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Abstract
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1 Introduction
Let C(R) be the set of all complex (real) numbers, R+(R++) be the set of all nonnega-
tive (positive) numbers, Cn(Rn) be the set of all dimension n complex (real) vectors, and
R

n
+(Rn

++) be the set of all dimension n nonnegative (positive) vectors. An mth order n-
dimensional tensor A = (ai1i2...im ) is a higher-order generalization of matrices, which con-
sists of nm entries:

ai1i2...im ∈R, ik ∈ N = {1, 2, . . . , n}, k = 1, 2, . . . , m.

A is called nonnegative (positive) if ai1i2...im ∈R+ (ai1i2...im ∈ R++).
Tensors have many similarities with matrices and many related results of matrices such

as determinant, eigenvalue, and algorithm theory can be extended to higher order ten-
sors [1–3]. Furthermore, structured matrices such as nonnegative matrices, H-matrices
and M-matrices can also be extended to higher order tensors and these are becoming
the focus of recent tensor research [4–26]. In particular, M-tensors play important roles
in the stability study of nonlinear autonomous systems via Lyapunov’s direct method in
automatic control [27–29] and spectral hypergraph theory [3, 30, 31].

On the other hand, Fan product of M-matrices and Hadamard product of nonnegative
matrices are significant for practical problems, such as the weak minimum principle in
partial differential equations, products of integral equation kernels, characteristic func-
tions in probability theory, the study of association schemes in combinatorial theory, and
so on (see [32]). Some inequalities on the spectral radius for the Hadamard product of
two nonnegative matrices and some inequalities on the minimum eigenvalue for the Fan
product of two M-matrices can be found in [33–37]. Recently, Sun et al. [14] investigated
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some inequalities for the Hadamard product of tensors and obtained some bounds on
the spectral radius, and used them to estimate the spectral radius of a directly weighted
hypergraph. It is well known that an M-tensor is defined based on a Z-tensor and its al-
gebra properties can be explored using the spectral theory of nonnegative tensors [23].
Motivated by these observations, we expect to establish sharp lower bounds on the mini-
mal eigenvalue for the Fan product of two M-tensors and discuss some inclusion relations
among them.

The remaining of this paper is organized as follows. In Sect. 2, we introduce important
notation and recall some preliminary results on tensor analysis. In Sect. 3, based on exact
characterizations of M-tensors, we give a lower bound on the minimum eigenvalue for
the Fan product of two M-tensors. An improved result is established for irreducible non-
negative tensors by the ratio of the smallest and largest values of a Perron vector. Finally,
making use of the information of the absolute maximum in the off-diagonal elements, we
obtain a new lower bound on the minimum eigenvalue for the Fan product. With numer-
ical examples, we exhibit the efficiency of the results given in Theorems 1–3.

2 Notation and preliminaries
We start this section with some fundamental notions and properties developed in tensor
analysis [1, 3], which are needed in the subsequent analysis.

Definition 1 Let A be an m-order n-dimensional tensor. Assume that Axm–1 is not iden-
tical to 0. We say that (λ, x) ∈C× (Cn \ {0}) is an eigenvalue–eigenvector of A if

Axm–1 = λx[m–1],

where (Axm–1)i =
∑n

i2,...,im=1 aii2...im xi2 · · ·xim , x[m–1] = [xm–1
1 , xm–1

2 , . . . , xm–1
n ]T , and (λ, x) is

called an H-eigenpair if they are both real.

Definition 2 Let A and I be m-order n-dimensional tensors.
(i) We call σ (A) as the set of all eigenvalues of A. Assume σ (A) �= ∅. Then the spectral

radius of A is denoted by

ρ(A) = max
{|λ| : λ ∈ σ (A)

}
.

Meanwhile, we use τ (A) to denote the minimal value of the real part of eigenvalues
of A.

(ii) We call a tensor A reducible if there exists a nonempty proper index subset
I ⊂ {1, 2, . . . , n} such that

ai1i2...im = 0, ∀i1 ∈ I, i2, . . . , im /∈ I.

If A is not reducible, then we call A irreducible.
(iii) We call a nonnegative matrix GM(A) the representation associated to a

nonnegative tensor A, if the (i, j)th entry of GM(A) is defined to be the sum of
aii2i3...im with indices j ∈ {i2, i3, . . . , im}. We call a tensor A weakly reducible, if its
representation GM(A) is reducible. It is weakly irreducible if it is not weakly
reducible.
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(iv) We call I is a unit tensor whose entries are

δi1i2...im =

⎧
⎨

⎩

1, if i1 = i2 = · · · = im,

0, otherwise.

It is noted that the spectral radius ρ(A) is the largest H-eigenvalue for the nonnegative
tensor [4] and τ (A) is smallest H-eigenvalue for the M-tensor [23].

The Perron–Frobenius theorem for nonnegative weakly irreducible tensors has been
established in [9, 11, 22].

Lemma 1 Let A be a weakly irreducible nonnegative tensor of order m and dimension n.
Then the following results hold:

(i) A has a positive eigenpair (λ, x) and x is unique up to a multiplicative constant.
(ii)

min
x∈Rn

++
max
1≤i≤n

(Axm–1)i

xi[m–1] = ρ(A) = max
x∈Rn

+\{0}
min

xi �=0,1≤i≤n

(Axm–1)i

xi[m–1] .

The following specially structured tensors are extended from matrices [8, 23].

Definition 3 Let A and U be m-order n-dimensional tensors.
(i) We call A is a Z-tensor if all its off-diagonal entries are nonpositive.

(ii) We call A is an M-tensor if there exist a nonnegative tensor U and a positive real
number η ≥ ρ(U ) such that

A = ηI – U .

If η > ρ(U ), then A is called a strong M-tensor.
(iii) We call A is a weakly irreducible M-tensor if U is weakly irreducible.
(iv) Assume A and B are M-tensors. The Fan product of A and B is denoted by

A �B = D = (di1i2...im ) and defined by

di1i2...im =

⎧
⎨

⎩

ai...ibi...i, i1 = i2 = · · · = im = i,

–|ai1i2...im bi1i2...im |, otherwise.

It is easy to see that all the diagonal entries of an M-tensor are nonnegative [23], and the
(strong) M-tensor is closely linked with the diagonal dominance defined below.

Definition 4 An m-order n-dimensional tensor A is called diagonally dominant if

|ai...i| ≥
∑

δii2...im =0

|aii2...im |, ∀i ∈ N ;

A is called strictly diagonally dominant if the strict inequalities hold for all i ∈ N .

Define a positive diagonal matrix D = diag(d1, . . . , dn) and set

B = (bi1i2...im ) = A · D–(m–1)

m–1
︷ ︸︸ ︷
D · · ·D =

(
ai1...im d–(m–1)

i1 di2 · · ·dim
)
. (1)

We obtain the following necessary and sufficient condition for identifying M-tensors.
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Lemma 2 ([23]) Suppose A is a weakly irreducible Z-tensor and its all diagonal elements
are nonnegative. Then A is an (strong) M-tensor if and only if there exists a positive diag-
onal matrix D such that B defined in (1) is (strictly) diagonally dominant.

3 Some inequalities on the minimum eigenvalue for the Fan product
In this section, we shall give lower bounds on the minimum eigenvalue for the Fan product.
Firstly, we establish characterizations of M-tensors.

Lemma 3 Let Q be a weakly irreducible M-tensor of order m and dimension n. If Qzm–1 ≥
kz[m–1] for a vector z ∈ Rn

++ and a real number k, then k ≤ τ (Q).

Proof Since Q is an M-tensor, there exists a nonnegative tensor U such that

Q = λI – U , (2)

where λ is a nonnegative real number and λ ≥ ρ(U ). It is easy to see that τ (Q) = λ – ρ(U ).
Furthermore, ρ(U ) = λ–τ (Q). Taking into account thatQ is weakly irreducible, we deduce
that U is weakly irreducible. From the assumption and (2), we have

(λI – U )zm–1 ≥ kz[m–1],

that is,

(λ – k)z[m–1] ≥ Uzm–1.

It follows from Lemma 1 that

λ – k ≥ ρ(U ) = λ – τ (Q).

So, τ (Q) ≥ k. �

Lemma 4 Let P , Q be two M-tensors of order m and dimension n. Then P � Q is an M-
tensor. Furthermore, if P , Q are strong M-tensors, then P �Q is a strong M-tensor.

Proof By the definition of P �Q, it holds that

P �Q =

⎧
⎨

⎩

pi...iqi...i, if i2 = i3 = · · · = im = i,

–|pii2...im qii2...im |, otherwise.

Since P , Q are M-tensors, by Lemma 1, there exist positive diagonal matrices C, D such
that

A = P · C–(m–1)

m–1
︷ ︸︸ ︷
C · · ·C, B = Q · D–(m–1)

m–1
︷ ︸︸ ︷
D · · ·D

with

ai1...im = pi1...im c–(m–1)
i1 ci2 · · · cim , bi1...im = qi1...im d–(m–1)

i1 di2 · · ·dim .
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Specifically,

ai...i = pi...i, bi...i = qi...i.

Taking into account that A and B are diagonally dominant, we conclude that

|pi...i| = |ai...i| ≥
∑

δii2...im =0

|pii2...im |c–(m–1)
i ci2 · · · cim ,

|qi...i| = |bi...i| ≥
∑

δii2...im =0

|qii2...im |d–(m–1)
i di2 · · ·dim .

Furthermore, it holds that

|pi...iqi...i| = |ai...ibi...i|
≥

∑

δii2...im =0

(|pii2...im |c–(m–1)
i ci2 . . . cim

) ∑

δii2...im =0

(|qii2...im |d(–m–1)
i di2 · · ·dim

)

≥
∑

δii2...im =0

|pii2...im |c–(m–1)
i ci2 · · · cim |qii2...im |d–(m–1)

i di2 · · ·dim

=
∑

δii2...im =0

|pii2...im qii2...im |(cidi)–(m–1)ci2 di2 · · · cim dim . (3)

Hence, it follows from (3) that there exists a positive diagonal matrix U = diag(c1d1, c2d2,
. . . , cndn) such that

|pi...iqi...i| ≥
∑

δii2...im =0

pii2...im qii2...im ui
–(m–1)ui2 · · ·uim .

It follows from Lemma 2 that P �Q is an M-tensor. By a similar argument as for the first
conclusion, we can obtain the second conclusion. �

Suppose that P = (pi1i2...im ) is a strong M-tensor of order m and dimension n. Set N =
D – P , where D denotes the diagonal tensor of the same order, dimension and diagonal
entries as P . Note that pii...i > 0 for i ∈ N when P is a strong M-tensor. Define JP = D–1N .
Obviously, JP is nonnegative. The following result characterizes JP in terms of the spectral
radius.

Lemma 5 Suppose that P = (pi1i2...im ) is a strong M-tensor of order m and dimension n.
Then

ρ(JP ) ≥ 1 –
τ (P)

min1≤i≤n pii...i
.

Furthermore, if P is weakly irreducible, then

ρ(JP ) ≤ 1 –
τ (P)

max1≤i≤n pii...i
.
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Proof Let P = (pi1i2...im ) be a strong M-tensor. Then there exists a positive vector u = (ui)
such that

pi...iu[m–1]
i +

∑

δii2...im =0

pii2...im ui2 · · ·uim = τ (P)u[m–1]
i ,

that is,

∑
δii2...im =0 pii2...im ui2 · · ·uim

pi...iu[m–1]
i

=
τ (P)
pi...i

– 1. (4)

Since the tensor JP is nonnegative, by Lemma 1 and (4), we have

ρ(JP ) = max
x∈Rn

+\{0}
min

xi �=0,1≤i≤n

(JPxm–1)i

xi[m–1] ≥ min
1≤i≤n

(JPum–1)i

ui[m–1]

= min
1≤i≤n

∑
δii2...im =0 –pii2...im ui2 . . . uim

pi...iu[m–1]
i

= min
1≤i≤n

(

1 –
τ (P)
pi...i

)

= 1 –
τ (P)

min1≤i≤n pii...i
. (5)

Furthermore, JP is weakly irreducible when P is weakly irreducible. From Lemma 1 and
(4), it holds that

ρ(JP ) = min
x∈Rn

++
max
1≤i≤n

(JPxm–1)i

xi[m–1] ≤ max
1≤i≤n

(JPum–1)i

ui[m–1]

= max
1≤i≤n

∑
δii2...im =0 –pii2...im ui2 · · ·uim

pi...iu[m–1]
i

= max
1≤i≤n

(

1 –
τ (P)
pi...i

)

= 1 –
τ (P)

max1≤i≤n pii...i
. (6)

�

The following example shows that the bound of Lemma 5 is tight.

Example 1 Let P = (pijk) be a tensor of order 3 and dimension 3 with elements defined as
follows:

pijk =

⎧
⎨

⎩

p111 = p222 = p333 = 3,

pijk = – 1
4 , otherwise.

By computations, we get τ (P) = 1 and

ρ(JP ) = 1 –
τ (P)

min1≤i≤n pii...i
= 1 –

τ (P)
max1≤i≤n pii...i

=
2
3

.

Based on the characterizations of M-tensors, we can immediately obtain these bounds
from the following result.
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Theorem 1 If P and Q are two strong M-tensors of order m and dimension n, then

τ (P �Q) ≥ (
1 – ρ(JP )ρ(JQ)

)
min

1≤i≤n
(pi...iqi...i). (7)

Proof Let us distinguish two cases.
Case 1. P and Q are both weakly irreducible. It follows from Lemma 4 that P � Q

is a strong M-tensor. Since JP and JQ are weakly irreducible nonnegative tensors, from
Lemma 1, there exist two positive vectors u, v such that

ρ(JP )u[m–1]
i = JPum–1, ρ(JQ)v[m–1]

i = JQvm–1,

equivalently,

∑
δii2...im =0 |pii2...im |ui2 · · ·uim

pi...iu[m–1]
i

= ρ(JP ),

∑
δii2...im =0 |qii2...im |vi2 · · · vim

qi...iv[m–1]
i

= ρ(JQ). (8)

Let z = (zi), where zi = uivi ∈R++ for i ∈ N . Setting U = P �Q, for i ∈ N , we obtain

(
Uzm–1)

i

= pi...iqi...iu[m–1]
i v[m–1]

i –
∑

δii2...im =0

|pii2...im |ui2 · · ·uim |qii2...im |vi2 · · · vim

≥ pi...iqi...iu[m–1]
i v[m–1]

i –
∑

δii2...im =0

(|pii2...im |ui2 · · ·uim
) ∑

δii2...im =0

(|qii2...im |vi2 · · · vim
)

= pi...iqi...iu[m–1]
i v[m–1]

i

×
(

1 –

∑
δii2...im =0 |pii2...im |ui2 · · ·uim

pi...iu[m–1]
i

∑
δii2...im =0 |qii2...im |vi2 · · · vim

qi...iv[m–1]
i

)

= pi...iqi...iu[m–1]
i v[m–1]

i
(
1 – ρ(JP )ρ(JQ)

)
= pi...iqi...i

(
1 – ρ(JP )ρ(JQ)

)
z[m–1]

i . (9)

It follows from Lemma 3 and (9) that

τ (P �Q) ≥ (
1 – ρ(JP )ρ(JQ)

)
min

1≤i≤n
(pi...iqi...i).

Case 2. Either P or Q is weakly reducible. Let S be a tensor of order m and dimension
n with

sii2...im =

⎧
⎨

⎩

1, if i2 = i3 = · · · = im �= i,

0, otherwise.

Then both P – εS and Q– εS are weakly irreducible tensors for any ε > 0. Now, we claim
that P – εS and Q – εS are both strong M-tensors when ε > 0 is sufficiently small. Since
P and Q are strong M-tensors, there exist positive diagonal matrices C, D such that

A = P · C–(m–1)

m–1
︷ ︸︸ ︷
C · · ·C, B = Q · D–(m–1)

m–1
︷ ︸︸ ︷
D · · ·D
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with

ai1...im = pi1...im c–(m–1)
i1 ci2 · · · cim , bi1...im = qi1...im d–(m–1)

i1 di2 · · ·dim .

In particular,

ai...i = pi...i, bi...i = qi...i.

By Lemma 2, one has

|pi...i| = |ai...i| >
∑

δii2...im =0

|pii2...im |c–(m–1)
i ci2 · · · cim ,

|qi...i| = |bi...i| >
∑

δii2...im =0

|qii2...im |d–(m–1)
i di2 · · ·dim .

Set

L = max
i,j∈N

i�=j

{ c[m–1]
j

c[m–1]
i

,
d[m–1]

j

d[m–1]
i

}

and

ε0 = min
i,j∈N

i�=j

{ |pi...i| –
∑

δii2...im =0 |pii2...im |c–(m–1)
i ci2 · · · cim

(n – 1)L
,

|qi...i| –
∑

δii2...im =0 |qii2...im |d–(m–1)
i di2 · · ·dim

(n – 1)L

}

.

Then for any 0 < ε < ε0, it holds that P –εS and Q–εS are strong M-tensors. Substituting
P – εS and Q – εS for P and Q and letting ε → 0, we obtain the desired results by the
continuity of τ (P – εS) and τ (Q – εS). �

Next, we give a lemma about the ratio of the smallest and largest values of a Perron
vector for an irreducible nonnegative tensor.

Lemma 6 (Lemma 3.2 of [35]) Let B be a nonnegative irreducible tensor of order m ≥ 3
and dimension n with a Perron vector y. Then we have

κ(B) ≤ ymin

ymax
,

where κ(B) = max2≤k,k′≤m min 1≤i1,i1′ ≤n
1≤ik =ik′≤n

∑n
i2, . . . , im︸ ︷︷ ︸

except ik

bi1 i2...im

∑n
i2′ , . . . , im′
︸ ︷︷ ︸

except ik′

bi1′ i2′ ...im′
.

Based on the above lemma, we propose the following theorem, which provides a sharp
bound under the condition of irreducibility.
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Theorem 2 Suppose that P and Q are two irreducible strong M-tensors of order m and
dimension n, and ρ(JP ) and ρ(JQ) are their spectral radii with eigenvalue vectors u and v,
respectively. Then,

τ (P �Q) ≥ min
1≤i,j≤n,i�=j

[

1 – ρ(JP )ρ(JQ) +
αβ|pij...j|

pi...i
rj

i(JQ) +
αβ|qij...j|

qi...i
rj

i(JP )
]

pi...iqi...i,

where α = κ(JP) m–1
2 ≤ [ umin

umax
](m–1), β = κ(JQ) m–1

2 ≤ [ vmin
vmax

](m–1), rj
i(JP ) =

∑
δii2...im =0
δji2...im =0

|pii2...im |
pi...i

and

rj
i(JQ) =

∑
δii2...im =0
δji2...im =0

|qii2...im |
qi...i

.

Proof It follows from Lemma 4 thatP �Q is a strong M-tensor. SinceP andQ are strongly
irreducible M-tensors, JP and JQ are irreducible nonnegative tensors. By the assumption
that ρ(JP ) and ρ(JQ) are the spectral radii with eigenvalue vectors u and v, we deduce that
u and v are positive vectors such that

ρ(JP )u[m–1]
i = JPum–1, ρ(JQ)v[m–1]

i = JQvm–1,

equivalently,
∑

δii2...im =0
δji2...im =0

|pii2...im |ui2 · · ·uim

pi...iu[m–1]
i

= ρ(JP ) –
|pij...j|u[m–1]

j

pi...iu[m–1]
i

, (10)

∑
δii2...im =0
δji2...im =0

|qii2...im |vi2 · · · vim

qi...iv[m–1]
i

= ρ(JQ) –
|qij...j|v[m–1]

j

qi...iv[m–1]
i

. (11)

Let z = (zi), where zi = uivi ∈ R++ for i ∈ N . Setting U = P �Q, for i ∈ N , by (10) and (11),
we have

(
Uzm–1)

i = pi...iqi...iz[m–1]
i – |pij...jqij...j|v[m–1]

j u[m–1]
j

–
∑

δii2...im =0
δji2...im =0

|pii2...im ||qii2...im |zi2 · · · zim

≥ pi...iqi...iz[m–1]
i – |pij...jqij...j|v[m–1]

j u[m–1]
j

–
( ∑

δii2...im =0
δji2...im =0

|pii2...im |ui2 · · ·uim

)( ∑

δii2...im =0
δji2...im =0

|qii2...im |vi2 · · · zim

)

= pi...iqi...iz[m–1]
i

[

1 –
|pij...jqij...j|u[m–1]

j v[m–1]
j

pi...iqi...iu[m–1]
i v[m–1]

i

–
(

ρ(JP ) –
|pij...j|u[m–1]

j

pi...iu[m–1]
i

)(

ρ(JQ) –
|qij...j|v[m–1]

j

qi...iv[m–1]
i

)]

= pi...iqi...iz[m–1]
i

[

1 – ρ(JP )ρ(JQ) +
|pij...j|u[m–1]

j

pi...iu[m–1]
i

(

ρ(JQ) –
|qij...j|v[m–1]

j

qi...iv[m–1]
i

)

+
|qij...j|v[m–1]

j

qi...iv[m–1]
i

(

ρ(JP ) –
|pij...j|u[m–1]

j

pi...iu[m–1]
i

)]

. (12)
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From (10) and Lemma 6, we deduce

ρ(JP ) –
|pij...j|u[m–1]

j

pi...iu[m–1]
i

≥
∑

δii2...im =0
δji2...im =0

|pii2...im |
pi...i

u[m–1]
min

u[m–1]
max

= αrj
i(JP ). (13)

Similarly,

ρ(JQ) –
|qij...j|v[m–1]

j

qi...iv[m–1]
i

≥
∑

δii2...im =0
δji2...im =0

|qii2...im |
qi...i

v[m–1]
min

v[m–1]
max

= βrj
i(JQ). (14)

Combining (12) with (13) and (14), we have

(
Uzm–1)

i ≥
[(

1–ρ(JP )ρ(JQ)+
αβ|pij...j|

pi...i
rj

i(JQ)+
αβ|qij...j|

qi...i
rj

i(JP )
)

(pi...iqi...i)
]

z[m–1]
i . (15)

It follows from (15) and Lemma 3 that

τ (P �Q) ≥ min
1≤i,j≤n,i�=j

[

1 – ρ(JP )ρ(JQ) +
αβ|pij...j|

pi...i
rj

i(JQ) +
αβ|qij...j|

qi...i
rj

i(JP )
]

pi...iqi...i. �

Remark 1 The bound in Theorem 2 is sharper than the result of Theorem 1, since
αβ|pij...j|

pi...i
rj

i(JQ) + αβ|qij...j|
qi...i

rj
i(JP ) ≥ 0.

The following example exhibits the efficiency of Theorems 1 and 2.

Example 2 Let P = (pijk), Q = (qijk) be two tensors of order 3 and dimension 3 with ele-
ments defined as follows:

P =
[
P(1, :, :), P(2, :, :), P(3, :, :)

]
, Q =

[
Q(1, :, :), Q(2, :, :), Q(3, :, :)

]
,

where

P(1, :, :) =

⎛

⎜
⎝

3 0 – 1
3

0 –1 0
– 1

3 0 – 1
2

⎞

⎟
⎠ , P(2, :, :) =

⎛

⎜
⎝

0 –1 0
–1 3 0
0 0 – 1

2

⎞

⎟
⎠ ,

P(3, :, :) =

⎛

⎜
⎝

– 1
3 0 – 1

2
0 0 – 1

2
– 1

2 – 1
2 5

⎞

⎟
⎠ , Q(1, :, :) =

⎛

⎜
⎝

3 –1 0
–1 0 0
0 0 – 1

3

⎞

⎟
⎠ ,

Q(2, :, :) =

⎛

⎜
⎝

–1 0 0
0 4 – 1

2
0 – 1

2 – 1
3

⎞

⎟
⎠ , Q(3, :, :) =

⎛

⎜
⎝

0 0 – 1
3

0 – 1
2 – 1

3
– 1

3 – 1
3 2

⎞

⎟
⎠ .

It is clear that min1≤i≤n(pi...iqi...i) = 9. By computations, we get

ρ(JP ) = 0.6842, ρ(JQ) = 0.7328, α = κ(JP) = 0.3, β = κ(JQ) = 0.3.
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From Theorem 1, we have

τ (P �Q) ≥ (
1 – ρ(JP )ρ(JQ)

)
min

1≤i≤n
(pi...iqi...i) = 4.4876.

According to Theorem 2, we obtain

τ (P �Q) ≥ min
1≤i,j≤n,i�=j

[

1 – ρ(JP )ρ(JQ) +
αβ|pij...j|

pi...i
rj

i(JQ) +
αβ|qij...j|

qi...i
rj

i(JP )
]

pi...iqi...i

= 4.9074.

By making use of the information of the absolute maximum in the off-diagonal elements,
we are at the position to establish the following theorem.

Theorem 3 Suppose that P and Q are two strong M-tensors of order m and dimension n
and assume that ρ(JP ) and ρ(JQ) are the corresponding spectral radii. Then

τ (P �Q) ≥ min
i∈N

{
pi...iqi...i –

(
αiβipi...iqi...iρ(JP )ρ(JQ)

) 1
2
}

,

where αi = maxδii2...im =0 |pii2...im | and βi = maxδii2...im =0 |qii2...im |.

Proof The proof is broken into two cases.
Case 1. P and Q are both weakly irreducible. It follows from Lemma 4 that P � Q is a

strong M-tensor. Since JP and JQ are weakly irreducible nonnegative tensors, by Lemma 1,
there exist two positive eigenvectors u = (u2

i ) > 0, v = (v2
i ) > 0 such that

∑
δii2...im=0

|pii2...im |u2
i2 · · ·u2

im

pi...iu2[m–1]
i

= ρ(JP ), (16)

∑
δii2...im =0 |qii2...im |v2

i2 · · · v2
im

qi...iv2[m–1]
i

= ρ(JQ). (17)

Without loss of generality, assume that ui, vi ∈ R++. Let z = (zi) with zi = uivi ∈ R++ and
U = P �Q. By Cauchy–Schwartz inequality, for 1 ≤ i ≤ n, we have

(
Uzm–1)

i = pi...iqi...iz[m–1]
i –

∑

δii2...im =0

|pii2...im ||qii2...im |ui2 vi2 · · ·uim vim

≥ pi...iqi...iz[m–1]
i –

∑

δii2...im =0

|pii2...im |ui2 · · ·uim

∑

δii2...im =0

|qii2...im |vi2 · · · vim

≥ pi...iqi...iz[m–1]
i –

( ∑

δii2...im =0

|pii2...im |2u2
i2 · · ·u2

im

) 1
2

×
( ∑

δii2...im =0

|qii2...im |2v2
i2 · · · v2

im

) 1
2

. (18)
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It follows from the definitions of αi, βi and (18) that

(
Uzm–1)

i ≥ pi...iqi...iz[m–1]
i –

(
αipi...iρ(JP )u2[m–1]

i
) 1

2
(
βiqi...iρ(JQ)v2[m–1]

i
) 1

2

=
[
pi...iqi...i –

(
αiβipi...iqi...iρ(JP )ρ(JQ)

) 1
2
]
z[m–1]

i . (19)

Furthermore, using Lemma 3 and (19), one has

τ (P �Q) ≥ min
i∈N

{
pi...iqi...i –

(
αiβipi...iqi...iρ(JP )ρ(JQ)

) 1
2
}

.

Case 2. Either P or Q is weakly reducible. Similar to the proof of Theorem 1, we obtain
the desired result. �

In what follows, we give inclusion relations between Theorems 1 and 3.

Corollary 1 Let P and Q be strong M-tensors of order m and dimension n.
If pi...iqi...iρ(JP )ρ(JQ) ≤ αiβi for i ∈ N , then

min
i∈N

(
1 – ρ(JP )ρ(JQ)

)
pi...iqi...i ≥ min

i∈N

{
pi...iqi...i –

(
αiβipi...iqi...iρ(JP )ρ(JQ)

) 1
2
}

; (20)

if pi...iqi...iρ(JP )ρ(JQ) ≥ αiβi for i ∈ N , then

min
i∈N

(
1 – ρ(JP )ρ(JQ)

)
pi...iqi...i ≤ min

i∈N

{
pi...iqi...i –

(
αiβipi...iqi...iρ(JP )ρ(JQ)

) 1
2
}

. (21)

Proof Observe that

(
1 – ρ(JP )ρ(JQ)

)
pi...iqi...i = pi...iqi...i – pi...iqi...iρ(JP )ρ(JQ)). (22)

When pi...iqi...iρ(JP )ρ(JQ) ≤ αiβi, from (22), we see

(
1 – ρ(JP )ρ(JQ)

)
pi...iqi...i

= pi...iqi...i –
(
pi...iqi...iρ(JP )ρ(JQ)

) 1
2
(
pi...iqi...iρ(JP )ρ(JQ)

) 1
2

≥ pi...iqi...i – (αiβi)
1
2
(
pi...iqi...iρ(JP )ρ(JQ)

) 1
2

= pi...iqi...i –
(
αiβipi...iqi...iρ(JP )ρ(JQ)

) 1
2 ,

which implies

min
i∈N

{
pi...iqi...i

(
1 – ρ(JP )ρ(JQ)

)} ≥ min
i∈N

{
pi...iqi...i –

(
αiβipi...iqi...iρ(JP )ρ(JQ)

) 1
2
}

.

So, (20) holds.
If pi...iqi...iρ(JP )ρ(JQ) ≥ αiβi for i ∈ N , similar to the proof of (20), we obtain (21). �

Remark 2 If pi...iqi...iρ(JP )ρ(JQ) ≤ αiβi for all 1 ≤ i ≤ n, from (20), we verify that the bound
of Theorem 1 is sharper than that of Theorem 3. When pi...iqi...iρ(JP )ρ(JQ) ≥ αiβi for i ∈ N ,
from (21), we deduce that the bound of Theorem 3 is tighter than that of Theorem 1.
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The following examples give numerical comparisons between Theorems 1 and 3.

Example 3 Let P = (pijk), Q = (qijk) be defined in Example 2.

It is clear that min1≤i≤n(pi...iqi...i) = 9. By computations, we get

ρ(JP ) = 0.6842, ρ(JQ) = 0.7328, α1 = α2 = β1 = β2 = 1, α3 = β3 = 1/2.

Obviously, pi...iqi...iρ(JP )ρ(JQ) ≥ αiβi for i = 1, 2, 3. From Theorem 1, we have

τ (P �Q) ≥ (
1 – ρ(JP )ρ(JQ)

)
min

1≤i≤n
(pi...iqi...i) = 4.4876.

From Theorem 3, we have

τ (P �Q) ≥ min
i∈N

{
pi...iqi...i –

(
αiβipi...iqi...iρ(JP )ρ(JQ)

) 1
2
}

= 6.8758,

So, the bound of Theorem 3 is tighter than that of Theorem 1.

Example 4 Let P = (pijk), Q = (qijk) be two tensors of order 3 and dimension 3 with ele-
ments defined as follows:

P =
[
P(1, :, :), P(2, :, :), P(3, :, :)

]
, Q =

[
Q(1, :, :), Q(2, :, :), Q(3, :, :)

]
,

where

P(1, :, :) =

⎛

⎜
⎝

3 0 0
0 0 – 11

4
0 0 0

⎞

⎟
⎠ , P(2, :, :) =

⎛

⎜
⎝

0 –2 0
0 4 0
0 0 – 1

4

⎞

⎟
⎠ ,

P(3, :, :) =

⎛

⎜
⎝

–3 0 0
0 – 1

4 0
0 0 5

⎞

⎟
⎠ , Q(1, :, :) =

⎛

⎜
⎝

3 0 0
0 – 1

4 0
0 0 –2

⎞

⎟
⎠ ,

Q(2, :, :) =

⎛

⎜
⎝

0 0 0
0 4 0

–2 0 0

⎞

⎟
⎠ , Q(3, :, :) =

⎛

⎜
⎝

– 1
4 0 0

0 –2 0
0 0 3

⎞

⎟
⎠ .

By computations, we get

ρ(JP ) = 0.7036, ρ(JQ) = 0.6458, α1 =
11
4

,

β1 = 2, α2 = β2 = 2, α3 = 3, β3 = 2.

From Theorem 1, one has

τ (P �Q) ≥ (
1 – ρ(JP )ρ(JQ)

)
min

1≤i≤n
(pi...iqi...i) =

(
1 – ρ(JP )ρ(JQ)

)
p1...1q1...1 = 4.9104.



Wang et al. Journal of Inequalities and Applications  (2018) 2018:257 Page 14 of 15

According to Theorem 3, we obtain

τ (P �Q) ≥ min
i∈N

{
pi...iqi...i –

(
αiβipi...iqi...iρ(JP )ρ(JQ)

) 1
2
}

= p1...1q1...1 –
(
α1β1p1...1q1...1ρ(JP )ρ(JQ)

) 1
2 = 4.2674.

Thus, the bound of Theorem 1 is tighter than that of Theorem 3.

4 Conclusions
In this paper, we generalized important inequalities on the minimum eigenvalue for the
Fan product from matrices to tensors. Based on characterizations of M-tensors, we pro-
posed lower bound estimates on the minimum eigenvalue for the Fan product of two M-
tensors. Finally, we gave some sufficient conditions to establish when particular inclusion
relations hold.
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