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Abstract
We introduce a new subgradient extragradient algorithm utilizing the concept of the
set of solutions of the split modified system of variational inequality problems
(SMSVIP). Our main theorem is weak convergence theorem for such an algorithm for
approximating the fixed point problem in a real Hilbert space. We also apply these
results to approximate the split minimization problem. In the last section, we provide
an example to illustrate the potential of our main theorem.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H . The mapping T :
C → C is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. An element x ∈ C is
said to be a fixed point of T if Tx = x and F(T) = {x ∈ C : Tx = x} denotes the set of fixed
points of T . Fixed point problem has been widely studied and developed in the literature;
see [5, 11, 26, 27, 29] and the references therein.

We now recall some well-known concepts and results in a real Hilbert space H .
The variational inequality problem (VIP) is to find a point x∗ ∈ C such that

〈
Ax∗, y – x∗〉 ≥ 0

for all y ∈ C. The set of all solutions of the variational inequality is denoted by VI(C, A).
Since its inception by Stampacchia [24] in 1964, the variational inequality problem has
become interesting in several topics arising in structural analysis, physic, economics, op-
timization, and applied sciences; see [1, 3, 6, 8, 11–13, 15, 18, 20, 30, 32] and the references
therein.
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Several algorithms for solving the VIP are projection algorithms that employ projections
onto the feasible set C of the VIP, or onto some related set, in order to iteratively reach a so-
lution. In 1976, Korpelevich [19] proposed an algorithm for solving the VIP in a Euclidean
space, known as the extragradient method. In each iteration of her algorithm, in order to
get the next iterate xk+1, two orthogonal projections onto C are calculated, according to
the following iterative step. Given the current iterate xk , calculate

yk = PC
(
xk – τ f

(
xk)), (1)

xk+1 = PC
(
xk – τ f

(
yk)) (2)

for all k ∈N, where τ is some positive number and PC denotes the Euclidean least distance
projection onto C.

The convergence was proved in [19] under the assumptions of Lipschitz continuity and
pseudo-monotonicity. However, there is still the need to calculate two projections onto C.
If the set C is simple enough so that projections onto it can be easily computed, but if C is a
general closed and convex set, a minimal distance problem has to be solved twice in order
to obtain the next iterate. This might seriously affect the efficiency of the extragradient
method. Korpelevich’s extragradient method has been widely studied in the literature; see
[2, 4, 7, 9, 14, 16, 17, 22, 28, 31] and the references therein.

In the past decade years, Censor et al. [10] developed the subgradient extragradient al-
gorithm in a Euclidean space, in which they replaced the (second) projection (2) onto C
by a projection onto a specific constructible half-space as follows:

Algorithm 1 (The subgradient extragradient algorithm)
Step 0 : Select a starting point x0 ∈ H and τ > 0, and set k = 0.
Step 1 : Given the current iterate xk , compute

yk = PC
(
xk – τ f

(
xk)),

construct the half-space Tk the bounding hyperplane of which supports C at yk ,

Tk :=
{

w ∈ H|〈(xk – τ f
(
xk)) – yk , w – yk 〉 ≤ 0

}
, (3)

and calculate the next iterate

xk+1 = PTk

(
xk – τ f

(
yk)).

Step 2 : If xk = yk then stop. Otherwise, set k ← (k + 1) and return to step 1.

Furthermore, under some control conditions, they proved weak convergence theorems
for their algorithms.

Very recently, Sripattanet and Kangtunyakarn [23] introduced the following split
modified system of variational inequality problems (SMSVIP), which involves finding
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(x∗, y∗, z∗) ∈ C × C × C such that

⎧
⎪⎪⎨

⎪⎪⎩

〈x∗ – (I – ζD1)(ax∗ + (1 – a)y∗), x – x∗〉 ≥ 0, ∀x ∈ C,

〈y∗ – (I – ζD2)(ax∗ + (1 – a)z∗), x – y∗〉 ≥ 0, ∀x ∈ C,

〈z∗ – (I – ζD3)x∗, x – z∗〉 ≥ 0, ∀x ∈ C,

(4)

and finding (x̄∗ = Ax∗, ȳ∗ = Ay∗, z̄∗ = Az∗) ∈ Q × Q × Q such that

⎧
⎪⎪⎨

⎪⎪⎩

〈x̄∗ – (I – ζ̄ D̄1)(ax̄∗ + (1 – a)ȳ∗), x̄ – x̄∗〉 ≥ 0, ∀x̄ ∈ Q,

〈ȳ∗ – (I – ζ̄ D̄2)(ax̄∗ + (1 – a)z̄∗), x̄ – ȳ∗〉 ≥ 0, ∀x̄ ∈ Q,

〈z̄∗ – (I – ζ̄ D̄3)x̄∗, x̄ – z̄∗〉 ≥ 0, ∀x̄ ∈ Q,

(5)

where D1, D2, D3 : C → H1, D̄1, D̄2, D̄3 : Q → H2 are six different mappings, ζ , ζ̄ > 0, and
a ∈ [0, 1]. The sets of all solutions of (4) and (5) are denoted by �D1,D2,D3 and �D̄1,D̄2,D̄3 ,
respectively. The set of all solutions of the SMSVIP is denoted by �

D1,D2,D3
D̄1,D̄2,D̄3

, that is,

�
D1,D2,D3
D̄1,D̄2,D̄3

=
{(

x∗, y∗, z∗) ∈ �D1,D2,D3 :
(
x̄∗, ȳ∗, z̄∗) ∈ �D̄1,D̄2,D̄3

}
.

If we put a = 0 in (4) and (5), we have

⎧
⎪⎪⎨

⎪⎪⎩

〈x∗ – (I – ζD1)y∗, x – x∗〉 ≥ 0, ∀x ∈ C,

〈y∗ – (I – ζD2)z∗, x – y∗〉 ≥ 0, ∀x ∈ C,

〈z∗ – (I – ζD3)x∗, x – z∗〉 ≥ 0, ∀x ∈ C,

and

⎧
⎪⎪⎨

⎪⎪⎩

〈x̄∗ – (I – ζ̄ D̄1)ȳ∗, x̄ – x̄∗〉 ≥ 0, ∀x̄ ∈ Q,

〈ȳ∗ – (I – ζ̄ D̄2)z̄∗, x̄ – ȳ∗〉 ≥ 0, ∀x̄ ∈ Q,

〈z̄∗ – (I – ζ̄ D̄3)x̄∗, x̄ – z̄∗〉 ≥ 0, ∀x̄ ∈ Q,

which is a modified the split general system of variational inequalities (SVIP) [21].
Based on the above works and observation of a half-space in Algorithm 1 related to the

VIP, we introduce a new half-space related to the SMSVIP and prove weak convergence
theorems of the sequence {xn} generated by our new half-space for approximating the so-
lutions of the SMSVIP. Moreover, using our main result, we obtain the additional results
involving the split minimization problem. Finally, we perform numerical examples to il-
lustrate the computational performance of the proposed algorithms.

2 Preliminaries
We denote the weak convergence and the strong convergence by �� ⇀′′ and �� →′′, respec-
tively. For every x ∈H, there exists a unique nearest point PCx in C such that ‖x – PCx‖ ≤
‖x – y‖ for all y ∈ C. PC is called the metric projection of H onto C.

The metric projection PC is characterized by the following two properties:
1. PCx ∈ C,
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2. 〈x – PCx, PCx – y〉 ≥ 0, ∀x ∈H, y ∈ C,
and if C is a hyperplane, it follows that

‖x – y‖2 ≥ ‖x – PCx‖2 + ‖y – PCx‖2, (6)

∀x ∈H, y ∈ C.

Definition 2.1 A mapping A : C → H is called α-inversestronglymonotone if there exists
a positive real number α > 0 such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖2

for all x, y ∈ C.

The following lemmas are needed to prove the main theorem.

Lemma 2.2 Let H be a real Hilbert space, and let C be a nonempty closed convex subset
of H. Let {xk}∞k=0 ⊂H be Fejer-monotone with respect to C, i.e., for every u ∈ C,

∥∥xk+1 – u
∥∥ ≤ ∥∥xk – u

∥∥, ∀k ≥ 0.

Then {PCxk}∞k=0 converges strongly to some z ∈ C.

Lemma 2.3 Each Hilbert spaceH satisfies Opial’s condition, i.e., for any sequence {xn} ⊂H
with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for every y ∈H with y �= x.

Lemma 2.4 ([23]) Let H1 and H2 be real Hilbert spaces, and let C, Q be nonempty closed
convex subsets of H1 and H2, respectively. Let D1, D2, D3 : C → H1 be d1, d2, d3-inverse
strongly monotone, respectively, where ζ ∈ (0, 2d∗) with d∗ = min{d1, d2, d3}. Let D̄1, D̄2, D̄3 :
Q → H2 be d̄1, d̄2, d̄3-inverse strongly monotone, respectively, where ζ̄ ∈ (0, 2d̂) with d̂ =
min{d̄1, d̄2, d̄3}. Let A : H1 → H2 be a bounded linear operator with adjoint A∗ and η ∈ (0, 1

L )
with L being the spectral radius of the operator A∗A. Define MC : C → C by

MC(x) = PC(I – ζD1)
(
ax + (1 – a)PC(I – ζD2)

(
ax + (1 – a)PC(I – ζD3)x

))
,

∀x ∈ C, and define MQ : Q → Q by

MQ(x̂) = PQ(I – ζ̄ D̄1)
(
ax̂ + (1 – a)PQ(I – ζ̄ D̄2)

(
ax̂ + (1 – a)PQ(I – ζ̄ D̄3)x̂

))
,

∀x̂ ∈ Q. Define M : C → C by M(x) = MC(x – ηA∗(I – MQ)Ax) for all x ∈ C. Then M is a
nonexpansive mapping for all x ∈ C.
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Remark 1 From the study of Lemma 2.4, we have

∥∥(
x – ηA∗(I – MQ)Ax

)
–

(
y – ηA∗(I – MQ)Ay

)∥∥2

≤ ‖x – y‖2 – η(1 – ηL)
∥∥(I – MQ)Ax – (I – MQ)Ay

∥∥2

for all x, y ∈ H1.

Lemma 2.5 ([23]) Let H1 and H2 be real Hilbert spaces, and let C, Q be nonempty closed
convex subsets of H1, H2, respectively. Define the mappings D1, D2, D3, D̄1, D̄2, D̄3, MC , and
MQ as in Lemma 2.4, where ζ ∈ (0, 2d∗) with d∗ = min{d1, d2, d3}, ζ̄ ∈ (0, 2d̂) with d̂ =
min{d̄1, d̄2, d̄3}. Let A : H1 → H2 be a bounded linear operator with adjoint A∗ and η ∈ (0, 1

L )
with L being the spectral radius of the operator A∗A.

Assume

�
D1,D2,D3
D̄1,D̄2,D̄3

=
{(

x∗, y∗, z∗) ∈ �D1,D2,D3 :
(
x̄∗, ȳ∗, z̄∗) ∈ �D̄1,D̄2,D̄3

} �= ∅.

The following statements are equivalent:
(i) (x∗, y∗, z∗) ∈ �

D1,D2,D3
D̄1,D̄2,D̄3

,
(ii) x∗ = MC(x∗ – ηA∗(I – MQ)Ax∗), where y∗ = PC(I – ζD2)(ax∗ + (1 – a)z∗),

z∗ = PC(I – ζD3)x∗, x̄∗ = Ax∗ = PQ(I – ζ̄ D̄1)(ax̄∗ + (1 – a)ȳ∗),
ȳ∗ = Ay∗ = PQ(I – ζ̄ D̄2)(ax̄∗ + (1 – a)z̄∗), and z̄∗ = Az∗ = PQ(I – ζ̄ D̄3)x̄∗.

Lemma 2.6 ([23]) Let H1 and H2 be real Hilbert spaces, and let C, Q be nonempty closed
convex subsets of H1, H2, respectively. Define the mappings D1, D2, D3, D̄1, D̄2, D̄3, MC , and
MQ as in Lemma 2.4 where ζ ∈ (0, 2d∗) with d∗ = min{d1, d2, d3}, ζ̄ ∈ (0, 2d̂) with d̂ =
min{d̄1, d̄2, d̄3} and a ∈ [0, 1]. Let A : H1 → H2 be a bounded linear operator with adjoint
A∗ and η ∈ (0, 1

L ) with L being the spectral radius of the operator A∗A. Let
⋂3

i=1 �i �= ∅ and
�i = {w ∈ VI(C, Di)|Aw = w̄ ∈ VI(Q, D̄i)} for all i = 1, 2, 3. Then

3⋂

i=1

�i = F
(
MC

(
I – ηA∗(I – MQ)A

))
.

In order to prove our main result, we need to prove the lemmas involving the split vari-
ational inequality problem.

Lemma 2.7 Let H1 and H2 be real Hilbert spaces, and let C, Q be nonempty closed convex
subsets of H1, H2, respectively. Define the mappings D1, D2, D3, D̄1, D̄2, D̄3, MC , and MQ as in
Lemma 2.4 where ζ ∈ (0, 2d∗) with d∗ = min{d1, d2, d3}, ζ̄ ∈ (0, 2d̂) with d̂ = min{d̄1, d̄2, d̄3}
and a ∈ [0, 1]. Let {xn} be a sequence in H1, and let A : H1 → H2 be a bounded linear
operator with adjoint A∗ and η ∈ (0, 1

L ) with L being the spectral radius of the operator
A∗A. For every n ∈N, let Tn = aWn + (1 – a)PC(I – ζD2)(aWn + (1 – a)PC(I – ζD3)Wn)) and
Wn = (I – ηA∗(I – MQ)A)xn. If x∗ ∈ ⋂3

i=1 �i, then

∥∥Tn – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 – η(1 – ηL)
∥∥(I – MQ)Axn

∥∥2

for all n ∈N.
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Proof Let x∗ ∈ ⋂3
i=1 �i. From Lemma 2.6, we have

x∗ ∈ F
(
MC

(
I – ηA∗(I – MQ)A

))
.

It implies that x∗ = MC(I – ηA∗(I – MQ)A)x∗, y∗ = PC(I – ζD2)(ax∗ + (1 – a)z∗), and z∗ =
PC(I – ζD3)x∗, where x̄∗ = Ax∗ = PQ(I – ζ̄ D̄1)(ax̄∗ + (1 – a)ȳ∗), ȳ∗ = Ay∗ = PQ(I – ζ̄ D̄2)(ax̄∗ +
(1 – a)z̄∗), and z̄∗ = Az∗ = PQ(I – ζ̄ D̄3)x̄∗. From Lemma 2.5, we have (x∗, y∗, z∗) ∈ 	

D1,D2,D3
D̄1,D̄2,D̄3

.
That is, (x∗, y∗, z∗) ∈ 	D1,D2,D3 and (x̄∗, ȳ∗, z̄∗) ∈ 	D̄1,D̄2,D̄3 . From (x̄∗, ȳ∗, z̄∗) ∈ 	D̄1,D̄2,D̄3 , we
obtain that

x̄∗ = PQ(I – ζ̄ D̄1)
(
ax̄∗ + (1 – a)ȳ∗),

ȳ∗ = PQ(I – ζ̄ D̄2)
(
ax̄∗ + (1 – a)z̄∗),

z̄∗ = PQ(I – ζ̄ D̄3)x̄∗.

It implies that

Ax∗ = x̄∗ = PQ(I – ζ̄ D̄1)
(
ax̄∗ + (1 – a)PQ(I – ζ̄ D̄2)

(
ax̄∗ + (1 – a)PQ(I – ζ̄ D̄3)x̄∗))

= MQx̄∗ = MQAx∗.

From the definition of x∗, we get x∗ = PC(I – ζD1)T∗
x , where T∗

x = aW ∗
x + (1 – a)PC(I –

ζD2)(aW ∗
x + (1 – a)PC(I – ζD3)W ∗

x )) and W ∗
x = (I – ηA∗(I – MQ)A)x∗) = x∗.

From Lemma 2.6, we have that PC(I – ζD1), PC(I – ζD2) and PC(I – ζD3) are nonexpan-
sive.

By the definition of Tn, Lemma 2.4, and Remark 1, we have

∥∥Tn – x∗∥∥2 =
∥∥aWn + (1 – a)PC(I – ζD2)

(
aWn + (1 – a)

× PC(I – ζD3)Wn
)
) –

(
aWx∗ + (1 – a)PC(I – ζD2)

(
aWx∗

+ (1 – a)PC(I – ζD3)Wx∗
))

)
∥∥2

=
∥∥a(Wn – Wx∗ ) + (1 – a)

[
PC(I – ζD2)

(
aWn + (1 – a)PC(I – ζD3)Wn

)
)

– PC(I – ζD2)
(
aWx∗ + (1 – a)PC(I – ζD3)Wx∗

)
)
]∥∥2

≤ a‖Wn – Wx∗‖2 + (1 – a)
∥∥PC(I – ζD2)

(
aWn + (1 – a)PC(I – ζD3)Wn

)
)

– PC(I – ζD2)
(
aWx∗ + (1 – a)PC(I – ζD3)Wx∗

)
)
∥∥2

≤ a‖Wn – Wx∗‖2 + (1 – a)
∥∥aWn + (1 – a)PC(I – ζD3)Wn

–
(
aWx∗ + (1 – a)PC(I – ζD3)Wx∗

)∥∥2

= a‖Wn – Wx∗‖2 + (1 – a)
∥∥a(Wn – Wx∗ ) + (1 – a)

× [
PC(I – ζD3)Wn – x∗]∥∥2

≤ a‖Wn – Wx∗‖2 + a(1 – a)‖Wn – Wx∗‖2 + (1 – a)2

× ∥∥PC(I – ζD3)Wn – x∗∥∥2

=
(
2a – a2)‖Wn – Wx∗‖2 + (1 – a)2∥∥PC(I – ζD3)Wn – x∗∥∥2
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≤ ∥∥Wn – x∗∥∥2

=
∥∥xn – ηA∗(I – MQ)Axn – x∗∥∥2

≤ ∥∥xn – x∗∥∥2 – η(1 – ηL)
∥∥(I – MQ)Axn

∥∥2. (7)
�

3 Main results
Theorem 3.1 Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively, and let S : C → C be a nonexpansive mapping. Let D1, D2, D3 : C → H1 be
d1, d2, d3-inverse strongly monotone, respectively, with d∗ = min{d1, d2, d3}. Let D̄1, D̄2, D̄3 :
Q → H2 be d̄1, d̄2, d̄3-inverse strongly monotone, respectively, with d̂ = min{d̄1, d̄2, d̄3}. Let
A : H1 → H2 be a bounded linear operator with adjoint A∗ and η ∈ (0, 1

L ) with L being the
spectral radius of the operator A∗A. Define MC : H1 → C by

MC(x) = PC(I – ζD1)
(
ax + (1 – a)PC(I – ζD2)

(
ax + (1 – a)PC(I – ζD3)x

))
,

∀x ∈ H1, where a ∈ [0, 1), ζ ∈ (0, 2d∗), and define MQ : H2 → Q by

MQ(x) = PQ(I – ζ̄ D̄1)
(
ax̂ + (1 – a)PQ(I – ζ̄ D̄2)

(
ax̂ + (1 – a)PQ(I – ζ̄ D̄3)x̂

))
,

∀x̂ ∈ H1, where a ∈ [0, 1), ζ̄ ∈ (0, 2d̂). Let the sequences {xn} and {yn} be generated by x1 ∈ H1

and

yn = MCWn = PC(I – ζD1)Tn,

where Wn = (I – ηA∗(I – MQ)A)xn and Tn = aWn + (1 – a)PC(I – ζD2)(aWn + (1 – a)PC(I –
ζD3)Wn)).

Qn =
{

z ∈ H :
〈
(I – ζD1)Tn – yn, yn – z

〉 ≥ 0
}

,

xn+1 = αnTn + (1 – αn)SPQn

(
Tn – ζD1(yn)

)

for all n ∈N.
Assume that the following conditions hold:
(i) � = F(S)

⋂⋂3
i=1 �i �= ∅, where �i = {w ∈ VI(C, Di)|Aw ∈ VI(Q, D̄i)} for all i = 1, 2, 3.

(ii) αn ∈ [c, d] ⊂ (0, 1).
Then {xn} converges weakly to x0 = P�xn, which (x0, y0, z0) ∈ 	

D1,D2,D3
D̄1,D̄2,D̄3

, y0 = PC(I –
ζD2)(ax0 + (1 – a)z0), and z0 = PC(I – ζD3)x0 with x̄0 = Ax0, ȳ0 = Ay0 and z̄0 = Az0.

Proof Denote kn := PQn (Tn – ζD1(yn)) for all n ≥ 0. Let x∗ ∈ �. From the definition of PQn ,
we have yn = PQn (I – ζD1)Tn. Let Mn = Tn – ζD1(yn). From C ⊆ Qn, and applying (6), we
have

∥∥kn – x∗∥∥2 =
∥∥PQn Mn – x∗∥∥2

≤ ∥∥Mn – x∗∥∥2 – ‖Mn – PQn Mn‖2

=
∥∥Tn – ζD1(yn) – x∗∥∥2 –

∥∥Tn – ζD1(yn) – PQn Mn
∥∥2
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=
∥∥Tn – x∗∥∥2 – 2ζ

〈
Tn – x∗, D1(yn)

〉
+ ζ 2∥∥D1(yn)

∥∥2

– ‖Tn – PQn Mn‖2 + 2ζ
〈
Tn – PQn Mn, D1(yn)

〉
– ζ 2∥∥D1(yn)

∥∥2

=
∥∥Tn – x∗∥∥2 – ‖Tn – PQn Mn‖2 – 2ζ

〈
PQn Mn – x∗, D1(yn)

〉
. (8)

From the monotonicity of D1, we have

0 ≤ 〈
D1yn – D1x∗, yn – x∗〉

=
〈
D1yn, yn – x∗〉 –

〈
D1x∗, yn – x∗〉

≤ 〈
D1yn, yn – x∗〉

= 〈D1yn, yn – PQn Mn〉 –
〈
D1yn, x∗ – PQn Mn

〉
,

which implies that

〈
D1yn, x∗ – PQn Mn

〉 ≤ 〈D1yn, yn – PQn Mn〉. (9)

From (8) and (9), we have

∥∥kn – x∗∥∥2 ≤ ∥∥Tn – x∗∥∥2 – ‖Tn – PQn Mn‖2 + 2ζ 〈D1yn, yn – PQn Mn〉. (10)

From (10) and Lemma 2.7, we have

∥∥kn – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 – η(1 – ηL)
∥∥(I – MQ)Axn

∥∥2 – ‖PQn Mn – Tn‖2

+ 2ζ 〈D1yn, yn – PQn Mn〉
=

∥∥xn – x∗∥∥2 – η(1 – ηL)
∥∥(I – MQ)Axn

∥∥2 – ‖PQn Mn – yn‖2

– ‖yn – Tn‖2 – 2〈PQn Mn – yn, yn – Tn〉
+ 2ζ 〈D1yn, yn – PQn Mn〉

=
∥∥xn – x∗∥∥2 – η(1 – ηL)

∥∥(I – MQ)Axn
∥∥2 – ‖PQn Mn – yn‖2

– ‖yn – Tn‖2 + 2〈PQn Mn – yn, Tn – yn – ζD1yn〉
=

∥∥xn – x∗∥∥2 – η(1 – ηL)
∥∥(I – MQ)Axn

∥∥2 – ‖PQn Mn – yn‖2

– ‖yn – Tn‖2 + 2
〈
(I – ζD1)Tn – yn, PQn Mn – yn

〉

+ 2〈ζD1Tn – ζD1yn, PQn Mn – yn〉
≤ ∥∥xn – x∗∥∥2 – η(1 – ηL)

∥∥(I – MQ)Axn
∥∥2 – ‖PQn Mn – yn‖2

– ‖yn – Tn‖2 + 2ζ‖D1Tn – D1yn‖‖PQn Mn – yn‖
≤ ∥∥xn – x∗∥∥2 – η(1 – ηL)

∥∥(I – MQ)Axn
∥∥2 – ‖PQn Mn – yn‖2

– ‖yn – Tn‖2 +
ζ

d1

[‖Tn – yn‖2 + ‖PQn Mn – yn‖2]

=
∥∥xn – x∗∥∥2 – η(1 – ηL)

∥∥(I – MQ)Axn
∥∥2
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–
(

1 –
ζ

d1

)
‖PQn Mn – yn‖2 –

(
1 –

ζ

d1

)
)‖Tn – yn‖2. (11)

By the definition of xn+1, (11), and Lemma 2.7, we have

∥∥xn+1 – x∗∥∥2 =
∥∥αn

(
Tn – x∗) + (1 – αn)

(
Skn – x∗)∥∥2

≤ αn
∥∥Tn – x∗∥∥2 + (1 – αn)

∥∥Skn – x∗∥∥2

= αn
∥∥Tn – x∗∥∥2 + (1 – αn)

∥∥Skn – x∗∥∥2

– αn(1 – αn)‖Tn – Skn‖2 (12)

= αn
∥∥Tn – x∗∥∥2 + (1 – αn)

∥∥kn – x∗∥∥2

≤ αn
∥∥Tn – x∗∥∥2 + (1 – αn)

[∥∥xn – x∗∥∥2

– η(1 – ηL)
∥∥(I – MQ)Axn

∥∥2

–
(

1 –
ζ

d1

)
‖PQn Mn – yn‖2 –

(
1 –

ζ

d1

)
)‖Tn – yn‖2

]

≤ αn
[∥∥xn – x∗∥∥2 – αnη(1 – ηL)

∥∥(I – MQ)Axn
∥∥2]

+ (1 – αn)
[∥∥xn – x∗∥∥2 – η(1 – ηL)

∥∥(I – MQ)Axn
∥∥2

–
(

1 –
ζ

d1

)
‖PQn Mn – yn‖2 –

(
1 –

ζ

d1

)
)‖Tn – yn‖2

]

=
∥∥xn – x∗∥∥2 – η(1 – ηL)(1 + αn)

∥∥(I – MQ)Axn
∥∥2

– (1 – αn)
(

1 –
ζ

d1

)[‖Tn – yn‖2 + ‖yn – kn‖2]. (13)

So,

∥∥xn+1 – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2.

Therefore limn→∞ ‖xn+1 – x∗‖ exists, ∀x∗ ∈ �. So, we have {xn}∞n=0 and {kn}∞n=0 are bounded.
From the last relations it follows that

η(1 – ηL)(1 + αn)
∥∥(I – MQ)Axn

∥∥2 ≤ ∥∥xn – x∗∥∥2 –
∥∥xn+1 – x∗∥∥2

or

∥∥(I – MQ)Axn
∥∥2 ≤ ‖xn – x∗‖2 – ‖xn+1 – x∗‖2

η(1 – ηL)(1 + αn)
.

Thus

lim
n→∞

∥∥(I – MQ)Axn
∥∥ = 0. (14)

By using the same method as above, we have

lim
n→∞‖Tn – yn‖ = 0. (15)
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From (12), we get

∥∥xn+1 – x∗∥∥2 ≤ αn
∥∥Tn – x∗∥∥2 + (1 – αn)

∥∥Skn – x∗∥∥2

– αn(1 – αn)‖Tn – Skn‖2

≤ αn
∥∥Tn – x∗∥∥2 + (1 – αn)

∥∥xn – x∗∥∥2

– αn(1 – αn)‖Tn – Skn‖2

≤ αn
∥∥xn – x∗∥∥2 – αn(1 – αn)‖Tn – Skn‖2,

so

‖Tn – Skn‖2 ≤ ‖xn – x∗‖2 – ‖xn+1 – x∗‖2

αn(1 – αn)
,

which implies that

lim
n→∞‖Tn – Skn‖ = 0. (16)

Consider

Wn – xn = –ηA∗(I – MQ)Axn,

and by (14), we have

lim
n→∞‖Wn – xn‖ = 0. (17)

From the property of PC , we have

∥∥PC(I – ζD3)Wn – x∗∥∥2

=
∥∥PC(I – ζD3)Wn – PC(I – ζD3)x∗∥∥2

≤ ∥∥(I – ζD3)Wn – (I – ζD3)x∗∥∥2

=
∥∥(

Wn – x∗) – ζ
(
D3Wn – D3x∗)∥∥2

=
∥∥Wn – x∗∥∥2 – 2ζ

〈
Wn – x∗, D3Wn – D3x∗〉

+ ζ 2∥∥D3Wn – D3x∗∥∥2

≤ ∥∥Wn – x∗∥∥2 – 2ζd3
∥∥D3Wn – D3x∗∥∥2

+ ζ 2∥∥D3Wn – D3x∗∥∥2

=
∥∥Wn – x∗∥∥2 – ζ (2d3 – ζ )

∥∥D3Wn – D3x∗∥∥2

≤ ∥∥xn – x∗∥∥2 – ζ (2d3 – ζ )
∥∥D3Wn – D3x∗∥∥2. (18)

By the definition of Tn, (7), Remark 1, and (18), we have

∥∥Tn – x∗∥∥2 ≤ a‖Wn – Wx∗‖2 + a(1 – a)‖Wn – Wx∗‖2
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+ (1 – a)2∥∥PC(I – ζD3)Wn – x∗∥∥2

≤ a
∥∥xn – x∗∥∥2 + a(1 – a)

∥∥xn – x∗∥∥2

+ (1 – a)2∥∥PC(I – ζD3)Wn – x∗∥∥2

≤ (
2a – a2)∥∥xn – x∗∥∥2 + (1 – a)2∥∥PC(I – ζD3)Wn – x∗∥∥2

≤ (
2a – a2)∥∥xn – x∗∥∥2 + (1 – a)2[∥∥xn – x∗∥∥2

– ζ (2d3 – ζ )
∥∥D3Wn – D3x∗∥∥2]

=
∥∥xn – x∗∥∥2 – ζ (2d3 – ζ )(1 – a)2∥∥D3Wn – D3x∗∥∥2. (19)

In addition, by the definition of xn+1 and (19), we have

∥∥xn+1 – x∗∥∥2 ≤ αn
∥∥Tn – x∗∥∥2 + (1 – αn)

∥∥kn – x∗∥∥2

≤ αn
[∥∥xn – x∗∥∥2 – ζ (2d3 – ζ )(1 – a)2∥∥D3Wn – D3x∗∥∥2]

+ (1 – αn)
∥∥kn – x∗∥∥2

= αn
∥∥xn – x∗∥∥2 – αnζ (2d3 – ζ )(1 – a)2∥∥D3Wn – D3x∗∥∥2

+ (1 – αn)
∥∥xn – x∗∥∥2

=
∥∥xn – x∗∥∥2 – αnζ (2d3 – ζ )(1 – a)2∥∥D3Wn – D3x∗∥∥2,

so

∥∥D3Wn – D3x∗∥∥2 ≤ ‖xn – x∗‖2 – ‖xn+1 – x∗‖2

αnζ (2d3 – ζ )(1 – a)2 ,

which implies that

lim
n→∞

∥∥D3Wn – D3x∗∥∥ = 0. (20)

From the property of PC , we have

∥∥PC(I – ζD3)Wn – x∗∥∥2

≤ 〈
(I – ζD3)Wn – (I – ζD3)x∗, PC(I – ζD3)Wn – x∗〉

=
1
2
[∥∥(I – ζD3)Wn – (I – ζD3)x∗∥∥2] +

∥∥PC(I – ζD3)Wn – x∗∥∥2

–
∥∥(I – ζD3)Wn – (I – ζD3)x∗ –

(
PC(I – ζD3)Wn – x∗)∥∥2]

≤ 1
2
[∥∥Wn – x∗∥∥2 +

∥∥PC(I – ζD3)Wn – x∗∥∥2

–
∥∥(I – ζD3)Wn – (I – ζD3)x∗ –

(
PC(I – ζD3)Wn – x∗)∥∥2]

=
1
2
[∥∥Wn – x∗∥∥2 +

∥∥PC(I – ζD3)Wn – x∗∥∥2

–
∥∥(

Wn – PC(I – ζD3)Wn
)

– ζ
(
D3Wn – D3x∗)∥∥2]
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=
1
2
[∥∥Wn – x∗∥∥2 +

∥∥PC(I – ζD3)Wn – x∗∥∥2

–
∥∥Wn – PC(I – ζD3)Wn

∥∥2 – ζ 2∥∥D3Wn – D3x∗∥∥2

+ 2ζ
〈
Wn – PC(I – ζD3)Wn, D3Wn – D3x∗〉],

so

∥∥PC(I – ζD3)Wn – x∗∥∥2 ≤ ∥∥Wn – x∗∥∥2 –
∥∥Wn – PC(I – ζD3)Wn

∥∥2

+ 2ζ
∥∥Wn – PC(I – ζD3)Wn

∥∥∥∥D3Wn – D3x∗∥∥. (21)

By the definition of Tn, (7), Remark 1, and (21), we have

∥∥Tn – x∗∥∥2

≤ a‖Wn – Wx∗‖2 + a(1 – a)‖Wn – Wx∗‖2

+ (1 – a)2∥∥PC(I – ζD3)Wn – x∗∥∥2

≤ a
∥∥xn – x∗∥∥2 + a(1 – a)

∥∥xn – x∗∥∥2

+ (1 – a)2∥∥PC(I – ζD3)Wn – x∗∥∥2

≤ (
2a – a2)∥∥xn – x∗∥∥2 + (1 – a)2∥∥PC(I – ζD3)Wn – x∗∥∥2

≤ (
2a – a2)∥∥xn – x∗∥∥2 + (1 – a)2[∥∥Wn – x∗∥∥2 –

∥∥Wn – PC

× (I – ζD3)Wn
∥∥2 + 2ζ

∥∥Wn – PC(I – ζD3)Wn
∥∥∥∥D3Wn – D3x∗∥∥]

=
(
2a – a2)∥∥xn – x∗∥∥2 + (1 – a)2∥∥xn – x∗∥∥2

– (1 – a)2∥∥Wn – PC(I – ζD3)Wn
∥∥2

+ 2ζ (1 – a)2∥∥Wn – PC(I – ζD3)Wn
∥∥∥∥D3Wn – D3x∗∥∥

=
∥∥xn – x∗∥∥2 – (1 – a)2∥∥Wn – PC(I – ζD3)Wn

∥∥2

+ 2ζ (1 – a)2∥∥Wn – PC(I – ζD3)Wn
∥∥∥∥D3Wn – D3x∗∥∥. (22)

In addition, by the definition of xn+1, (11), and (22), we have

∥∥xn+1 – x∗∥∥2 ≤ αn
∥∥Tn – x∗∥∥2 + (1 – αn)

∥∥kn – x∗∥∥2

≤ αn
[∥∥xn – x∗∥∥2 – (1 – a)2∥∥Wn – PC(I – ζD3)Wn

∥∥2

+ 2ζ (1 – a)2∥∥Wn – PC(I – ζD3)Wn
∥∥∥∥D3Wn – D3x∗∥∥]

+ (1 – αn)
∥∥kn – x∗∥∥2

≤ αn
∥∥xn – x∗∥∥2 – αn(1 – a)2∥∥Wn – PC(I – ζD3)Wn

∥∥2

+ 2αnζ (1 – a)2∥∥Wn – PC(I – ζD3)Wn
∥∥∥∥D3Wn – D3x∗∥∥

+ (1 – αn)
∥∥xn – x∗∥∥2

=
∥∥xn – x∗∥∥2 – αn(1 – a)2∥∥Wn – PC(I – ζD3)Wn

∥∥2
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+ 2αnζ (1 – a)2∥∥Wn – PC(I – ζD3)Wn
∥∥∥∥D3Wn – D3x∗∥∥. (23)

From (20) and (23), we get

lim
n→∞

∥∥Wn – PC(I – ζD3)Wn
∥∥ = 0. (24)

Let Gn = aWn + (1 – a)PC(I – λ3D3)Wn. From the property of PC , we have

∥∥PC(I – ζD2)Gn – x∗∥∥2

=
∥∥PC(I – ζD2)Gn – PC(I – ζD2)x∗∥∥2

≤ ∥∥(I – ζD2)Gn – (I – ζD2)x∗∥∥2

=
∥∥(

Gn – x∗) – ζ
(
D2Gn – D2x∗)∥∥2

=
∥∥Gn – x∗∥∥2 – 2ζ

〈
Gn – x∗, D2Gn – D2x∗〉

+ ζ 2∥∥D2Gn – D2x∗∥∥2

≤ ∥∥xn – x∗∥∥2 – 2ζd2
∥∥D2Gn – D2x∗∥∥2

+ ζ 2∥∥D2Gn – D2x∗∥∥2

=
∥∥xn – x∗∥∥2 – ζ (2d2 – ζ )

∥∥D2Gn – D2x∗∥∥2. (25)

By the definition of Tn and (25), we have

∥∥Tn – x∗∥∥2 ≤ a‖Wn – Wx∗‖2 + (1 – a)
∥∥PC(I – ζD2)Gn – x∗∥∥2

≤ a
∥∥xn – x∗∥∥2 + (1 – a)

[∥∥xn – x∗∥∥2

– ζ (2d2 – ζ )
∥∥D2Gn – D2x∗∥∥2]

=
∥∥xn – x∗∥∥2 – ζ (1 – a)(2d2 – ζ )

∥∥D2Gn – D2x∗∥∥2. (26)

In addition, by the definition of xn+1 and (26), we have

∥∥xn+1 – x∗∥∥2 ≤ αn
∥∥Tn – x∗∥∥2 + (1 – αn)

∥∥kn – x∗∥∥2

≤ αn
[∥∥xn – x∗∥∥2 – ζ (1 – a)(2d2 – ζ )

∥∥D2Gn – D2x∗∥∥2]

+ (1 – αn)
∥∥xn – x∗∥∥2

=
∥∥xn – x∗∥∥2 – ζαn(1 – αn)(2d2 – ζ )

∥∥D2Gn – D2x∗∥∥2,

so

∥∥D2Gn – D2x∗∥∥2 ≤ ‖xn – x∗‖2 – ‖xn+1 – x∗‖2

ζαn(1 – αn)(2d2 – ζ )
.

It implies that

lim
n→∞

∥∥D2Gn – D2x∗∥∥ = 0. (27)
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From the property of PC , we have

∥∥PC(I – ζD2)Gn – x∗∥∥2

=
〈
(I – ζD2)Gn – (I – ζD2)x∗, PC(I – ζD2)Gn – x∗〉

=
1
2
[∥∥(I – ζD2)Gn – (I – ζD2)x∗∥∥2 +

∥∥PC(I – ζD2)Gn – x∗∥∥2

–
∥∥(I – ζD2)Gn – (I – ζD2)x∗ –

(
(I – ζD2)Gn – x∗)∥∥2]

≤ 1
2
[∥∥Gn – x∗∥∥2 +

∥∥PC(I – ζD2)Gn – x∗∥∥2

–
∥∥(I – ζD2)Gn – (I – ζD2)x∗ –

(
(I – ζD2)Gn – x∗)∥∥2]

=
1
2
[∥∥Gn – x∗∥∥2 +

∥∥PC(I – ζD2)Gn – x∗∥∥2

–
∥∥(

Gn – PC(I – ζD2)Gn
)

– ζ
(
D2Gn – D2x∗)∥∥2]

=
1
2
[∥∥Gn – x∗∥∥2 +

∥∥PC(I – ζD2)Gn – x∗∥∥2

–
∥∥Gn – PC(I – ζD2)Gn

∥∥2

+ 2ζ
〈
Gn – PC(I – ζD2)Gn, D2Gn – D2x∗〉

– ζ 2∥∥D2Gn – D2x∗∥∥2].

It implies that

∥∥PC(I – ζD2)Gn – x∗∥∥2

≤ ∥∥Gn – x∗∥∥2 –
∥∥Gn – PC(I – ζD2)Gn

∥∥2

+ 2ζ
〈
Gn – PC(I – ζD2)Gn, D2Gn – D2x∗〉

≤ ∥∥Gn – x∗∥∥2 –
∥∥Gn – PC(I – ζD2)Gn

∥∥2

+ 2ζ
∥∥Gn – PC(I – ζD2)Gn

∥∥∥∥D2Gn – D2x∗∥∥. (28)

By the definition of Tn and (28), we have

∥∥Tn – x∗∥∥2 ≤ a‖Wn – Wx∗‖2 + (1 – a)
∥∥PC(I – ζD2)Gn – x∗∥∥2

≤ a
∥∥xn – x∗∥∥2 + (1 – a)

[∥∥Gn – x∗∥∥2 –
∥∥Gn – PC

× (I – ζD2)Gn
∥∥2 + 2ζ

∥∥Gn – PC(I – ζD2)Gn
∥∥∥∥D2Gn – D2x∗∥∥]

≤ a
∥∥xn – x∗∥∥2 + (1 – a)

∥∥xn – x∗∥∥2

– (1 – a)
∥∥Gn – PC(I – ζD2)Gn

∥∥2

+ 2ζ
∥∥Gn – PC(I – ζD2)Gn

∥∥∥∥D2Gn – D2x∗∥∥]

=
∥∥xn – x∗∥∥2 – (1 – a)

∥∥Gn – PC(I – ζD2)Gn
∥∥2

+ 2ζ
∥∥Gn – PC(I – ζD2)Gn

∥∥∥∥D2Gn – D2x∗∥∥]. (29)
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In addition, by the definition of xn+1 and (29), we have

∥∥xn+1 – x∗∥∥2 ≤ αn
∥∥Tn – x∗∥∥2 + (1 – αn)

∥∥kn – x∗∥∥2

≤ αn
[∥∥xn – x∗∥∥2 – (1 – a)

∥∥Gn – PC(I – ζD2)Gn
∥∥2

+ 2ζ
∥∥Gn – PC(I – ζD2)Gn

∥∥∥∥D2Gn – D2x∗∥∥]

+ (1 – αn)
∥∥xn – x∗∥∥2

=
∥∥xn – x∗∥∥2 – αn(1 – a)

∥∥Gn – PC(I – ζD2)Gn
∥∥2

+ 2ζαn(1 – a)
∥∥Gn – PC(I – ζD2)Gn

∥∥∥∥D2Gn – D2x∗∥∥, (30)

by (30) and (27), we get

lim
n→∞

∥∥Gn – PC(I – ζD2)Gn
∥∥ = 0. (31)

Since

Tn – Wn = (1 – a)
(
PC(I – ζD2)

(
aWn + (1 – a)PC(I – ζD3)Wn

)
– Wn

)
.

From the property of norm, we have

∥∥PC(I – ζD2)
(
aWn + (1 – a)PC(I – ζD3)Wn

)
– Wn

∥∥

≤ ∥∥PC(I – ζD2)
(
aWn + (1 – a)PC(I – ζD3)Wn

)

–
(
aWn + (1 – a)PC(I – ζD3)Wn

)∥∥

+
∥∥(aWn + (1 – a)PC(I – ζD3)Wn – Wn

∥∥

=
∥∥PC(I – ζD2)Gn – Gn

∥∥ + (1 – a)
∥∥PC(I – ζD3)Wn – Wn

∥∥. (32)

Then we have

‖Tn – Wn‖ ≤ (1 – a)
[∥∥PC(I – ζD2)Gn – Gn

∥∥

+ (1 – a)
∥∥PC(I – ζD3)Wn – Wn

∥∥]
.

From (24) and (31), it implies that

lim
n→∞‖Tn – Wn‖ = 0. (33)

From (15), (17), (33), and

‖yn – xn‖ ≤ ‖yn – Tn‖ + ‖Tn – Wn‖ + ‖Wn – xn‖,

we have

lim
n→∞‖yn – xn‖ = 0. (34)
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Moreover, from (16), (15), (34), and

‖xn – Skn‖ ≤ ‖xn – yn‖ + ‖yn – Tn‖ + ‖Tn – Skn‖,

we have

lim
n→∞‖xn – Skn‖ = 0. (35)

Since {xn}∞n=0 is bounded, it has a subsequence {xnk }∞k=0 which weakly converges to some
x̄ ∈ C.

Assume x̄ /∈ F(S). By the nonexpansiveness of S and Opial’s property and (35), we have

lim
k→∞

inf‖xnk – x̄‖ < lim
k→∞

inf‖xnk – Sx̄‖

≤ lim
k→∞

inf
[‖xnk – Sknk ‖ + ‖Sknk – Sx̄‖]

≤ lim
k→∞

inf
[‖xnk – Sknk ‖ + ‖knk – x̄‖]

= lim
k→∞

inf‖knk – x̄‖

≤ lim
k→∞

inf‖xnk – x̄‖.

This is a contradiction, then we have

x̄ ∈ F(S).

Assume x̄ /∈ ⋂3
i=1 �i. From Lemma 2.6, we have x̄ /∈ F(MC(I –ηA∗(I – MQ)A)). By Opial’s

condition, (34), and Remark 1, we have

lim
k→∞

inf‖xnk – x̄‖ < lim
k→∞

inf
∥∥xnk – MC

(
I – ηA∗(I – MQ)A

)
x̄
∥∥

≤ lim
k→∞

inf‖xnk – ynk ‖ + lim
k→∞

inf
∥∥MC

(
xnk – ηA∗

× (I – MQ)Axnk

)
– MC

(
I – ηA∗(I – MQ)A

)
x̄
∥∥

≤ lim
k→∞

inf
(‖xnk – ynk ‖ + ‖xnk – x̄‖)

= lim
k→∞

inf‖xnk – x̄‖. (36)

This is a contradiction, then we have

x̄ ∈ F
(
MC

(
I – ηA∗(I – MQ)A

))
.

It implies that

x̄ ∈
3⋂

i=1

�i.
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Hence

x̄ ∈ �.

In order to show that the entire sequence {xn} weakly converges to x̄, assume {x}nk ⇀ x̂
as k → ∞, with x̄ �= x̂ and x̂ ∈ �. By Opial’s condition, we have

lim
n→∞‖xn – x̄‖ = lim

k→∞
inf‖xnk – x̄‖

< lim
k→∞

inf‖xnk – x̂‖

= lim
n→∞‖xn – x̂‖

= lim
n→∞ inf‖xnk – x̂‖

< lim
n→∞ inf‖xnk – x̄‖

= lim
n→∞‖xn – x̄‖.

This is a contradiction, thus

x̄ .= x̂.

It implies that the sequence {xn}∞n=0 weakly converges to x̄ ∈ �.
From (34), we have {yn}∞n=0 weakly converges to x̄ ∈ �.
Finally, if we take

Un = P�xn, (37)

by Lemma 2.2, we see that {P�xn}∞n=0 converges strongly to some z ∈ �. From (37), we get

〈x̄ – Un, Un – xn〉 ≥ 0, ∀x̄ ∈ �.

Take n → ∞, we also have

〈x̄ – z, z – x̄〉 ≥ 0,

and hence x̄ = z. Therefore Un converges strongly to x̄ ∈ �, this completes the proof. �

4 Application
Let C be a closed convex subset of H . The standard constrained convex optimization prob-
lem is to find x∗ ∈ C such that

�(
x∗) = min

x∈C
�(x), (38)

where � : C →R is a convex, Frechet differentiable function. The set of all solution of (38)
is denoted by ��.
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Lemma 4.1 ([25] Optimality condition) A necessary condition of optimality for a point
x∗ ∈ C to be a solution of the minimization problem (38) is that x∗ solves the variational
inequality

〈∇�(
x∗), x – x∗〉 ≥ 0 (39)

for all x ∈ C. Equivalently, x∗ ∈ C solves the fixed point equation

x∗ = PC(I – ζ∇�)x∗

for every ζ > 0. If, in addition, � is convex, then the optimality condition (39) is also suffi-
cient.

By using the concept of the split modified system of variational inequalities problem
(SMSVIP), we consider the problem for finding (x∗, y∗, z∗) ∈ C × C × C such that

⎧
⎪⎪⎨

⎪⎪⎩

〈x∗ – (I – ζ∇�1)(ax∗ + (1 – a)y∗), x – x∗〉 ≥ 0, ∀x ∈ C,

〈y∗ – (I – ζ∇�2)(ax∗ + (1 – a)z∗), x – y∗〉 ≥ 0, ∀x ∈ C,

〈z∗ – (I – ζ∇�3)x∗, x – z∗〉 ≥ 0, ∀x ∈ C,

(40)

and finding (x̄∗ = Ax∗, ȳ∗ = Ay∗, z̄∗ = Az∗) ∈ Q × Q × Q such that

⎧
⎪⎪⎨

⎪⎪⎩

〈x̄∗ – (I – ζ̄∇�̄1)(ax̄∗ + (1 – a)ȳ∗), x̄ – x̄∗〉 ≥ 0, ∀x̄ ∈ Q,

〈ȳ∗ – (I – ζ̄∇�̄2)(ax̄∗ + (1 – a)z̄∗), x̄ – ȳ∗〉 ≥ 0, ∀x̄ ∈ Q,

〈z̄∗ – (I – ζ̄∇�̄3)x̄∗, x̄ – z̄∗〉 ≥ 0, ∀x̄ ∈ Q,

(41)

where �1,�2,�3 : C → R with ∇�1,∇�2,∇�3 are the gradients of �1,�2,�3, respectively,
and �̄1, �̄2, �̄3 : Q → R with ∇�̄1,∇�̄2,∇�̄3 are the gradients of �̄1, �̄2, �̄3, respectively,
ζ , ζ̄ > 0 and a ∈ [0, 1]. The sets of all solution of (40) and (41) are denoted by �∇�1,∇�2,∇�3

and �∇�̄1,∇�̄2,∇�̄3 , respectively. The set of all solutions of the split modified system of vari-
ational inequalities (SMSVIP) is denoted by �

∇�1,∇�2,∇�3
∇�̄1,∇�̄2,∇�̄3

, that is,

�
∇�1,∇�2,∇�3
∇�̄1,∇�̄2,∇�̄3

=
{(

x∗, y∗, z∗) ∈ �∇�1,∇�2,∇�3 :
(
x̄∗, ȳ∗, z̄∗) ∈ �∇�̄1,∇�̄2,∇�̄3

}
.

Lemma 4.2 ([23]) Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively. Let �1,�2,�3 : C →R be real-valued convex functions with the gradi-
ents ∇�1,∇�2,∇�3 being 1

L�1
, 1

L�2
, 1

L�3
-inverse strongly monotone and continuous, respec-

tively, where ζ ∈ (0, 2
L� ) with 1

L� = min{ 1
L�1

, 1
L�2

, 1
L�3

}. Let �̄1, �̄2, �̄3 : Q →R be real-valued
convex functions with the gradients ∇�̄1, ∇�̄2, ∇�̄3 being 1

L�̄1
, 1

L�̄2
, 1

L�̄3
-inverse strongly

monotone and continuous, respectively, where ζ̄ ∈ (0, 2
L�̄

) with 1
L�̄

= min{ 1
L�̄1

, 1
L�̄2

, 1
L�̄3

}. Let

A : H1 → H2 be a bounded linear operator with adjoint A∗ and η ∈ (0, 1
L ) with L being the

spectral radius of the operator A∗A. Define MC : H1 → C by MC(x) = PC(I – ζ∇�1)(ax +
(1 – a)PC(I – ζ∇�2)(ax + (1 – a)PC(I – ζ∇�3)x)), ∀x ∈ H1, and define MQ : H2 → Q by
MQ(x̂) = PQ(I – ζ̄∇�̄1)(ax̂ + (1 – a)PQ(I – ζ̄∇�̄2)(ax̂ + (1 – a)PQ(I – ζ̄∇�̄3)x̂)), ∀x̂ ∈ H2.
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Let
⋂3

i=1 ��i �= ∅ and ��i = {�i(x) = minx∗∈C �i(x∗) : �̄i(Ax) = minAx∗∈Q �̄i(Ax∗)} for all
i = 1, 2, 3. Then

3⋂

i=1

��i = F
(
MC

(
I – ηA∗(I – MQ)A

))
.

Theorem 4.3 Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively, and let S : C → C be a nonexpansive mapping. Let �1,�2,�3 : C →R

be real-valued convex functions with the gradients ∇�1,∇�2,∇�3 being 1
L�1

, 1
L�2

, 1
L�3

-
inverse strongly monotone and continuous, respectively, where ζ ∈ (0, 2

L� ) with 1
L� =

min{ 1
L�1

, 1
L�2

, 1
L�3

}. Let �̄1, �̄2, �̄3 : Q → R be real-valued convex functions with the gra-
dients ∇�̄1,∇�̄2,∇�̄3 being 1

L�̄1
, 1

L�̄2
, 1

L�̄3
-inverse strongly monotone and continuous, re-

spectively, where ζ̄ ∈ (0, 2
L�̄

) with 1
L�̄

= min{ 1
L�̄1

, 1
L�̄2

, 1
L�̄3

}. Let A : H1 → H2 be a bounded

linear operator with adjoint A∗ and η ∈ (0, 1
L ) with L being the spectral radius of the opera-

tor A∗A. Define MC : H1 → C by MC(x) = PC(I – ζ∇�1)(ax + (1 – a)PC(I – ζ∇�2)(ax + (1 –
a)PC(I – ζ∇�3)x)), ∀x ∈ H1, and define MQ : H2 → Q by MQ(x̂) = PQ(I – ζ̄∇�̄1)(ax̂ + (1 –
a)PQ(I – ζ̄∇�̄2)(ax̂ + (1 – a)PQ(I – ζ̄∇�̄3)x̂)), ∀x̂ ∈ H2. Let the sequences {xn} and {yn} be
generated by x1 ∈ H1 and

yn = MCWn = PC(I – ζ∇�1)Tn,

where Wn = (I – ηA∗(I – MQ)A)xn and Tn = aWn + (1 – a)PC(I – ζ∇�2)(aWn + (1 – a)PC(I –
ζ∇�3)Wn)).

Qn =
{

z ∈ H :
〈
(I – ζ∇�1)Tn – yn, yn – z

〉 ≥ 0
}

,

xn+1 = αnTn + (1 – αn)SPQn

(
Tn – ζ∇�1(yn)

)
, ∀n ∈N.

Assume that the following conditions hold:
(i) � = F(S)

⋂⋂3
i=1 ��i �= ∅, where

��i = {�i(x) = minx∗∈C �i(x∗) : �̄i(Ax) = minAx∗∈Q �̄i(Ax∗)} for all i = 1, 2, 3.
(ii) αn ∈ [c, d] ⊂ (0, 1).

Then {xn} converges weakly to x0 = P�xn, which (x0, y0, z0) ∈ 	
∇�1,∇�2,∇�3
∇�̄1,∇�̄2,∇�̄3

, where
y0 = PC(I – ζ∇�2)(ax0 + (1 – a)z0) and z0 = PC(I – ζ∇�3)x0 with x̄0 = Ax0, ȳ0 = Ay0,
and z̄0 = Az0.

Proof By using Theorem 3.1 and Lemma 4.2, we obtain the conclusion. �

5 Example and numerical results
In this section, we give the following example to support our main theorem.

Example 5.1 Let R be the set of real numbers, C := {x ∈ H|1 ≤ 2x1 + x2 ≤ 7}, Q := {x ∈
H| – 10 ≤ 3x1 – x2 ≤ 20}, H1 = H2 = R

2. Let D1, D2, D3 : C →R
2 be defined by D1(x1, x2) =

(x1 – 2, x2 + 1), D2(x1, x2) = (x1 – 3, x2 – 5
2 ), and D3(x1, x2) = (x1 + 2, x2 – 6) for all (x1, x2) ∈ C.

Let D̄1, D̄2, D̄3 : Q →R
2 be defined by D̄1(x̄1, x̄2) = (x̄1 – 4, x̄2 + 8), D̄2(x̄1, x̄2) = (x̄1 – 12, x̄2 –

8), and D̄3(x̄1, x̄2) = (x̄1 + 16, x̄2 – 30) for all (x̄1, x̄2) ∈ Q. Let A : R2 → R
2 be defined by
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A(x1, x2) = (2x1, 2x2) and A∗ : R2 → R be defined by A∗(x1, x2) = (2x1, 2x2). Define MC :
H1 → C by MC(x) = PC(I – 1

2 D1)( 1
2 x+ 1

2 PC(I – 1
2 D2)( 1

2 x+ 1
2 PC(I – 1

2 D3)x)), ∀x = (x1, x2) ∈ H1,
define MQ : H2 → Q by MQ(x̂) = PQ(I – 1

5 D̄1)( 1
2 x̂ + 1

2 PQ(I – 1
5 D̄2)( 1

2 x̂ + 1
2 PQ(I – 1

5 D̄3)x̂)),
∀x̂ = (x̂1, x̂2) ∈ H2, and define S : C → C by S(x1, x2) = ( x1

2 + 1, x2
2 ). Let the sequences {xn}

and {yn} be generated by x1 ∈ H1 and

yn = MCWn = PC

(
I –

1
2

(x1 – 2, x2 + 1)
)

Tn,

where Wn = (I – 1
8 A∗(I – MQ)A)xn and Tn = 1

2 Wn + 1
2 PC(I – 1

2 (x1 – 3, x2 – 5
2 ))( 1

2 Wn + 1
2 PC(I –

1
2 (x1 + 2, x2 – 6))Wn)),

Qn =
{

z ∈ H :
〈(

I –
1
2

(x1 – 2, x2 + 1)
)

Tn – yn, yn – z
〉
≥ 0

}
,

and

xn+1 =
n + 1

5n
Tn +

(
1 –

n + 1
5n

)
SPQn

(
Tn –

1
2

(x1 – 2, x2 + 1)(yn)
)

, ∀n ∈N,

where

PCx =

⎧
⎪⎪⎨

⎪⎪⎩

(x1, x2) – [2x1+x2–7](2,1)
5 if 2x1 + x2 > 7,

(x1, x2) if 1 ≤ 2x1 + x2 ≤ 7,

(x1, x2) – [2x1+x2–1](2,1)
5 if2x1 + x2 < 1,

for every x = (x1, x2) ∈ H1 and

PQx̂ =

⎧
⎪⎪⎨

⎪⎪⎩

(x1, x2) – [3x1–x2–20](3,–1)
10 if 3x1 – x2 > 20,

(x1, x2) if – 10 ≤ 3x1 – x2 ≤ 20,

(x1, x2) – [3x1–x2+10](3,–1)
10 if 3x1 – x2 < –10,

for every x̂ = (x1, x2) ∈ H2. By the definition of S, Di, D̄i, MC , MQ for every i = 1, 2, 3, we have
(2, 0) ∈ F(MC(I – 1

8 A∗(I – MQ)A)). From Theorem 3.1, we can conclude that the sequences
{xn} and {yn} converge strongly to (2, 0).

Table 1 and Fig. 1 show the numerical results of sequences {xn} and {yn} where x1 =
(–5, 5) and n = N = 30.

Table 1 The values of {xn} and {yn} with initial values x1 = (–5, 5) and n = N = 30

n xn = (x1n , x
2
n) yn = (y1n , y

2
n)

1 (–5.000000, 5.000000) (0.034028, 1.404266)
2 (–0.457465, 2.305332) (1.309813, 0.647460)
3 (1.223540, 1.203392) (1.781929, 0.337977)
...

...
...

15 (2.000000, 0.000000) (2.000000, 0.000000)
...

...
...

28 (2.000000, 0.000000) (2.000000, 0.0000000)
29 (2.000000, 0.000000) (2.000000, 0.000000)
30 (2.000000, 0.000000) (2.000000, 0.000000)



Sripattanet and Kangtunyakarn Journal of Inequalities and Applications         (2022) 2022:51 Page 21 of 22

Figure 1 The convergence of {xn} and {yn} with initial values x1 = (–5, 5) and n = N = 30
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