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Abstract
The alternating direction method of multipliers (ADMM) is one of the most powerful
and successful methods for solving convex composite minimization problem. The
generalized ADMM relaxes both the variables and the multipliers with a common
relaxation factor in (0, 2), which has the potential of enhancing the performance of
the classic ADMM. Very recently, two different variants of semi-proximal generalized
ADMM have been proposed. They allow the weighting matrix in the proximal terms
to be positive semidefinite, which makes the subproblems relatively easy to evaluate.
One of the variants of semi-proximal generalized ADMMs has been analyzed
theoretically, but the convergence result of the other is not known so far. This paper
aims to remedy this deficiency and establish its convergence result under some mild
conditions in the sense that the relaxation factor is also restricted into (0, 2).
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1 Introduction
Let X , Y , and Z be real finite dimensional Euclidean spaces with the inner product 〈·, ·〉
and its induced norm ‖ · ‖. In this paper, we consider the following convex composite
problem with coupled linear equality constraint:

min
x∈X ,y∈Y

f (x) + g(y)

s.t. Ax + By = c,
(1)

where f : X → (–∞, +∞] and g : Y → (–∞, +∞] are closed proper convex functions,
A : X → Z and B : Y → Z are linear operators, and c ∈ Z is given. Many applications
arising in various areas may have mathematical models with the form of (1), such as image
processing, compressed sensing, and statistical learning. Denote A∗ and B∗ as the adjoint
of A and B, respectively. Then the dual of problem (1) takes the form

max
λ∈Z

{
–f ∗(A∗λ

)
– g∗(B∗λ

)
+ 〈λ, c〉}, (2)
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where f ∗(·) (resp. g∗(·)) is a Fenchel conjugate function of f (resp. g). Under Slater’s con-
straint qualification, it is known that (x̄, ȳ) is a solution to problem (1) if and only if there
exists a Lagrangian multiplier λ̄ such that the triple (x̄, ȳ; λ̄) is a solution to the following
Karush–Kuhn–Tucker (KKT) conditions system:

⎧
⎪⎪⎨

⎪⎪⎩

0 ∈ ∂f (x) – A∗λ,

0 ∈ ∂g(y) – B∗λ,

Ax + By – c = 0.

(3)

The augmented Lagrangian function associated with (1) is defined as

Lσ (x, y;λ) := f (x) + g(y) – 〈λ, Ax + By – c〉 +
σ

2
‖Ax + By – c‖2,

where λ ∈ Z is a multiplier and σ > 0 is a penalty parameter. Given (xk , yk), the classic
augmented Lagrangian algorithm takes the form to derive the next pair (xk+1, yk+1):

{
(xk+1, yk+1) := arg minx∈X ,y∈Y Lσ (x, y;λk), (4a)

λk+1 := λk – σ (Axk+1 + Byk+1 – c). (4b)

For solving subproblem (4a), we must minimize the function with strongly coupled
quadratic term, which makes it hard to solve especially in large-scale problems. By noticing
the individual structure of f and g in problem (1), one effective approach is the alternating
direction method of multipliers (abbreviated as ADMM) that for k = 0, 1, . . . ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 := arg minx∈X Lσ (x, yk ;λk), (5a)

yk+1 := arg miny∈Y Lσ (xk+1, y;λk), (5b)

λk+1 := λk – τσ (Axk+1 + Byk+1 – c), (5c)

where τ is a step-length which can be chosen in (0, (1 +
√

5)/2). The advantage of alter-
nating technique lies in decomposing a large problem into several smaller pieces via its
favorable structure, and then solving them accordingly.

The classic ADMM algorithm was originated by Glowinski and Marroco [1], Gabay and
Mercier [2] in the mid-1970s. Gabay [3] showed that the classic ADMM with the τ = 1 is
a special case of the Douglas–Rachford splitting method for monotone operators in the
early 1980s. Later, in [4], Eckstein and Bertsekas showed that the Douglas–Rachford split-
ting method is actually a special case of the proximal point algorithm. The variant of prox-
imal ADMM was proposed by Eckstein [5], which ensures that each subproblem enjoys a
unique solution by introducing an additional proximal term. This technique improves the
behavior of the objective functions in the iteration subproblems and thus ameliorates the
convergent property of the whole algorithm. He et al. [6] in turn showed that the proximal
term can be chosen differently pre-iteration. Furthermore, Fazel et al. [7] gave a deep in-
vestigation and proved that the proximal term can be chosen to be positive semidefinite,
which allows more flexible applications. One may refer to [8] for a note on the historical
development of the ADMM, and some further research on ADMM can be seen in [9, 10],
etc.
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Another contribution of Eckstein and Bertsekas [4] is the designing of a generalized
ADMM based on a generalized proximal point algorithm. Very recently, combining the
idea of semi-proximal terms, Xiao et al. [11] proposed a semi-proximal generalized
ADMM for convex composite conic programming, and numerically illustrated that their
proposed method is very promising for solving doubly nonnegative semi-positive definite
programming. The method of Xiao et al. [11] relaxed all the variables with a factor of
(0, 2), which has the potential of enhancing the performance of the classic ADMM. Addi-
tionally, in [11], Xiao et al. also developed another variant of semi-proximal generalized
ADMM with different semi-proximal terms, but its convergence property has not been in-
vestigated so far. This paper targets to prove the global convergence of this semi-proximal
generalized ADMM under some mild conditions, which may bring some theoretical foun-
dations in some potential practical applications.

The rest of this paper is organized as follows. In Sect. 2, we present some preliminary
results and review some variants of ADMMs. In Sect. 3, we establish the global conver-
gence of the generalized semi-proximal ADMM with semi-proximal terms. In Sect. 4, we
conclude this paper with some remarks.

2 Preliminaries
In this section, we provide some basic concepts and give a quick review of some variants
of generalized ADMMs which will be used in the subsequent developments.

2.1 Basic concepts
Let E be a finite dimensional real Euclidean space with the inner product and the associ-
ated norm denoted by 〈·, ·〉 and ‖ ·‖, respectively. Let f : E → (–∞, +∞] be a closed proper
convex function. The effective domain of f is defined as dom f = {x ∈ E |f (x) < +∞}. The
subdifferential of f is the operator defined as ∂f (x) = {x∗|f (z) ≥ f (x) + 〈x∗, z – x〉,∀z ∈ E},
and it is simply denoted by ∂f (x). Obviously, ∂f (x) is a closed convex set while it is not
empty. The point-to-set operator ∂f : x → ∂f (x) is trivially monotone, i.e., for any x, y ∈ E
such that ∂f (x) and ∂f (y) are not empty, it holds that 〈x–y, u–v〉 ≥ ‖x–y‖2

� for all u ∈ ∂f (x)
and v ∈ ∂f (y), where � : E → E is a self-adjoint positive semidefinite linear operator. The
Fenchel conjugate of a function f at y ∈ E is defined as

f ∗(y) := sup
x

{〈x, y〉 – f (x)
}

= – inf
x

{
f (x) – 〈x, y〉}.

It is well known in [12] that the conjugate function f ∗(y) is always convex and closed,
proper if and only if f is proper. Furthermore, (cl f )∗ = f ∗ and f ∗∗ = cl f , where cl f denotes
the closed function of f , i.e., the epigraph of cl f is a closure of the epigraph of the convex
function f .

Assuming that the KKT system (3) is not empty, then the dual problem (2) can be solved
by using the splitting method to solve the following inclusion problem:

0 ∈ (T1 + T2)(λ) (6)

with

T1(λ) = c – A∂f ∗(–A∗λ
)

and T2(λ) = –B∂g∗(–B∗λ
)
. (7)
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It is easy to see that both T1 and T2 are maximal monotone operators. To solve (6), an
equivalent form of the generalized proximal point algorithm of Eckstein and Bertsekas [4]
with any initial point v0 is that

⎧
⎨

⎩
vk+1 = (1 – ρ)vk + ρ[JσT1 (2JσT2 – I)vk + (I – JσT2 )vk],

λk+1 = JσT2 (vk+1),
(8)

where ρ ∈ (0, 2) and JσT = (I + σT)–1 is the so-called resolvent operator.

2.2 Generalized ADMM
Eckstein and Bertsekas [4] further showed that the iterative framework (8) is equivalent
to the following iterative scheme while it is used to solve the minimization problem (1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 := arg minx∈X {f (x) – 〈λk , Ax〉 + σ
2 ‖Ax + Byk – c‖2}, (9a)

yk+1 := arg miny∈Y{g(y) – 〈λk , By〉 + σ
2 ‖ρAxk+1 – (1 – ρ)Byk + By – ρc‖2}, (9b)

λk+1 := λk – σ [ρAxk+1 – (1 – ρ)Byk + Byk+1 – ρc]. (9c)

Obviously, the classic ADMM (5a)–(5c) with τ = 1 is exactly the generalized ADMM with
ρ = 1.

Furthermore, Chen [13] showed that the generalized ADMM (9a)–(9c) is equivalent to
the following ADMM scheme with initial point w̃0 = (x̃0, ỹ0; λ̃0), and the parameter ρ ∈
(0, 2) is transformed into a relaxation factor:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yk := arg miny∈Y Lσ (x̃k , y; λ̃k), (10a)

λk := λ̃k – σ (Ax̃k + Byk – c), (10b)

xk := arg minx∈X Lσ (x, yk ;λk), (10c)

ω̃k+1 := ω̃k + ρ(ωk – ω̃k), (10d)

where ωk = (xk , yk ;λk) and ω̃k = (x̃k , ỹk ; λ̃k). More details on the equivalence of these two
methods are also given in the Ph.D. thesis [13].

2.3 Proximal ADMM
In order to broaden the capability of the classic ADMM, Eckstein [5] added a proximal
term to each subproblem, which reduced to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 = arg minx∈X {Lσ (x, yk ;λk) + σ
2 ‖x – xk‖2

S}, (11a)

yk+1 = arg miny∈Y{Lσ (xk+1, y;λk) + σ
2 ‖y – yk‖2

T }, (11b)

λk+1 = λk + τσ (Axk+1 + Byk+1 – c), (11c)

where S and T are positive definite matrices. Moreover, Fazel et al. [7] further illustrated
that both weighting matrices can be chosen as positive semidefinite so that it can be ap-
plied in more practical situations. For more details on its convergence results, one can
refer to [7] and the references therein.
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It can be observed that the subproblems in the generalized ADMM schemes (10a)–(10d)
may not admit solutions because A or B is not assumed to be row full-rank. One natural
way to fix this problem is to add proximal terms to these subproblems. Very recently, Xiao
et al. [11] suggested a couple of approaches to achieve this purpose. One of them is to add
the semi-proximal terms 1

2‖x – xk–1‖2
S and 1

2‖y – yk–1‖2
T to the subproblems for computing

xk and yk , i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk := arg minx∈X Lσ (x, ỹk ; λ̃k) + 1
2‖x – xk–1‖2

S, (12a)

λk := λ̃k – σ (Axk + Bỹk – c), (12b)

yk := arg miny∈Y Lσ (xk , y;λk) + 1
2‖y – yk–1‖2

T , (12c)

ω̃k+1 = ω̃k + ρ(ωk – ω̃k). (12d)

Another one is to add the proximal terms 1
2‖x – x̃k‖S and 1

2‖y – ỹk‖2
T , i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk := arg minx∈X Lσ (x, ỹk ; λ̃k) + 1
2‖x – x̃k‖2

S, (13a)

λk := λ̃k – σ (Axk + Bỹk – c), (13b)

yk := arg miny∈Y Lσ (xk , y;λk) + 1
2‖y – ỹk‖2

T , (13c)

ω̃k+1 = ω̃k + ρ(ωk – ω̃k). (13d)

Compared with the traditional proximal approach (12a)–(12d), the semi-proximal terms
in (13a)–(13d) are more natural in the sense that the most recently updated values of vari-
ables are involved. Actually, the global convergence of the iterative framework (13a)–(13d)
has been analyzed in [11], and the corresponding numerical results illustrated that the
proposed method can solve these problems not only effectively but also efficiently. In this
paper, we particularly concentrate on the convergence analysis of the corresponding algo-
rithm based on the former iterative framework to solve the separable convex minimization
problem (1).

3 Global convergence
This section is devoted to analyzing the global convergence of the generalized ADMM
based on the iterative framework (12a)–(12d) Since f and g are both closed proper convex
functions, it is known that ∂f and ∂g are maximal monotone mappings [14], and then
there exist a couple of self-adjoint positive semidefinite linear operators �f : X → X and
�g : Y → Y such that, for any x, x′ ∈ X and y, y′ ∈ Y with u ∈ ∂f (x), u′ ∈ ∂f (x′), v ∈ ∂g(y),
and v′ ∈ ∂g(y′),

〈
u – u′, x – x′〉 ≥ ∥∥x – x′∥∥2

�f
and

〈
v – v′, y – y′〉 ≥ ∥∥y – y′∥∥2

�g
. (14)

First, we state the detailed steps of the generalized ADMM with semi-proximal terms (ab-
breviate it as sPGADM) as follows.

Algorithm sPGADM Set ρ ∈ (0, 2), σ > 0. Choose S : X → X , T : Y → Y such that
∑

f +S +A∗A  0 and
∑

g +T +B∗B  0. Input an initial point ω̃0 = (x̃0, ỹ0; λ̃0) ∈X ×Y×Z .
For k = 1, 2, . . . ,
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Step 1 (main step). Compute

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk := arg minx∈X {f (x) – 〈λ̃k , Ax〉 + σ
2 ‖Ax + Bỹk – c‖2 + 1

2‖x – xk–1‖2
S}, (15a)

λk := λ̃k – σ (Axk + Bỹk – c), (15b)

yk := arg miny∈Y{g(y) – 〈λk , By〉 + σ
2 ‖Axk + By – c‖2 + 1

2‖y – yk–1‖2
T r}. (15c)

Step 2 (relaxation step). Compute

ω̃k+1 = ω̃k + ρ(ωk – ω̃k). (16)

Before deducing the convergence property of sPGADM, we do some preparations to
facilitate the later analysis. Firstly, we make the following assumption.

Assumption A There exists at least one vector (x̄, ȳ; λ̄) ∈ X × Y ×Z such that the KKT
system (3) is satisfied.

We now let {(xk , yk ;λk)} be the sequence generated by sPGADM and (x̄, ȳ; λ̄) be a solution
of the KKT system (3). For a more convenient discussion, we denote xe

k = xk – x̄, ye
k = yk – ȳ,

and λe
k = λk – λ̄.

The first-order optimality condition of (15a) can be expressed as

A∗λ̃k – σA∗(Axk + Bỹk – c) – S(xk – xk–1) ∈ ∂f (xk),

which combined with (15b) yields

A∗λk – S(xk – xk–1) ∈ ∂f (xk) (17)

and

A∗λk+1 – S(xk+1 – xk) ∈ ∂f (xk+1). (18)

Since x̄ and λ̄ satisfy the KKT system (3), then we obtain from (14) that

〈
A∗λk+1 – S(xk+1 – xk) – A∗λ̄, xk+1 – x̄

〉 ≥ ‖xk+1 – x̄‖2
�f

,

or, equivalently, by noting the definition of xe
k ,

〈
λe

k+1, Axe
k+1

〉
–

〈
S(xk+1 – xk), xe

k+1
〉 ≥ ∥∥xe

k+1
∥∥2

�f
. (19)

Similarly, the first-order optimality condition of (15c) can also be described as

B∗λk – σB∗(Axk + Byk – c) – T(yk – yk–1) ∈ ∂g(yk). (20)

Thus, from the monotone property (14), we get

〈
B∗λk – σB∗(Axk + Byk – c) – T(yk – yk–1) – B∗λ̄, yk – ȳ

〉 ≥ ‖yk – ȳ‖2
�g ,
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or, equivalently,

〈
λe

k , Bye
k
〉
–

〈
σ (Axk + Byk – c), Bye

k
〉
–

〈
T(yk – yk–1), ye

k
〉 ≥ ∥∥ye

k
∥∥2

�g
. (21)

Adding two sides of (19) and (21) implies

〈
λe

k+1, Axe
k+1

〉
+

〈
λe

k , Bye
k
〉
–

〈
σ (Axk + Byk – c), Bye

k
〉

–
〈
S(xk+1 – xk), xe

k+1
〉
–

〈
T(yk – yk–1), ye

k
〉

≥ ∥∥xe
k+1

∥∥2
�f

+
∥∥ye

k
∥∥2

�g
,

which can be equivalently rewritten as

〈
λe

k+1, Axe
k+1 + Bye

k
〉
+

〈
λe

k – λe
k+1, Bye

k
〉
–

〈
σ (Axk + Byk – c), Bye

k
〉

–
〈
S(xk+1 – xk), xe

k+1
〉
–

〈
T(yk – yk–1), ye

k
〉

≥ ∥∥xe
k+1

∥∥2
�f

+
∥∥ye

k
∥∥2

�g
. (22)

Note that the first term on the left-hand side of (22) can be reorganized as

〈
λe

k+1, Axe
k+1 + Bye

k
〉

=
〈
λe

k+1 + σ (1 – ρ)Axe
k+1, Axe

k+1 + Bye
k
〉

– σ (1 – ρ)
〈
Axe

k+1 + Bye
k , Axe

k+1 + Bye
k
〉

+ σ (1 – ρ)
〈
Bye

k , Axe
k+1 + Bye

k
〉
. (23)

Then, together with λe
k – λe

k+1 = λk – λk+1, (22) is transformed equally into

〈
λe

k+1 + σ (1 – ρ)Axe
k+1, Axe

k+1 + Bye
k
〉
+

[
σ (1 – ρ)

〈
Bye

k , Axe
k+1 + Bye

k
〉

+
〈
λe

k – λe
k+1, Bye

k
〉
–

〈
σ (Axk + Byk – c), Bye

k
〉]

–
〈
S(xk+1 – xk), xe

k+1
〉
–

〈
T(yk – yk–1), ye

k
〉

≥ ∥∥xe
k+1

∥∥2
�f

+
∥∥ye

k
∥∥2

�g
+ σ (1 – ρ)

∥∥Axe
k+1 + Bye

k
∥∥2. (24)

The following two lemmas play a fundamental role in our convergence analysis.

Lemma 3.1 Let {(xk , yk ;λk)} be the sequence generated from algorithm sPGADM, and
{x̄, ȳ; λ̄} is a solution of the KKT system. For k = 1, 2, . . . , it holds that

〈
λe

k+1 + σ (1 – ρ)Axe
k+1, Axe

k+1 + Bye
k
〉

= –
σρ

2
∥∥Axe

k+1 + Bye
k
∥∥2 –

1
2σρ

[∥∥λe
k+1 + σ (1 – ρ)Axe

k+1
∥∥2

–
∥∥λe

k – σ (1 – ρ)Axe
k
∥
∥2]. (25)

Proof From (15b) and (16), we have

λ̃k+1 = λk + (ρ – 1)(λk – λ̃k) = λk – σ (ρ – 1)(Axk + Bỹk – c)
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and

λk+1 = λ̃k+1 – σ (Axk+1 + Bỹk+1 – c)

= λk – σ (ρ – 1)(Axk + Bỹk – c) – σ
[
Axk+1 + B

(
ỹk + ρ(yk – ỹk)

)
– c

]

= λk – σρ(Axk+1 + Byk – c) – σ (ρ – 1)(Axk – Axk+1). (26)

Thus,

(
λe

k+1 + σ (1 – ρ)Axe
k+1

)
–

(
λe

k + σ (1 – ρ)Axe
k
)

= (λk+1 – λk) + σ (1 – ρ)(Axk+1 – Axk)

= –σρ(Axk+1 + Byk – c) – σ (ρ – 1)(Axk – Axk+1) + σ (1 – ρ)(Axk+1 – Axk)

= –σρ(Axk+1 + Byk – c).

By using (26), we get

(
λe

k+1 + σ (1 – ρ)Axe
k+1

)
+ σρ(Axk+1 + Byk – c) = λe

k + σ (1 – ρ)Axe
k .

Together with the basic relation

2〈u, v〉 = ‖u‖2 + ‖v‖2 – ‖u – v‖2 = ‖u + v‖2 – ‖u‖2 – ‖v‖2, (27)

it implies that

2
〈
λe

k+1 + σ (1 – ρ)Axe
k+1,σρ(Axk+1 + Byk – c)

〉

=
∥∥λe

k + σ (1 – ρ)Axe
k
∥∥2 –

∥∥λe
k+1 + σ (1 – ρ)Axe

k+1
∥∥2

– σ 2ρ2‖Axk+1 + Byk – c‖2,

which is equivalent to

〈
λe

k+1 + σ (1 – ρ)Axe
k+1, Axk+1 + Byk – c

〉

=
1

2σρ

∥∥λe
k + σ (1 – ρ)Axe

k
∥∥2 –

1
2σρ

∥∥λe
k+1 + σ (1 – ρ)Axe

k+1
∥∥2

–
σρ

2
‖Axk+1 + Byk – c‖2. (28)

Since {x̄, ȳ; λ̄} satisfies the KKT system (3) that

Ax̄ + Bȳ = c, Axk+1 + Byk – c = Axe
k+1 + Bye

k ,

then from (28) we get (25). �
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Lemma 3.2 Let {(xk , yk ;λk)} be a sequence generated from algorithm sPGADM, and
{x̄, ȳ; λ̄} be a solution of the KKT system. For k = 1, 2, . . . , it holds that

σ (1 – ρ)
〈
Bye

k , Axe
k+1 + Bye

k
〉
+

〈
λe

k – λe
k+1, Bye

k
〉
–

〈
σ (Axk + Byk – c), Bye

k
〉

≤ –
2 – ρ

ρ
‖xk+1 – xk‖2

�f
–

2 – ρ

2ρ
‖xk+1 – xk‖2

S +
2 – ρ

2ρ
‖xk – xk–1‖2

S

–
σ (2 – ρ)2

2ρ

∥∥Axe
k+1 – Axe

k
∥∥2 +

σ (2 – ρ)
2

∥∥Axe
k
∥∥2 –

σ (2 – ρ)
2

∥∥Axe
k+1

∥∥2. (29)

Proof By using the elementary relation (27), we have

〈
S(xk+1 – xk) – S(xk – xk–1), xk+1 – xk

〉

= ‖xk+1 – xk‖2
S –

〈
S(xk – xk–1), xk+1 – xk

〉

≥ ‖xk+1 – xk‖2
S –

1
2
(‖xk+1 – xk‖2

S + ‖xk – xk–1‖2
S
)

=
1
2
‖xk+1 – xk‖2

S –
1
2
‖xk – xk–1‖2

S. (30)

Similar to (19), from (14), (17), and (18), we get

〈
A∗(λk+1 – λk) – S(xk+1 – xk) + S(xk – xk–1), xk+1 – xk

〉 ≥ ‖xk+1 – xk‖2
�f

.

Then

〈
λk+1 – λk , A(xk+1 – xk)

〉
–

〈
S(xk+1 – xk) – S(xk – xk–1), xk+1 – xk

〉 ≥ ‖xk+1 – xk‖2
�f

,

which together with (30) implies

〈
λk+1 – λk , A(xk+1 – xk)

〉

≥ 1
2
‖xk+1 – xk‖2

S –
1
2
‖xk – xk–1‖2

S + ‖xk+1 – xk‖2
�f

. (31)

Notice that from (26)

σ
(
Axe

k+1 + Bye
k
)

= –ρ–1[λk+1 – λk + σ (1 – ρ)(Axk+1 – Axk)
]
.

Combining it with (31), we obtain

σ
〈
Axe

k – Axe
k+1, Axe

k+1 + Bye
k
〉

= –ρ–1〈Axe
k – Axe

k+1,λk+1 – λk + σ (1 – ρ)(Axk+1 – Axk)
〉

= ρ–1〈Axe
k+1 – Axe

k ,λk+1 – λk
〉
+ ρ–1σ (1 – ρ)

∥∥Axe
k+1 – Axe

k
∥∥2

≥ 1
ρ

‖xk+1 – xk‖2
�f

+
1

2ρ
‖xk+1 – xk‖2

S –
1

2ρ
‖xk – xk–1‖2

S

+
σ (1 – ρ)

ρ

∥∥Axe
k+1 – Axe

k
∥∥2. (32)
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Also from (26)

σ (1 – ρ)
(
Axe

k+1 + Bye
k
)

+
(
λe

k – λe
k+1

)
– σ (Axk + Byk – c)

= σ (1 – ρ)
(
Axe

k+1 + Bye
k
)

+
[
σρ(Axk+1 + Byk – c) + σ (ρ – 1)(Axk – Axk+1)

]

– σ (Axk + Byk – c)

= σ (ρ – 2)
(
Axe

k – Axe
k+1

)
. (33)

Then, since ρ ∈ (0, 2), by using (33), (32), and (27) successively, we deduce that

σ (1 – ρ)
〈
Axe

k+1 + Bye
k , Bye

k
〉
+

〈
λe

k – λe
k+1, Bye

k
〉
– σ

〈
Axk + Byk – c, Bye

k
〉

= σ (ρ – 2)
〈
Axe

k – Axe
k+1, Bye

k
〉

= –σ (2 – ρ)
〈
Axe

k – Axe
k+1, Axe

k+1 + Bye
k
〉
+ σ (2 – ρ)

〈
Axe

k – Axe
k+1, Axe

k+1
〉

≤ –(2 – ρ)
[

1
ρ

‖xk+1 – xk‖2
�f

+
1

2ρ
‖xk+1 – xk‖2

S –
1

2ρ
‖xk – xk–1‖2

S

+
σ (1 – ρ)

ρ

∥∥Axe
k+1 – Axe

k
∥∥2

]

+
σ (2 – ρ)

2
[∥∥Axe

k
∥∥2 –

∥∥Axe
k – Axe

k+1
∥∥2 –

∥∥Axe
k+1

∥∥2]

= –
2 – ρ

ρ
‖xk+1 – xk‖2

�f
–

2 – ρ

2ρ
‖xk+1 – xk‖2

S +
2 – ρ

2ρ
‖xk – xk–1‖2

S

–
σ (2 – ρ)2

2ρ

∥∥Axe
k+1 – Axe

k
∥∥2 +

σ (2 – ρ)
2

∥∥Axe
k
∥∥2 –

σ (2 – ρ)
2

∥∥Axe
k+1

∥∥2. (34)

Thus, (29) is true and the proof is completed. �

Now, based on Lemmas 3.1 and 3.2, we define φk (k > 0) as

φk :=
1

σρ

∥∥λe
k + σ (1 – ρ)Axe

k
∥∥2 +

∥∥xe
k
∥∥2

S +
∥∥ye

k–1
∥∥2

T

+
2 – ρ

ρ
‖xk – xk–1‖2

S + σ (2 – ρ)
∥∥Axe

k
∥∥2. (35)

The following theorem shows that the sequence {φk}k>0 is monotonically decreasing and
the algorithm sPGADM is globally convergent.

Theorem 3.3 Assume that the solution set of (1) is nonempty and that there exists a vector
(x̄, ȳ; λ̄) satisfying the KKT system (3). Let φk(k > 0) be defined as (35), and let the sequence
{(xk , yk ;λk)} be generated from algorithm sPGADM. Then, for k = 1, 2, . . . ,

φk – φk+1

≥ 2
∥∥xe

k+1
∥
∥2

�f
+ 2

∥∥ye
k
∥
∥2

�g
+ σ (2 – ρ)

∥∥Axe
k+1 + Bye

k
∥
∥2 + ‖xk+1 – xk‖2

S

+ ‖yk – yk–1‖2
T +

2(2 – ρ)
ρ

‖xk+1 – xk‖2
�f

+
σ (2 – ρ)2

ρ

∥∥Axe
k – Axe

k+1
∥∥2. (36)

Furthermore, the sequence {(xk , yk ;λk)} converges to a KKT solution (x̄, ȳ; λ̄) to problem (1).
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Proof From (27), we have

〈
S(xk+1 – xk), xe

k+1
〉

=
1
2
[‖xk+1 – xk‖2

S + ‖xk+1 – x̄‖2
S – ‖xk – x̄‖2

S
]
, (37)

〈
T(yk – yk–1), ye

k
〉

=
1
2
[‖yk – yk–1‖2

T + ‖yk – ȳ‖2
T – ‖yk–1 – ȳ‖2

T
]
. (38)

Substituting (25), (29), (37), and (38) into the four parts of the left-hand side of (24) re-
spectively, we get

[
–

σρ

2
∥∥Axe

k+1 + Bye
k
∥∥2 –

1
2σρ

(∥∥λe
k+1 + σ (1 – ρ)Axe

k+1
∥∥2

–
∥∥λe

k – σ (1 – ρ)Axe
k
∥∥2)

]
–

2 – ρ

ρ
‖xk+1 – xk‖2

�f

–
2 – ρ

2ρ

(‖xk+1 – xk‖2
S – ‖xk – xk–1‖2

S
)

–
σ (2 – ρ)2

2ρ

∥∥Axe
k+1 – Axe

k
∥∥2

+
σ (2 – ρ)

2
(∥∥Axe

k
∥∥2 –

∥∥Axe
k+1

∥∥2) –
1
2
(‖xk+1 – xk‖2

S +
∥∥xe

k+1
∥∥2

S –
∥∥xe

k
∥∥2

S

)

–
1
2
(‖yk – yk–1‖2

T +
∥∥ye

k
∥∥2

T –
∥∥ye

k–1
∥∥2

T

)

≥ 〈
λe

k+1 + σ (1 – ρ)Axe
k+1, Axe

k+1 + Bye
k
〉
+

[
σ (1 – ρ)

〈
Bye

k , Axe
k+1 + Bye

k
〉

+
〈
λe

k – λe
k+1, Bye

k
〉
–

〈
σ (Axk + Byk – c), Bye

k
〉]

–
〈
S(xk+1 – xk), xe

k+1
〉
–

〈
T(yk – yk–1), ye

k
〉

≥ ∥∥xe
k+1

∥∥2
�f

+
∥∥ye

k
∥∥2

�g
+ σ (1 – ρ)

∥∥Axe
k+1 + Bye

k
∥∥2. (39)

By the definition of φk(k > 0) and some simple deformations, it is easy to see that (39)
implies (36).

Because ρ ∈ (0, 2), then (35) and (36) deduce that the sequence {φk}k>0 is nonnegative
and monotonically nonincreasing. Thus, the boundedness of φk means that each part on
the right hand side of (35), such as {‖λe

k + σ (1 – ρ)Axe
k‖}, {‖xe

k‖S}, {‖ye
k–1‖T }, {‖xk – xk–1‖S},

and {‖Axe
k‖}, is bounded. Also, from (36), it gives that when k → ∞,

∥∥xe
k+1

∥∥
�f

→ 0,
∥∥ye

k
∥∥

�g
→ 0,

∥∥Axe
k+1 + Bye

k
∥∥ → 0,

‖xk+1 – xk‖S → 0, ‖yk – yk–1‖T → 0,

‖xk+1 – xk‖�f → 0,
∥∥Axe

k – Axe
k+1

∥∥ → 0.

(40)

From the boundedness of {‖xe
k‖S}, {‖xe

k‖�f }, and {‖Axe
k‖}, we know that {‖xk‖�f +S+A∗A} is

bounded. Furthermore, since �f +S +A∗A  0 in sPGADM, we get {‖xk‖} is also bounded.
Similarly, we can deduce that {‖yk‖�g +T+B∗B} is bounded due to the fact that {‖ye

k‖T },
{‖ye

k‖�g }, {‖Axe
k‖}, and {‖Axe

k+1 + Bye
k‖} are all bounded. Thus, from �g + T + B∗B  0,

{‖yk‖} is bounded. Also, the boundedness of {‖λk‖} can come from the boundedness of
{‖λe

k + σ (1 – ρ)Axe
k‖} and {‖Axe

k‖}.
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The boundedness of the sequence {(xk , yk ;λk)} implies that there exists at least one con-
vergent subsequence; for simplicity we denote it as

lim
ki→∞

{
(xki , yki ;λki )

}
= (x∞, y∞;λ∞), {ki} ⊆ {0, 1, . . .}.

By using (17) and (20), we obtain

A∗λki – S(xki – xki–1) ∈ ∂f (xki ), (41)

B∗λki – σB∗(Axki + Byki – c) – T(yki – yki–1) ∈ ∂g(yki ). (42)

Because f and g are closed proper convex functions, the nonempty sets ∂f and ∂g are
closed. By noticing that ‖Axk + Byk – c‖2 ≤ ‖Axe

k+1 + Bye
k‖2 + ‖Axe

k – Axe
k+1‖2, and as men-

tioned before,

∥∥Axe
k+1 + Bye

k
∥∥ → 0,

∥∥Axe
k – Axe

k+1
∥∥ → 0, (43)

‖xk+1 – xk‖S → 0, ‖yk – yk–1‖T → 0, (44)

we take limits with ki on both sides of (41) and (42). It implies that (x∞, y∞;λ∞) satisfies
the KKT condition:

A∗λ∞ ∈ ∂f (x∞), B∗λ∞ ∈ ∂g(y∞), Ax∞ + By∞ – c = 0.

To complete the whole proof, now we will show that (x∞, y∞;λ∞) is the unique limit of
the sequence {(xk , yk ;λk)}. In fact, since (x∞, y∞;λ∞) satisfies the KKT condition, without
loss of generality, we can let (x̄, ȳ; λ̄) = (x∞, y∞;λ∞). Thus, from the definition of φk in (35),
there exists a subsequence {(xki , yki ;λki )} such that

lim
ki→∞

φki = 0.

Together with the nonincreasing and boundedness of {φk}, we know that {φk} converges
to zero itself. By (35), it turns out that when k → ∞,

∥∥λe
k + σ (1 – ρ)Axe

k
∥∥ → 0,

∥∥xe
k
∥∥

S → 0,
∥∥ye

k–1
∥∥

T → 0,

‖xk – xk–1‖S → 0,
∥∥Axe

k
∥∥ → 0.

(45)

Thus, limk→∞ λk = λ̄ since 0 ≤ ‖λe
k‖ ≤ ‖λe

k + σ (1 – ρ)Axe
k‖ + σ |1 – ρ|‖Axe

k‖. Noticing that
‖xe

k‖�f → 0 in (40), we get

lim
k→∞

(∥∥xe
k
∥∥

�f
+

∥∥xe
k
∥∥

S +
∥∥Axe

k
∥∥)

= 0.

Thus, from �f + S + A∗A  0 and xe
k = xk – x̄, it comes true that

lim
k→∞

xk = x̄.
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Also, from (45) together with ‖ye
k‖�g → 0 and ‖Axe

k+1 + Bye
k‖ → 0 in (40), we have

lim
k→∞

(∥∥ye
k
∥∥

�g
+

∥∥ye
k
∥∥

T +
∥∥Bye

k
∥∥)

= 0.

Then, by �g + T + B∗B  0 and ye
k = yk – ȳ, it deduces that limk→∞ yk = ȳ. The above dis-

cussion concludes that the whole sequence {(xk , yk ;λk)} converges to (x̄, ȳ; λ̄). The proof is
completed. �

4 Conclusions
The generalized ADMM, as an important variant of ADMM, is derived from the gener-
alized proximal point algorithm while it is used to solve the sum of maximal monotone
operators inclusion problems. Recently, it was shown that the generalized ADMM is also
equivalent to the unit step-length ADMM but with additional relaxation steps based on
a factor within (0, 2). Combining the idea of semi-proximal terms, Xiao et al. [11] pro-
posed a semi-proximal generalized ADMM and numerically illustrated that their pro-
posed method is very promising for semi-positive definite programming. Additionally,
Xiao et al. [11] introduced another variant of semi-proximal generalized ADMM with dif-
ferent semi-proximal terms, but its convergence property has not been investigated so far.
This study aimed to remedy this deficiency and established its convergence result under
some mild conditions in the sense that the relaxation factor is also restricted into (0, 2).
More precisely, if ρ ∈ (0, 2), theoretical analysis has shown that the proposed algorithm
converges globally by assuming that the optimal solutions set is nonempty and the matri-
ces �f +S + A∗A and �g +T + B∗B are both positive definite. The result is quite in accord
with the standard semi-proximal ADMM [11]. The paper paid more attention to analyzing
the generalized semi-proximal ADMM for solving separable convex minimization. How-
ever, it has not been tested with different factor values of ρ for performance comparing.
This should be our further task to investigate.
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