A2],0 <Ay < Ay, andy € Li[\1, 13]. Then
the RL fractional integrals satisfy the following inequality:

AL+ A 20 (e + 1),
(1572) =2 WOl 110+ (g, 1))

<V@ﬂ+yuﬂ
S

Reference [33] illustrates the k-fractional version of the aforementioned fractional
Hadamard inequality as follows.

Theorem 1.12 Let y be a convex function on [r1,12],0 < Ay < Ay, andy € Li[A1, Az]. Then
the RL k-fractional integrals satisfy the following inequality:

A+ Ao <<2%—H}u¢+k)
(57 = T L, )09+ (g )0

- y (A1) +y(A2)

=T

The Ostrowski-type inequalities for RL fractional integrals are reported in [35]. Inspired
by the research discussed earlier, we intend to propose a new class of Ostrowski-type in-
equalities. Our approach involves the utilization of generalized weighted (k, ¢)-RL frac-
tional operators.

2 Weighted fractional integral inequalities via generalized fractional operator
In this section, we proof the Ostrowski-type inequalities by using weighted (k, ¢)-RL frac-
tional integral operator with respect to an increasing function.

In [12] an extension of weighted (k, ¢)-RL fractional integrals for an increasing function
is written in the following way.

Definition 2.1 Let y; be a continuous function on [A;, A3], let y» be a strictly increasing
function, and let o be the nonzero increasing weight function. Then the right and left
generalized weighted (k, ¢)-RL fractional integrals of order 1 > 0 and type k > 0 are defined

as
(vork Sy 7))
_(e+ }()Il‘kko‘l(Q)/ S0 ﬁl(l’))%71V2§(T)V2/('K)J(t)y1(r)dr, 05
and

(VZ’]i ‘Nsﬁf* o J/l)(g)

_ s+ kol(9)

1
e ©) / (@) - s 0) s e ) dn, <,

where o (0) 70, ¢ € R\ {~1}, and y; " (6) = (12(8))5*".
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Remark 2.2 In Definition 2.1, setting
(i) y2(0)=0,¢c=0,k=1,and o(f) = 1, we obtain Definition 1.4;
(if) (@) =6, ¢ =0, and o () = 1, we obtain Definition 1.5;
(iii) »(0) = 6 and o (0) = 1, we obtain Definition 1.6;
(iv) 2(0) = 6, we obtain Definition 1.7;
(v) ¢ =0and k = 1, we get Definition 1.8.

Theorem 2.3 Lety, : ] — R beadifferentiable function on J°, A1, Ay € J°, and 1 < Ay. Also,
let y5 : [A1,A2] = R be a differentiable, increasing function such that y, € L[\1, 3] and
ly{(T)| < M for all T € [A1,A2], and let o be a nonzero increasing weight function. Then
for n,v >0 and k > 0, we have the following inequality for weighted (k, ¢)-RL fractional
integrals:

n@((v5 () = 1 O))F + (5T 0) — v 0)) ©)

o(0)
o (A2)

<(§ + DR + k)= (12§ 3 00 1) (0)

+ (s + DRIl + 0 (varf Spo Vl)(G))’

M I
< §+1<0§+1(( SO -y 00)) - (v 00) - v 0))F)
o (0)

+(c+ D)ETL(v + k) e )( Yot 3;2,01)(9)

- (§ + 1)%Fk(ﬂ +k)()’2»/f Sf{m 1)(9)) (21)

Proof Let 6 € [A1,Az] and 7 € [A1,6]. Since y; is a strictly increasing function, 1 > 0, and
k > 0, we have the following relation:

I3
k

(7 0) - v @) F < (5571 0) - v o) . (2.2)

Let ¢ > 1. Then the following inequalities are simple consequences of (2.2) and the
boundedness requirement on y;:

0 Iz
[ e -y @) (570 - v @) e

A

L0
< (510) - s 0) / (M5 - y{(0)) d 2.3)

A1

and

o 12
/ (M€ + (@) (s 0) - ys T (2)) K dt

S|

9
<(y S@) =y )) ¥ /(Mt§+yl'(7:))dt. (2.4)

A
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By performing integration and straightforward calculations on (2.3) and (2.4) and utilizing

Definition 2.1, we arrive at the following inequalities:

(050 = 75" 00) F71(0) = (5 + DETRGu+ K) (2 N 72) 0)
< (0570 - v ) T = e DI T D0 Y DO) 2
and
(6 + DAL+ 0 (2] o 1)) = (757(0) = 75 (3)) 11 0)
Eg]\fl(( 5 0) - g”(m)%eg*l—(g+1)%rkw+k)(y2,§%§},01)(9>). (2.6)

Therefore from inequality (2.5) and (2.6) we have following modulus inequality:

(57 0) - y$ ) £ me)—(g+1>krk(u+k)(y2,k\w 1))

= 0 O - ) PO = (6 DTl D] e DE). 2)

Similarly, for 6 € [A1,A2], T € [0, X2], v > 0, and k > 0, we have the following inequality:
(5 @ -7 O)F < (v 00) - v O) . (2:8)

If 7¢ > 1, then the following inequalities are the basic consequences of (2.8) and the
boundedness of y;:

Ay v
/9 (Me5 = y©) (r5 7 (0) = 51 (0)) F e
v 2
< (751 0) = s @) [9 (MeS - (D) dr 2.9)
and
A2
[ e s ri ) 0570 -y 0)
0
< (5 ) - 5 O) / (M + y/(x)) dr. (2.10)

After integrating and performing straightforward calculations on (2.9) and (2.10) and uti-
lizing Definition 2.1, we obtain the following inequalities:

o(6)
o ()

0 v
<§((g+mrk(u+k) 2 (1 30 1O - (757 0) - g“w))kw“)

(6 + DATU + B (1] S 12) 6) = (5™ 02) = 75 (0) 11 0)

(2.11)

Page 7 of 27
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and
(vs " (h2) - g”(@)) n®) = (s + DETk(v + &) ((/\ ))( Vo Sz 7))
< %(& + DAY +"):((f2)) (2 3500 1) (O) = (15" (h2) - g”(@))%‘)g”)‘

(2.12)

From (2.11) and (2.12) we have following modulus inequality:

|(yf”<xz>—y;”(e))%me) (o + Vi + )2 (yz,zs;,m)w)‘
o(Ag) 2

0 v
< %((g + l)ka(v + k) (()\ ))( 2,15 SK o ])(9) ( §+1()L2) §+1(9))I<9§+1)'

(2.13)
Inequalities (2.7) and (2.13) involving modulus together form inequality (2.1). d

Corollary 2.4 For p = v in (2.1), we have the following generalized weighted (k,c)-

fractional integral inequality:

n@((v5 ™ (2 = v @) + (15710) - v§ T () )

—(g+1)’k‘rk<u+k)("( L S 7)(O) + (12 yl)w))'

(A2)
= £<9§“(( O -7 ) - (700 - v 0) )
T c+1
(9) S M
+(c+ l)ka(u +k)m(y2,k ~‘x o )(9) (VZ'k o 1)(9) )

Corollary 2.5 For y,(0) = 6 and o(0) =1 in (2.1), we have the following inequality for
(k, ¢)-RL fractional integrals:

[ @)((157 — 6+ F + (o571 a5 )

~ (s + DATR + B33 7) ) + (5 + DF Tl + B (3, 1)6)) |

< M H (9§+1_)€+1)%+1+ v (A§+1—9§+1)%+1'
c+1\u+k v+ k

Corollary 2.6 For y,(0) =0, k=1, and o(0) =1 in (2.1), we have the following inequality
for RL fractional integrals:

1 O)((35 -05)" + (651 25"

~((c+D)'TE+D(*3})O) + (s + DT (1 + 1)(§3’;+ 1))

M K s+l _ 5 s+lyptl s+l c+1\v+l
_g+1<u+1(9 A pey ).

Page 8 of 27
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Corollary 2.7 For p =v =k =1,0(0) = 1, and y,(0) = 6 in (2.1), we have the following

fractional integral inequality:

+1 *2
7(0) - ﬁf S (x) de
2 M A

B M()»g“ g+1) (9§+1 a§+1;k§+1 )2 .
+—].
= c+ 1 (}L§+1 _ )€+1)2 4

Remark 2.8 Ifweset y»,(0) =0,k =1,¢ =0,and o(f) = 1 in (2.1), then we get the following
inequality for RL fractional integrals given in [36, Theorem 1.2]:

11O ((2=0)" + (O = 21)") = (C + D(I};11)0) + T + 1)(I: 1) 0))

< M(L(e )P —e)““>.
n+1 v+1

Remark 29 For u =v=k=1,0() =1, ¢ =0, and y»(f) = 6 in (2.1), we obtain the
Ostrowski inequality (1.1).

Next, we present a more extended fractional Ostrowski-type inequality for the weighted

(k, ¢)-RL fractional integrals operators.

Theorem 2.10 Let y; : ] — R be a differentiable function on J°, i, Ay € J°, and Ay < As.
Also, let vy : [A,A2] — R be a differentiable increasing function with y; € L[\1, ], and
suppose m < y{(t) <M for all T € [A1,)2]. Let o be a nonzero increasing weight function.
Then, for w,v > 0 and k > 0, we have the following inequality hold for weighted (k, ¢)-RL:

(7O -y 0 F + (157 0) = 5 7(0) ) 11(0)

- ((g DT+ 0 (12, o 1)(60)

+(s+ 1)k Ci(v +k) ((}19)) (7/2:1( \S)”Z o Vl)(9)>

<

OO -y 0) - (6 # DETkG R i 1)6)

T c+1
“hl ((g + )Rk +4) (()L )) (var 3350 1)(0)
— 05 (5 () - g“(e)ﬂ) (2.14)
and
(s + DR+ 0) (v o 11)0) + (5 + DETR(v + B) (( )) (v2f 3350 1) 6)
(51O v D) F + (5 ) = 75 10) F 1 6))
< gAf - ((g + 1ETR(v + k) ((A )) (72 3500 D)O) =657 (5 (22) - g”(e))?)
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— (5 + DR T+ B (2 310 1)(6)). (2.15)
Proof Let 6 € [A1,A;] and 7 € [A1,6]. Since y; is a strictly increasing function, p > 0, and
k > 0, then we have the following inequality:

3 3
k k

(57 0) =y @) F < (157 0) -y T () K. (2.16)

Let ¢ > 1. Then from (2.16) and the boundedness condition on y{, as a simple conse-
quence, we get following inequalities:

0 Iz
/ (M5 = y[@) (57 0) - y$ (1) ¥ dr

S

2
( §+1(9)_ §+1(A )) / (Mrg —yl/(r)) dt (2.17)

A

and

o I3
/ (yl/(T)—MTg)( §+1(9) §+1(_L_))f

Al

4
< (" O) -y )k / (vi(r) = m7°) dr. (2.18)

A

By performing integration and straightforward calculations on (2.17) and (2.18) and uti-
lizing Definition 2.1 we arrive at the following inequalities:

(v 0) - vs () * yl(e>—(g+1)%rk(u+k)(y2,§s;},ay1)<e>

®
k

<£(( g+1(9)_ QI(M)) g5+l (g+l)kFk(l“L+k)(y27k"s)L+7UI)(0)) (2‘19)

T o+l
and
+ + -2
(s + DRk + R (v o 11) 0) = (57 (0) =75 (0) F11(60)

< —%((ﬁ”(e) 75 00) F05 - (6 + DETKG + 0 (] 30 1)0)). (220)

Similarly, for 6 € [A1,A2], T € [0, X2], v > 0, and k > 0, we have the following inequality:
(5 @) =y O)F < (5 () - v @) (221)

If ¢ > 1, then the following inequalities are a simple consequence of (2.21) and the bound-

edness condition on y;:
Ay v
/ (M‘L’g—)/l(l’))( §+1( ) §+1(9))k
0

A2
<(ys" () -y T (O))F / (Mt —y{(r))dr (2.22)
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and
Ay v
/9 (@) - me®) (v (0) - S @) e
A2
< () -y O)F / (y{(x) - mt€) dr. (2.23)

By performing integration and straightforward calculations on (2.22) and (2.23) and uti-

lizing Definition 2.1 we arrive at the following inequalities:

(s + DTV +K) ((A))(yz,isxi,a 7)©) - (s ()~ 75 ©) 1 (6)
<%((g+1)krk(v+k) (‘A))(z,itsi WD) = (5 () - “lw))ieg“)
(2.24)
and
¢+l g+1 (9) S av
(5 00) = 15710)) 1 (0) — (¢ + 1) F k(v + k) (2)(y2,kak,ay1)(e)
<—£((g+1)krkw+k) ((f))(yz,i 3o 1)O) = (v5 " () - “l(m)zes“).
(2.25)

By adding (2.19) and (2.25) we get (2.14). Similarly by adding (2.20) and (2.24) we get
(2.15). O

Corollary 2.11 For p = v in (2.14) and (2.15), we have the following weighted (k, ¢)-
fractional integral inequalities:

23
k

(70 - S 0 F + (5 0) = v 71©) F)mi(0)

e+ DFTe(u+ k)((yz,g ) @) + O (i yl)(e))
1 o(ra) 2

M
Oy 0) = v ) F = (¢ + DET(e + 0 (5 S o 1))

<
T ¢+1

I 0
~ 1 <(§ + 1)?1_‘/((/"“ + k)::—)(yb]f Sﬁf o )(9)

and

o (6)
o (%)

(O -y ) E + (5 02) - TN ©) F 116))

(¢ +1)F Ty + k)<(7/z,k Sepo 1) 0) + —=(varg 3500 Vl)(H))

Page 11 of 27
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M K 0 + + &
=i <(§ + D) * T + k)%(m,ﬁ 3o 1)O) =65 (v 02) - v 6)) k)
_ gl/:l : (9§+1(y2;+1(0) _ y2§+1()»1))% —(c+ 1)% Tr(u + /()()/2,15 S%,g ])(0))

Corollary 2.12 Substituting y,(0) = 0 and o (0) = 1 into (2.14) and (2.15), we get the fol-
lowing inequalities for (k, ¢)-RL fractional integrals:

2
k

(051 =A™ E + (357 =051) 1) 3(0) - (5 + DI Tl + (S, 7))

+ (s + DETL + D ({31 11)(0))

M ( L (9g+1_)\f+1)',t+1>_

<
Tcoc+1\pntk

( v ()\§+1—9§+1)Z+1>

and

(¢ + DA Tk(u + K (;30571)(0) + (5 + DFTh(v + k) ;3 11) (6)

(05 =2 F 4 (15 -0 E(0)

< M ( v (A§+1_9§+1)Z+1> m ( I (9§+1_)\‘§+1)§:+1>.

T co+1\v+k Co+l\p+k

Corollary 2.13 Setting y»(0) =0, 0(0) = 1, and k = 1 in (2.14) and (2.15), we get the fol-
lowing fractional integral inequalities for RL fractional integrals:
(0 =25)" + (57 =957) )n) = (s + DT+ D01) 6)

+(+ 1T+ D(*3}.)(0)

M ( 1% (9“1—)»?1)‘“1)— m ( v (A§+1—9§+1)U+1>

< -
Toc+1l\p+1 c+1\v+1

and

(s + DT+ DX 7)) + (s + DT+ D(°3};1) (0)

_ ((9§+1 _ )Lf”)” " ()L§+1 _ 9§+1)Vy1(9))

< M ( % ()\g+1_0§+1)v+1>_ m ( 1% (0§+1_)\f+1)u-+1>.

T o+1\v+1 c+1\pn+1

Corollary 2.14 Settingu=v =k =1,0(0) =1, and y,(0) =0 in (2.14) and (2.15), we get
the following fractional integral inequalities for RL fractional integrals:

A2
(A5 = A5 (0) - ( + 1) f o
Al

m

< - -
- 2(c +1)

(9;+1 _)\?1)2 (9;+1 _ )L§+1)2

2(c +1)
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and

)
(c+1) / @) dr - (5" =25 6)
St

s+l _ §+12_ m
( A ) 2(c +1)

: (65 =252

<
~2(c+1)

Remark 2.15 Setting y,(0) =6, 0(0) =1, ¢ =0, and k = 1 in (2.14) and (2.15), we obtain
the inequalities for RL fractional integrals given in [36, Theorem 1.3]:

(0 = 20)" + (2= 1)")1(0) = (T + 1)(I5 1) ) + T (v + 1)(37531)6))

sM(L(e —xl)““) - m(L(xz —9)“”)
w41 v+1

and

T(u+ 1)(;3;} 1)@ + T+ (I 71)(0) = (0 = 2)" + (22 = 0)"11(6))

M(L()\2 - 9)”*1) - m(L(e - xl)“”).
v+1 n+1

Remark 2.16 By setting m = —M in Theorem 2.10 and making some rearrangements, we
obtain Theorem 2.3.

IA

Theorem 2.17 Let y; : ] — R be a differentiable function on J°, 1,1y € J°, and 1 < L.
Also, let vy : [A1,12] — R be a differentiable and increasing function such that y,(t) €
L[A1, Ao and |y{(t)| < M for all T € [A1, 2], and let o be a nonzero increasing weight func-
tion. Then for u,v > 0 and k > 0, we have the following inequality for weighted (k, ¢)-RL

fractional integrals:

3
k

) (75 0) - v O)F + 1) (5T 0) - v 0w))

<(§ + 1)ET(v + k) ((/\ )) (V2 Spes 1) (2)

+ (§ + 1)%1_‘]((/’1/ + k)(Vz;/i Sg—w Vl)oﬂ))‘

S o - <A§+l( §+1()L2) g+1(9))% _)\iwl( §+1(9) _ §+1( 1))%
+ (5 4 DET(+ 0 (v S M)
0
— (5 + D)FTy(v + k) ((A )) (varg Shso Az)). (2.26)

Proof Let 6 € [A1,A2] and 7 € [A1,60]. Since the function y; is strictly increasing function,
1 >0, and k > 0, we have the following inequality:

@) - v D) F < (v O) - v o)) E (2.27)
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If ¢ > 1, then then the following inequalities are a simple consequence of (2.27) and

boundedness condition on y;:

6 "
/ (M5 = /@) (5 0) = s ) E e

S

“ 0
< (@) -y )k / (Mz< - y{(z)) dx (2.28)

A

and

0 I
/ (M5 4 y{(0) (S (@) = 5 ) ¥ e

Al

0
< (@) -y () * / (Mz< +y(1)) dr. (2.29)

A

Utilizing Definition 2.1, integrating, and performing some straightforward calculations on

(2.28) and (2.29), we obtain the following inequalities:

(¢ +1)F el + ) (yasg Sl 1) A1) = (v511(0) - v, (7»1)) y1(A1)

<

(6 + DT+ D 3o DO~ (570 35 00) FA5) - 230)

2%
—_

and

(5710) - 5 (1) F () = (¢ + DT +0) (428 3l 71) (M)
M
+

<

(¢ + DET(e + ) (7 3o 2a) = (571 0) - 15 ) F25™). (231

n
—_

Thus, based on inequalities (2.30) and (2.31), we can derive the following modulus in-

equality:

(7571 (0) =5 1 () F )/1(?»1)—(5‘+1)%Fk(ﬂ+k)(yz,i3g—m 7))

M 3
< ﬁ((g F DFTR( + K) (y2f S 1) = (15710) 5 1 0)) 25, (232)
Similarly, if 6 € [A1, 2], T € [0, A2], v > 0, and k > 0, then we have the following inequality:

(Vzgﬂ()@) Vzgﬂ(f))% ( §+1()‘2) g+1(9))‘72. (2:33)

Let ¢ > 1. Then from (2.33) and the boundedness condition on y;, as a simple conse-

quence, we get the following inequalities:

A )
/; (MT _V1(T))( ") - ﬁl(l’))Edr

<(y5" () -y () / (M7 —y{(r))dr (2.34)
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and

Aoy v
/; (M‘L’g + 7/1,(75)) (Vzgﬂ(kz) Vzgﬂ(f))F dr

v 2
< (7511 00) -y 0)F f9 (M5 + y{(0)) dr. (2.35)

Integrating (2.34) and (2.35), performing some straightforward calculations, and utilizing

Definition 2.1, we obtain the following inequalities:

(s 0) = v 0)) 11 62) — ( + DETR(w + B) ((A )) (v Sferr 71) (22)
M + + + v 0
< — <( ) -y s 1(9)) k)Lg ' (c+D)EM(v + k) ;(&2)) (V2 Shore Az))
(2.36)
and
(0) S ~v s+l §+1
(¢ + D)FT(v + k) o )(Vz,k Shie 1)) = (v5 " (h2) - (9)) y1(12)
M 0
< (( 57 02) 75 0) 125"~ (g + DETL(w + K) (( )) (v2f Do )»2))
(2.37)
From (2.36) and (2.37) we have following modulus inequality:
’( {02 =1 0) (k) = (s + DEITW +K) (& )) (v Sjeso 1) (32)
M + + Eac+ 7 o xV
< e <(y2§ Y0n) = s @) FasT = (¢ + DT (v + k)%()’zé So+ia )»2)>.
(2.38)
Modulus inequalities (2.32) and (2.38) constitute inequality (2.26). O

Corollary 2.18 For u = v in (2.26), we have the following weighted (k, ¢)-RL fractional

integral inequality:

I3
k

02 (v (02 = 7 O)) F + 10 (v O) - v )

o(0)
o (A2)

M 23 4
< o - ()»§+1( §+1()\2) §+1(0)) k A§+1(V2§+1(9) 7/2g+1()\’1))’k

©
- (g + ]-) k Fk(/" + k) (J/Z:[S; Sg+ el yl)()‘ﬂ) + (‘}/2!]5 Sg—)a )/1)()»1))‘

I [Z
e+ DT+ k)((yz,i ¥y ha) - "((A ))( ol S M)))

Page 15 of 27
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Corollary 2.19 By setting y»(0) = 0 and o (0) = 1 in (2.26) we obtain the following inequal-
ity for (k, ¢)-RL fractional integrals:

v K
k

102 (05 =05 F 4300057 = 25™)
-((c+ DET (v + k)(,f%} 7)) + (s + 1)%1*,((“ + k)(isg—h)(h))]

e (L SR R LN (L i Ly
c+1\v+k uw+k

Corollary 2.20 By putting y,(0) =0, 0(0) =1, and k = 1 in (2.26) we obtain the following
inequality for RL fractional integrals:
’)/1()»2)()»?1 _ 9§+1)V + Vl()tl)(egﬂ _ )\f”)ﬂ
~((6+ DT+ D) (02) + (5 + 1T + (G- 11) () |

< M M (9§+1_)L§+1)l“'1+ v (A§+1_9§+1)V+1
To+l\pu+1 ! v+1V 2 '

Corollary 2.21 By substitutingu =v =k =1,0(0) = 1, and y,(0) = 0 into (2.26) we obtain
the following inequality for RL fractional integrals:

A2
Y1 02) (15" =651 + () (65 = A5™Y) = (5 + 1) / (r)dr
Al

< M 9§+1 _ 6l§+1 +)\§+1 2 N ()\'§+1 _)\‘i‘+1)2
| 2 4 '

Remark 2.22 By setting y»(0) =0, 0(0) =1, ¢ =0, and k = 1 in (2.26) we obtain the in-
equality for RL fractional integrals given in [36, Theorem 1.4]:

111 (A2) (2 = 0)" + y1(A1)(0 — Ap)*

— (PO +1)(I:71) () + T + 1)(I-y1) (M) |

< M(L(e a0y e —9)“1).
u+1 v+1

Theorem 2.23 Let y; : ] — R be a differentiable function in J°, A1, Ay € J°, and 2y < As.
Also, let v : [A1,A2] — R be a differentiable increasing function with y; € LA, A2] and m <
v1(t) <M for all T € [A1,A3], and let o be a nonzero increasing weight function. Then for

W, v > 0and k >0, we have the following inequalities for weighted RL k-fractional integrals:

(6 + DF e + ) (1f S 1) () + (5 + DF (v + k)%(yz,,i SIRALS
(O - v ) F1a () + (v ) — 75 710)) F (1))

M
<

< (¢ + DETu( + 0 (yf 3y 2a) = 25 (15 70) - 757 0)) )
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—L(K?l( §+1(}\)_ g+1(9))%

c+1
o(0)

— (¢ +1)FTk(v +/<)m

(V2o Shoro )\2)> (2.39)
and
(570) - v ) F ) + (5 () — 151 0)) E ()

- <(§ + 1)%Fk(ﬂ + k)(YZr[i ngw )/1)(}\1)

+ (g + I)F 1—‘k(‘) + k) ((f)) (yZ;/S; 3;“0 yl)()\.z)>
M + + + 7 0
= c+1 (Ag 1(y2§ 02)-v5 1(9)) — (g + 1)ETy(v + k)a(()»g)) (Vo Spero )»2))
- grf 1 ((c+1) % T + k) (varg Sp-re M) — )Lf’fl( §+1(9) §+1()\ ))%), (2.40)

Proof Since y; is strictly increasing function, for 6 € [A1,X3], T € [A1,0], © > 0,and k >0,
we have the following inequality:

@) - ) F < (v O) - v o)) E (2.41)

If ¢ > 1, then the following inequalities are a simple consequence of (2.41) and the bound-
edness condition on y;:

]
/ (MeS = @) (rS 7 () = v L) € e

A

4
< (" O) -y ) F / (Mz¢ - y/(x)) dr (2.42)

Al

and

[% u
[ G =m0 - v ) e
4
<O -y )k /A (y{(x) - mt€) dr. (2.43)

Integrating (2.42) and (2.43), performing some simple calculations, and applying Defini-
tion 2.1, we obtain

(¢ + DETL( +K) (128 3 11) 1) = (15710) = 1§ (00) F 11 (1)

M (6 + DFTh + R (o o 1) = (50 =52 0) 257 (240)

<
T g+l

and

(570) - 5 () F i () = (¢ + DT + 5 (y2f S 1) (1)

S_%((§+1)%Fk(ﬂ+k)(3’2’1€35ﬂ0)‘1) 05" @ -y o) AT, (245)
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Similarly, for 6 € [A1,1,], T € [0, A2], v > 0, and k > 0, we have
(rs 1 02) = 75 @) F < (5 (1) - w5 @) (2.46)

Let t¢ > 1. Then the following inequalities are a simple consequence of (2.46) with bound-

edness condition on y;:
A2 1 v
/9 (Me5 — Y@) (45 0) = 5 (0)) F e
v [P2
<(y5" () -y (O))F f (M€ - y/(x)) dr (2.47)
and
A2
/9 (1) = %) (v 00) — v () E e
<(y5 " () -y T O))F / Z(yl’(t)—mrg)dt. (2.48)

Integrating (2.47) and (2.48), performing some simple calculations, and applying Defini-
tion 2.1, we obtain

(75" (1) = 5 710)) 9 (ha) — (¢ + 1)ET(v + K) ()(yz,,i39+,ay1)(xz>

o ()
M y 0

< §+1<( §+1()"2) §+1(9))k)\’§+1 (§+ l)Fl"k(v+k)%()/z,,f S5+1g )\,2))

(2.49)
and
(¢ + )T (v + k) (( )) (Y25 Sheo 1) (R2) = (5 71 (02) - g+1(9)) i (h2)

=0 (( $102) - v 0) F 457 = (5 + DI+ 8) ((k ))( oS S xz)).

(2.50)

By adding (2.44) and (2.50) we get (2.39). Similarly, by adding (2.45) and (2.49) we get
(2.40). 0

Corollary 2.24 For u = v in (2.39) and (2.40), we have the following (k, ¢)-fractional inte-
gral inequalities:

(c+ DFIe(u+ k)((yz,i S )0+ 2O (e, yl)uz))
o(A)

(O - v ) Fra ) + (5 ) = 75 710)) 1 (ha)

< ;\fl (6 + DTG+ ) (y2,8 3o 1) = AT (15 710) = 57 ) ©)
_ m ()L§+1( §+1()\ )_ §+1(9))% (§+ l)kr (/’L"’k) ( ) ( gNsM A ))
c+1\? 2 k o (hy) V2 Sgoo A2
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and

05O - 75 00) F ) + (45 02) - 15 ©) Ea02)

e+ DT+ k)((yz,i 3o )00+ 2 s yl)(m)
o(Xy)

M . . . u & o(9) N
<o (Ag s ) = v @) F = (o + DR Telpe + k)m(n,i S, M))

— %((5 + 1)%17((# + k)()/z,,f -0 )»1) _ )‘?1()/291(9) B J/gﬁl(kl))%),

Corollary 2.25 By setting y»(0) = 60 and o (0) = 1 in (2.39) and (2.40) we obtain the follow-
ing inequalities for (k, ¢)-RL fractional integrals:

(6 + DR Telpe + ) ((3-31) ) + (6 + DETe(w + K (35 71) (1)

— (05" =25 Fya0) + (1571 = 65 Ry (1)

< M < H (9§+1_k§+1)%+1) m ( v ()\§+1_9§+1)%+1)

Tcoc+1l\pu+k _§+1 v+k

and

3

(O =5 ) Fyra) + (A5 - 95”)%)/1(%2)

~ (s + DR + D (3011) (1) + (6 + DFTRw + K (E3501) (22))

< M < v (A§+1_9§+1)%+1) m ( H (9“1_)‘?1)%”)'

Tc+1\v+k _§+1 n+k

Corollary 2.26 By substituting y»(0) =0, 0(0) = 1, and k = 1 into (2.39) and (2.40) we

obtain the following inequalities for RL fractional integrals:

(¢ + T (e + D(EIya) () + (s + DT + D (*35.71) (h)

- (- )‘?1))/1()»1) + ()‘gﬂ -6 11(h))

- M (L(9§+l—kf+l)ﬂ+l>_ m ( v (A§+1_9§+1)v+1>

To+1\p+1 c+1\v+1

and

<8g+1 _ )\iﬂ)ﬂ)’l(kl) + ()Lgﬂ _ 9g+l)vy1()\2)

—((c+ D T (e + 1) (X)) (M) + (s + DT + D5 v1) (h2))

< M ( % (Ag+1_9;+1)v+l)_ m ( 1 (9§+1_)\§+1)M+1>'

T c+1\v+1 c+1l\p+1
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Corollary 2.27 By substitutingiu =v =k =1,0(0) =1, and y,(0) = 6 into (2.39) and (2.40)
we obtain the following inequalities for RL fractional integrals:

A2
(c+1) / @) dr - (05 = A5y 00) + (57 =05 (ha)
Al

<7 (pstt —)\§+l 2 L gs+l _)\'§+1 2
and
1 1 2
O =27 ) + (57 -0 () - (s +1) y(r)dr
A
< s+l s o (gt st
—2(§+1)( 2 ) 2(§+1)( 1 )

Remark 2.28 By substituting y»(0) =0, 0(0) =1, ¢ =0, and k = 1 into (2.39) and (2.40) we
obtain the following inequalities for RL fractional integrals:

T+ 1)(I5-y1) (k1) + T + 1) (35 1) (2)

= ((6 = 1)y1(1) + (2 = 0)1(12))

sM(L(e —w“) - Vﬂ(L(M —e)”“)
u+1 v+1

and

0 =2 Y1 (A1) + (A2 = 0)"y1(A2)

— (P + D)(I5-y1) () + T(w + 1)(I54 1) (12))

< M(L()\2 _ 9)“+1> - m(L(e - ,\1)'“1).
v+1 n+1

Remark 2.29 1f we take m = —M in Theorem 2.23, then by some rearrangements we obtain
Theorem 2.17.

3 General forms of weighted fractional integrals inequalities
This section is devoted to presenting general forms of the outcomes from the previous
section. In this section, Theorem 2.3 takes the following specific form.

Theorem 3.1 Under the assumptions of Theorem 2.3, we have

n@) (v ) = v 1 0) + (v 0) - v ()"

9
- ((g +1)'T(v + 1)%()@5 S50 11)(O)

e+ DT+ 1) (r2° Vo Vl)(9)>‘

= g[:/-Il <9§+1 ((V2§+1(9) - Vzgﬂ()»l))M - (Vzgﬂ()»z) - V2§+1(9))U)

Page 20 of 27
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a(6)
o (%2)

+ (g + 1) ()/2) mg)L 0o ld[E) kz])(e)

(e T ) (7 S 9])(e>).

The notation id[-, -] represents the identity function on the interval [-,-].
Proof The result is proved in the same way as Theorem 2.3. O
In particular, Theorem 2.10 is transformed into the following form.

Theorem 3.2 Assuming that the conditions of Theorem 2.10 are satisfied, we have
(7@ =y 0) + (15 02) = 157 0) )1 (6)

(6 + TG D Y 1))

+(c+1)'T(v+ 1)5((2) (o s yl)(e>>

< g]_'\/—Il (9§+1( §+1(9) _ §+1()L )) (5‘ + I)MF(M + 1)(]/2,§ Si}m id[hﬁ])(e))
- L ((§ + l)vl—‘(U + 1) (9) (Vng %V—m id[ﬂk ])(9)

c+1 o(Ay) 2 2
_9§+1( §+1()\2) §+1(9)) )
and
(¢ + DT+ 1)(12° X0 11)0) + (s + DT (v + 1)%()/2, =00 11)(0)
(@) = D)) + (15 (2) - 751 9)) ' 11(9))
0
=< c+1 ((5‘ + I)VF(V + 1)—:(23) (Vz,g SKE!O‘ id[e,xz])(e)

_9§+1( §+1()L2) §+1(9)) )

- %(9“1( 5N 0) = s T 00)" = (6 + DET (e + 1) (3,6 o idpy,0) (9)).

The notation id[-, -] represents the identity function on the interval [-, -].
Proof The result is proved in the same way as Theorem 2.10. O
In particular, Theorem 2.17 takes the following form.

Theorem 3.3 Under the assumptions of Theorem 2.17, we have

1) (75 () = 751 0))" + 1 0 (v THO) — v T )"

6
<(§ +1)"'T(v + 1)((—1))(1/2’; Shee 1) (Aa)
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+ (5 + DFT (i + 1) (2, Sf-so m)(h))’

<
T c+1

(Agﬂ( ;+1()\‘2) §+1(0)) )L?rl( g+1(9) §+1()\1))
" S oM v 0(9) S Vv
+(s+ DT+ 1) (12 Sp-ro M) = (6 + 1)'T(v + 1)m()’2y Shiso Aa) |-
2
Proof The result is proved in the same way as Theorem 2.17. d

In particular, Theorem 2.23 takes the following form.

Theorem 3.4 Under the assumptions of Theorem 2.23, we have

(¢ + DA (1 + 1)(r2, Sfmso 1) (M) + (6 + 1)'T (v + 1)%()/25 Spero 1) (ha)

— (5O -7 00) ) + (157 02) - 75 10)) 1 02)
M
c+1

=

((6 + DPT (1 + 1) (125 Shyro 21) =25 (15 70) = v (1))

o(0)

e (xg“( S () =y T1(9))" —(g+1)”r<v+1)0(A2)(y2fs;+,ax2))

c+1

and

(v 71 0) =y D)) () + (75T (h2) = 75 TH0)) ()
- <(§ + DT (1 + 1) (y2,° Sposo 1) (1)

o(0)

+(c+1)'Tv+1)—= o)

(VZ:[i Ryt Vl) ()\2))

()\gﬂ( §+1()\2) 5*1(9)) —(c+1)'T(v+ 1)%()/2,; Shso )»2))

<
T c+1

o ((6 + DPT (1 + 1) (125 s A1) = 25 (15 70) — v (00)").

Proof The result is proved in the same way as Theorem 2.23. O

The results presented in this section also provide the fractional integral inequalities for
weighted RL fractional integrals, specifically, when the function y, behaves like the iden-

tity function.

4 Applications to main results

This section pertains to the applications of our main results. The first application is pre-
sented for Theorem 2.3.
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Theorem 4.1 Under the conditions of Theorem 2.3, we have

() (vs () - V2§+1()»1)) +7102) (5 (h2) - g”(h))%

- <(§ +1)* 281; (vant Sigr0 1) (1)

+ (g + 1)% Fk(/“l' + k)(J/z,;f Sﬁf}-w Vl)()‘-2)> ‘

< M ((xé“ AN 00— v D)+ (T ) - v ) F)
c+1
+(g+ 1)k 283 (Vo S350 M)
~ (6 + D Tl + R Az)). @

Proof Substituting first 6 = 1, and secondly 8 = X, into (2.1) and then adding the obtained
results, we get (4.1). a

Corollary 4.2 Under the conditions of Theorem 2.3, for i = v in (4.1), we obtain

’(V1(M)+y1(/\z))( ST 00) - vs o)) §

A
ZE/\S (V2 3500 1) A1) + (v2s 1o yl)()u)))‘

M + + + +
= (2057 A0 02 -5 0)
o (A1)

+ (s +D)F il + k)(a(h) (v2rk 500 M) = (v2k Sy Az))). (4.2)

(o4 1)‘irk<u+k)<

~E

Corollary 4.3 Under the conditions of Theorem 2.3, for y»,(0) =0 and o (0) = 1 in (4.2), we
obtain

MO +702)  (c+DET(u+k) o .
IR () 0+ ()0l
M@3Bu + k)

g+1_ ¢+l
S e Dan e M)

Next, we derive an approximation for the Hadamard inequality for RL k-fractional in-
tegrals given in [37, Theorem 2.1].

Corollary 4.4 Under the conditions of Theorem 2.3, for y,(0) =0, ¢ =0, and o(0) =1 in
(4.2), we obtain

i) +y1(ha)  Ti(p+k)
2 2k~ M)k
M(3/,L + k)

= 2(u+k)

[(:33571) () + (31;11/1)()»2)]

(A2 = A1)
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Corollary 4.5 Under the conditions of Theorem 2.3, for y»(0) =6, 0(0) =1, and k=1 in
(4.2), we obtain

(r1(A1) +y1(R2)) (¢ + 1)*T'(p +1) 5
- 2 — - 2(A§+1_kf+l)ﬂ ((g“fz )()‘1) ( “S)\Iyl)()"Z)))

M@Bu +1)
T 2(c+D(n+1)

(Agﬂ _ )‘iﬂ)'

Subsequently, we derive an approximation for the Hadamard inequality for RL fractional

integrals [38, Theorem 2].

Corollary 4.6 Under the conditions of Theorem 2.3, for y,(0) =6, 0(0) =1, ¢ =0, and
k=1in(4.2), we have

) +nke)  T(e+1)

[(3% Siy 1) () + (\‘l;; 71)(R)]

2 20k — A
MBu +1)
W(Az - A1)

Theorem 4.7 Under the conditions of Theorem 2.17, we have

I

aqugoé“ag—wé”(ﬁ%}2)> +mun(9“(11;“)—wé“un>k

A1+)\2)

%))

—<@+n2nw+m (P2 3y 0 72) 0)
-2

3 ~
+ (g + 1) k Fk(:u' + k)(J/z,;f Uliﬁ.)q -0 yl)()‘-l)) ’
2

M A+ A\ ) £
< k§+1 ¢+l 2z g+1
=ct 1( 2 (V (A2) - —2

3

AL+ A k n
-a5 <V2§+1< > “1(k1)> + (s + DFTh(ie + k) (y2,g 3510y —0 1)
-2

2
(}\.1 +A2 )
— (¢ + D)ET%(v + k) —2—= (V23 Y, 11 +00 /\2)) (4.3)
o (A2) 3
Proof Inequality (4.3) can be obtained by substituting 6 = )‘1”2 into (2.26). d

Corollary 4.8 Under the assumptions of Theorem 2.17 with p = v in (4.3), we have
N

Vl()hz)()/z (A2) - §+1<¥)> +V1()»1)( §+1(¥)—V2§+1()\1))?

SEZY)
n (=52) N N
(¢ + DEk(p + k)| —2= (Y2 Y1y 100 Y1) (R2) + (Varg Sy 00 ¥1) (A1)
O'()\z) 2 2
<

I3
M )Lg+l §+1()L ) §+1 )‘l + )¥2 k
=i 2 2 2
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AL+ A "
_ A’i‘+1 (y2g+1< 1 5 2) _ V2§+1()‘41))
()L1+)»2)

3 ~ ~
e DET R0 Vo ) = 0 o)) ) 60)
2 2

2

Next, we derive an estimation of the Hadamard inequality for RL k-fractional integrals
given in [39, Theorem 2.1].

Corollary 4.9 Under the assumptions of Theorem 2.17, for y,(0) =6, 0(0) =1, and ¢ =0
in (4.4), we have the following inequality for RL k-fractional integrals:

L1
i) + y1(ha) 287 (e + k) o
D) - (g — )\1)% ((k%])h;*z*yl)()‘Z) + (k“sh’zf?\z’yl)(}‘l))
- Mp(ry +2y)

2(p + k)

The following result provides an estimate for the Hadamard inequality for RL fractional
integrals [40, Theorem 4].

Corollary 4.10 Under the conditions of Theorem 2.17, for y,(0) =6, (0) =1, ¢ =0, and
k=1 in (4.4), we have

) +y1(d) 24710 (e + 1)
2 (Ao — Ap)H
_ MuQa +2s)
2(n +1)

(¥ 71) (2) + (¥ - 11) (R))
5 2

5 Conclusions

Inequalities are a crucial concept in mathematics that is used extensively in various fields
of study. It allows us to compare and contrast the relative values of different mathemat-
ical expressions, leading to a deeper understanding of the relationships between them.
Inequalities are not only essential for theoretical purposes, but also for practical applica-
tions, such as optimization problems and statistical data analysis. Understanding inequal-
ities is a critical component of mathematical literacy, enabling individuals to evaluate and
interpret quantitative information and make informed decisions in various aspects of their
lives. The presented work includes generalized fractional integral inequalities for the fam-
ily of generalized weighted RL fractional integrals. These operators have been extensively
studied and utilized by researchers across different fields. We specifically investigate the
weighted RL k-fractional integral operators and extend the established in the direction
of weighted version. Our study provides a simple method for proving Ostrowski-type in-
equalities using the weighted fractional integral operators. We explored a more compre-
hensive form of the Ostrowski-type inequalities that is more inclusive than the current
ones in the literature. These inequalities have various applications in numerical analysis,
specifically in numerical integration. Furthermore, we determine the best possible error
bounds for Hadamard-type inequalities. Our results, which are related to the existing lit-
erature, are obtained through the application of Theorems 2.3, 2.10, 2.17, and 2.23. These
findings have significant implications in establishing error bounds for Hadamard inequal-
ities in fractional calculus.
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