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Abstract
In this paper we consider the Green function for a boundary value problem of generic
order. For a specific case, the Leray–Schauder form of the fixed point theorem has
been used to prove the existence of a solution for this particular equation. Our
theoretical approach generalizes, extends, complements, and enriches several results
in the existing literature.
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1 Introduction
Boundary value problems of higher order have been examined due to their mathematical
importance and applications in diversified applied sciences. The higher-order boundary
value problems occur in the study of fluid dynamics, astrophysics, hydrodynamic, hydro-
magnetic stability, astronomy, beam and long wave theory, induction motors, engineer-
ing, and applied physics. Such problems have been studied by many authors. For example,
Oderinu [24] applied weighted residual via partition method to obtain a numerical solu-
tion for 10th and 12th order linear and nonlinear boundary value problems. Mohyud-Din
and Yildirim [22] used modified variational iteration method for solving 9th and 10th or-
der boundary value problems. Iqbal et al. [11] constructed a cubic spline algorithm to
approximate 10th order boundary value problems. Noor et al. [23] applied variational
iterative method to solve 10th order boundary value problems. Mai-Duy [20] have pre-
sented Chebyshev spectral collocation method to solve high-order ordinary differential
equations. Islam et al. [13] solved 10th and 12th order linear and nonlinear boundary
value problems numerically by the Galerkin weighted residual technique with two point
boundary conditions. Akgül et al. [5] have given some reproducing kernel functions to
find approximate solutions of 10th order boundary value problems. Jørgensen et al. [15]
have presented a hierarchical basis of arbitrary order for integral equations solved with
the method of moments (MoM). Akgül et al. [4] implemented reproducing kernel Hilbert
space method to obtain approximate solutions to 10th order boundary value problems.
Ramadan et al. [25] used homotopy analysis method to solve 7th, 8th, and 10th order
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boundary value problems. Ramos and Singh [26] have presented a two-step hybrid block
method for the numerical integration of ordinary differential initial value systems. Siddiqi
and Twizell [30] developed an algorithm to approximate the solutions, and their higher-
order derivatives, of differential equations. Siddiqi and Akram [28] found numerical so-
lutions for 10th-order linear special case boundary value problems using an 11th degree
spline. The same authors in [29] used a nonpolynomial spline to obtain numerical solu-
tions for 10th order linear special case boundary value problems. Twizell et al. [31] have
developed 2nd order finite-difference methods to obtain the numerical solutions for 8th,
10th, and 12th order eigenvalue problems. Wazwaz [32] proposed an algorithm for solv-
ing linear and nonlinear boundary value problems with two-point boundary conditions
of 10th and 12th order. Ma [19] has given existence and uniqueness theorems based on
the Leray–Schauder fixed point theorem for some 4th order nonlinear boundary value
problems. Zvyagin and Baranovskii [33] have constructed a topological characteristic to
investigate a class of controllable systems. Ahmad and Ntouyas [3] conferred some exis-
tence results based on some standard fixed point theorems and Leray–Schauder degree
theory for a higher-order nonlinear differential equation with four-point nonlocal inte-
gral boundary conditions. In [14], a theorem of coupled fixed point on ordered sets has
been proved, and its results have been used to obtain the existence and uniqueness of
positive solution for a class of boundary value problems for fractional differential equa-
tions with singularities. Afsari et al. [2] introduced some new coupled fixed point theo-
rems which have been used for finding a solution to a fractional differential equation of
order α ∈ (0, 1). In [6], generalized α–ψ-contractive mappings have been introduced in
metric-like spaces and some fixed point theorems have been proved. Such results are ap-
plied to a two-point boundary value problem for 2nd order differential equations. In [17],
a new notion of Berinde type (α,ψ) contraction and the existence and uniqueness of a
fixed point for such mapping have been proved, and an application to nonlinear fractional
differential equation was given. Aydi et al. [7] improved and extended a previous proof for
existence and uniqueness for a differential problem with fixed point results by replacing α-
admissibility with orbital α-admissibility. In the framework of extended b-metric spaces,
Abdeljawad et al. [1] suggested fixed points results to a nonlinear Volterra–Fredholm in-
tegral equation and a Caputo fractional derivative differential equation. Karapinar et al.
[16] unified existing fixed point results in the literature to show the existence of solutions
for 2nd order nonlinear differential equations and Caputo fractional derivative boundary
value problem of order β ∈ [1, 2]. More about the results related to the fixed point theory
can be found in [10] and [21]. Motivated by these studies, we investigate the generic dif-
ferential equation of order 2n and hence seek results on the existence of solutions for 10th
order boundary value problems.

2 The problem
We consider the generic differential equation of order 2n:

y(2n)(x) = φ
(
x, y(x), y′′(x)

)
, (1)

with boundary conditions

y(0) = y(1)(0) = · · · = y(n)(0) = 0,

y(n+1)(1) = y(n+2)(1) = · · · = y(2n–1)(1) = 0.
(2)
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Such equations occur, for instance, when studying the problem of the onset of ther-
mal instability in horizontal layers of fluid heated from below. The temperature gradient,
maintained by heating the underside, is adverse since, on account of thermal expansion,
the fluid at the bottom will be lighter than the fluid at the top [9].

Define the Green functions Gl, Gr ∈ C2n of problem (1), Gl(x, s) for 0 ≤ x < s ≤ 1 and
Gr(x, s) for 0 ≤ s < x ≤ 1, such that they solve the following equation (Gl,r is Gl or Gr):

(
∂

∂x

)2n

Gl,r(x, s) = δ(s – x). (3)

Given the inhomogeneous problem

y(2n)(x) = f (x), (4)

x ∈ [0, 1], f ∈ C[0, 1], together with boundary conditions

y(0) = y(1)(0) = · · · = y(n)(0) = 0,

y(n+1)(1) = y(n+2)(1) = · · · = y(2n–1)(1) = 0,
(5)

the Green functions provide solution to (4) in the integral form

y(x) =
∫ 1

0
Gl,r(x, s)f (s) ds. (6)

Those functions are polynomials in x and s to be sought for in the form

Gl(x, s) =
1

(2n – 1)!

2n–1∑

i=0

aixi (7)

and

Gr(x, s) =
1

(2n – 1)!

2n–1∑

i=0

bi(1 – x)i, (8)

where the coefficients ai and bi are polynomials in s.
Imposing boundary conditions (2) to Green functions respectively as

Gl(0, s) =
(

∂

∂x

)
Gl(x, s)

∣
∣∣
∣
x=0

= · · · =
(

∂

∂x

)n

Gl(x, s)
∣
∣∣
∣
x=0

= 0 (9)

and

(
∂

∂x

)n+1

Gr(x, s)
∣∣
∣∣
x=1

= · · · =
(

∂

∂x

)2n–1

Gr(x, s)
∣∣
∣∣
x=1

= 0, (10)

we conclude that many coefficients ai and bi do not contribute:

a0 = a1 = · · · = an–1 = 0 (11)
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and

bn = bn+1 = · · · = b2n–1 = 0. (12)

Therefore, it is possible to write down equations (7) and (8) in a slightly simplified man-
ner:

Gl(x, s) =
1

(2n – 1)!

2n–1∑

i=n

aixi (13)

and

Gr(x, s) =
1

(2n – 1)!

n–1∑

i=0

bi(1 – x)i, (14)

where for the coefficients ai the maximal power of s involved is sn–1, while for the coeffi-
cients bi the minimal power of s is sn+1.

The resulting Green functions Gl,r(x, s) and their x derivatives are continuous up to order
2n – 2 and present the discontinuity of –1 at order 2n – 1 because of the Dirac δ function.
This concludes the proof of the following lemma:

Lemma 2.1 Let x �→ y(x), x ∈ [0, 1] be a function of class C2n in R, and (x, y, z) �→ φ(x, y, z),
x ∈ [0, 1], (y, z) ∈ R

2 be a function of class C in R. Then the Green function of the problem
defined in (4) and (5), obeying equation (3), is given by formulas (13) and (14).

3 The case n = 5
Turning our attention to the particular case n = 5, we should solve the problem outlined
in Sect. 2 for functions

Gl(x, s) =
1
9!

9∑

i=5

aixi (15)

and

Gr(x, s) =
1
9!

4∑

i=0

bi(1 – x)i, (16)

which should obey the system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gl(s, s) = Gr(s, s),
( ∂
∂x )Gl(x, s)|x=s = ( ∂

∂x )Gr(x, s)|x=s,
( ∂
∂x )2Gl(x, s)|x=s = ( ∂

∂x )2Gr(x, s)|x=s,
. . .
( ∂
∂x )8Gl(x, s)|x=s = ( ∂

∂x )8Gr(x, s)|x=s,
( ∂
∂x )9Gl(x, s)|x=s = –1.

(17)

The solution to problem (17) is given by the following functions:

Gl(x, s) = –
1
9!

x5(x4 – 9x3s + 36x2s2 – 84xs3 + 126s4) (18)
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and

Gr(x, s) = –
1
9!

s5(s4 – 9s3x + 36s2x2 – 84sx3 + 126x4), (19)

which could be rearranged as follows:

Gl(x, s) = –
1
9!

x5
[

s3
(

776
15

s – x
)

+ 15s2
(

32
15

s – x
)2

+ (s – x)4 + 5s(s – x)3
]

,

Gr(x, s) = –
1
9!

s5
[

x3
(

776
15

x – s
)

+ 15x2
(

32
15

x – s
)2

+ (x – s)4 + 5x(x – s)3
]

.

One could also expand (18) and (19) to obtain:

Gl(x, s) · 9! = –x9 + 9sx8 – 36s2x7 + 84s3x6 – 126s4x5,

Gr(x, s) · 9! = –126s5x4 + 84s6x3 – 36s7x2 + 9s8x – s9.

This concludes the proof of the following lemma:

Lemma 3.1 Let x �→ y(x), x ∈ [0, 1] be a function of class C10 in R, and (x, y, z) �→ φ(x, y, z),
x ∈ [0, 1], (y, z) ∈ R

2 be a function of class C in R. Then the Green function of the problem
defined in (4) and (5) for n = 5, obeying equations (3) and (17), is given by formulas (18)
and (19).

4 The kernel
In this section we will provide some results obtained by focusing on the particular case of
the problem for n = 5.

Define the integral operator T as follows:

Ty(x) :=
∫ x

0
Gr(x, s)f (s) ds +

∫ 1

x
Gl(x, s)f (s) ds. (20)

According to Lemma 2.1, this operator provides a solution of problem defined in (4)
and (5) for a generic order n, provided it has a fixed point in X.

We shall make use of the following theorem of [8], [27], the Leray–Schauder form of the
fixed point theorem [12], [18]:

Theorem 4.1 Let (E,‖ · ‖) be a Banach space, U ⊂ E is an open bounded subset such that
0 ∈ U and T : U → E is a completely continuous operator. Then either T has a fixed point,
Tx̄ = x̄, x̄ ∈ U or there exist an element x ∈ ∂U and a real number λ > 1 such that Tx = λx.

Therefore, in order to establish the existence of a solution, it is necessary to prove that
our integral operator T has actually at least an eigenvalue larger than 1, i.e., λ > 1. The
following two theorems are devoted to this problem.

Theorem 4.2 Let x �→ y(x), x ∈ [0, 1] be a function of class C10 in R, (x, y, z) �→ φ(x, y, z),
x ∈ [0, 1], (y, z) ∈ R

2 be a function of class C in R and |φ(x, 0, 0)| 	= 0. Suppose that there
exist three nonnegative functions x �→ u(x), v(x), w(x) ∈ L1[0, 1] such that

∣∣φ(x, y, z)
∣∣ ≤ u(x)|y| + v(x)|z| + w(x).
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Define the kernel

K(s) :=
1
8!

(
s8 + 10s6)

and suppose that

A :=
∫ 1

0
K(s)

[
u(s) + v(s)

]
ds < 1.

Then the problem defined in equations (1) and (2) for n = 5 has at least one nontrivial
solution x �→ ξ (x), x ∈ [0, 1] of class C10 in R.

Proof Define the constant

B :=
∫ 1

0
K(s)w(s) ds.

By hypothesis, A < 1 and w(s) ≥ 0. Observe that K(s) > 0 for s ∈ [0, 1]. As |φ(x, y, z)| ≤
u(x)|y| + v(x)|z| + w(x) for all x ∈ [0, 1], (y, z) ∈ R

2 and φ(x, 0, 0) 	= 0 for all x ∈ [0, 1], there
exist an interval [a, b] ⊂ [0, 1] such that maxx∈[a,b] |φ(x, 0, 0)| > 0. Therefore, |φ(x, 0, 0)| > 0
and also w(x) > 0 for some x ∈ [a, b] ⊂ [0, 1]. That implies the inequality

∫ 1
0 K(s)w(s) ds ≥

∫ b
a K(s)w(s) ds > 0. We conclude that A < 1 and B > 0.
Define L := B(1– A)–1 which is positive by construction, and the set U = {y ∈ E : ‖y‖ < L}.

Assume that y ∈ ∂U and λ > 1. As Ty = λy per hypothesis, then λL = λ‖y‖ = ‖Ty‖ =
maxx∈[0,1] |(Ty)(x)|. Adopting the simplified notation dμ = |φ(s, y(s), y′′(s)|ds, we have

λL = max
x∈[0,1]

∣
∣(Ty)(x)

∣
∣

≤
{∫ x

0
Gr(x, s) dμ +

∫ 1

x
Gl(x, s) dμ

}

=
1
9!

{
–

∫ x

0

[
x3

(
776
15

x – s
)

+ 15x2
(

32
15

x – s
)2

+ (x – s)4 + 5x(x – s)3
]

s5 dμ –
∫ 1

x

[
s3

(
776
15

s – x
)

+ 15s2
(

32
15

s – x
)2

+ (s – x)4 + 5s(s – x)3
]

x5 dμ

}

≤ 1
9!

max
x∈[0,1]

{
–

∫ x

0

[
x3

(
776
15

x – s
)

+ 15x2
(

32
15

x – s
)2

+ (x – s)4 + 5x(x – s)3
]

s5 dμ –
∫ 1

x

[
s3

(
776
15

s – x
)

+ 15s2
(

32
15

s – x
)2

+ (s – x)4 + 5s(s – x)3
]

x5 dμ

}

≤ 1
9!

{
–

∫ 1

0

[(
776
15

– s
)

+ 15
(

32
15

– s
)2

+ (1 – s)4 + 5(1 – s)3
]

s5 dμ –
∫ 1

0

[
s3

(
776
15

s
)
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+ 15s2
(

32
15

s
)2

+ (s)4 + 5s(s)3
]

s5 dμ

}

=
1
9!

{
–

∫ 1

0

[
126 – 84s + 36s2 – 9s3 + s4]s5 dμ

–
∫ 1

0

[
776
15

+
1024

15
+ 1 + 5

]
s9 dμ

}

=
1
9!

∫ 1

0

[
–127s9 + 9s8 – 36s7 + 84s6 – 126s5]dμ

≤ 1
9!

∫ 1

0

[
9s8 + 84s6]dμ

≤ 1
8!

∫ 1

0

[
s8 + 10s6]dμ

=
∫ 1

0
K(s) dμ. (21)

By hypothesis, |φ(x, 0, 0)| has an upper bound for x ∈ [0, 1], so one has

∫ 1

0
K(s)

∣∣φ(s, 0, 0)
∣∣ds ≤

∫ 1

0
K(s)

[
u(s)

∣∣y(s)
∣∣ + v(s)

∣∣y′′(s)
∣∣ + w(s)

]
ds

≤
∫ 1

0
K(s)

[
u(s) max

s∈[0,1]

∣
∣y(s)

∣
∣

+ v(s) max
s∈[0,1]

∣∣y′′(s)
∣∣ + w(s)

]
ds

≤
∫ 1

0
K(s)

[
u(s)

∣∣y(s)
∣∣∞ + v(s)

∣∣y′′(s)
∣∣∞ + w(s)

]
ds

≤
∫ 1

0
K(s)

[
u(s)‖y‖ + v(s)‖y‖ + w(s)

]
ds

=
∫ 1

0
K(s)

[
u(s) + v(s)

]‖y‖ds +
∫ 1

0
K(s)w(s) ds

= A‖y‖ + B

= AL + B. (22)

Using equation (21), we obtain the bound

λL ≤ AL + B that implies λ ≤ A +
B
L

= A +
B

B(1 – A)–1 = 1,

which contradicts the hypothesis for which λ < 1. Therefore, we conclude that there exists
at least a nontrivial solution ξ (x) of problem defined in (1)–(2) for the case n = 5. �

Theorem 4.3 Let (x, y, z) �→ φ(x, y, z), x ∈ [0, 1], (y, z) ∈R
2 be a function of class C in R and

|φ(x, 0, 0)| 	= 0. Suppose that there exist three nonnegative functions x �→ u(x), v(x), w(x) ∈
L1[0, 1] such that

∣∣φ(x, y, z)
∣∣ ≤ u(x)|y| + v(x)|z| + w(x).
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Define

K(s) :=
1
8!

(
s8 + 10s6)

and suppose that either of the following conditions is fulfilled:
1. There exists a constant k > –7 such that

u(s) + v(s) <
8!(k + 7)(k + 9)

11k + 97
sk , 0 ≤ s ≤ 1.

2. There exists a constant k′ > –1 such that

u(s) + v(s) <
28

∏9
i=1(k′ + i)

5k′2 + 85k′ + 388
(1 – s)k′

, 0 ≤ s ≤ 1.

3. There exists a constant a > 1 such that

[∫ 1

0

(
u(s) + v(s)

)a
] 1

a
ds <

1
1
8! [(

1
8b+1 )

1
b + 10( 1

6b+1 )
1
b ]

,

where

1
a

+
1
b

= 1 and
∫ 1

0
K(s)

[
u(s) + v(s)

]
ds < 1.

Then the problem defined in equations (1) and (2) for n = 5 has at least one nontrivial
solution x �→ ξ (x), x ∈ [0, 1] of class C10 in R.

Proof In order to prove the claim of this theorem in each case, one has to show that the
integral operator (20) has A < 1, with A defined in Theorem 4.2.

To prove the claim in case 1, we proceed as follows:

∫ 1

0
K(s)

[
u(s) + v(s)

]
ds <

8!(k + 7)(k + 9)
11k + 97

∫ 1

0
K(s)sk ds

=
8!(k + 7)(k + 9)

11k + 97
· 1

8!

∫ 1

0

[
s8 + 10s6]sk ds

=
8!(k + 7)(k + 9)

11k + 97
· 1

8!
11k + 97

k2 + 16k + 63

= 1, (23)

and when k > –7 one has that 8!(k+7)(k+9)
11k+97 > 0.
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For case 2, we have

∫ 1

0
K(s)

[
u(s) + v(s)

]
ds <

28
∏9

i=1(k′ + i)
5k′2 + 85k′ + 388

∫ 1

0
K(s)(1 – s)k′

ds

=
28

∏9
i=1(k′ + i)

5k′2 + 85k′ + 388
· 1

8!

∫ 1

0

[
s8 + 10s6](1 – s)k′ ds

=
28

∏9
i=1(k′ + i)

5k′2 + 85k′ + 388
· 1

8!
1440(5k′2 + 85k′ + 388)

∏9
i=1(k′ + i)

= 1, (24)

and when k′ > –1 one has that 28
∏9

i=1(k′+i)
5k′2+85k′+388 > 0.

In the case 3, we make use of Hölder inequality

∫

S

∣
∣f (s)g(s)

∣
∣ds ≤

(∫

S

∣
∣f (s)

∣
∣a ds

)1/a(∫

S

∣
∣g(s)

∣
∣b ds

)1/b

,

whenever f and g are measurable functions on the domain S and 1/a + 1/b = 1. We have

∫ 1

0
K(s)

[
u(s) + v(s)

]
ds ≤

[∫ 1

0

(
u(s) + v(s)

)a ds
] 1

a
· 1

8!

{[∫ 1

0

(
s8)b ds

] 1
b

+ 10
[∫ 1

0

(
s6)b ds

] 1
b
}

=
[∫ 1

0

(
u(s) + v(s)

)a ds
] 1

a
· 1

8!

{[
1

8b + 1

] 1
b

+ 10
[

1
6b + 1

] 1
b
}

<
1

1
8! [(

1
8b+1 )

1
b + 10( 1

6b+1 )
1
b ]

· 1
8!

{[
1

8b + 1

] 1
b

+ 10
[

1
6b + 1

] 1
b
}

= 1. (25)
�

5 Conclusion
Generic-order boundary value problem and its 10th order solution existence by means of
Leary–Schauder fixed point theorem is the main purpose of the presented paper.
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