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Abstract
Given a null hypersurface of a Lorentzian manifold, we isometrically immerse a null
hypersurface equipped with the Riemannian metric (induced on it by the rigging)
into a Riemannian manifold suitably constructed on the Lorentzian manifold. We
study the intrinsic and extrinsic geometry of such an isometric immersion and we link
them to the null geometry of the null hypersurface in the Lorentzian manifold. In the
course of this immersion, we find the basic relationships between the main extrinsic
invariants and the main intrinsic invariants, named Chen-Ricci inequalities of the null
hypersurface in the Lorentzian manifold. The findings prove a topological implication
of these relationships.
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1 Introduction
Soon after Riemann (1854) introduced the notion of a manifold, Schläfli (1873) conjec-
tured that every Riemannian manifold could be locally considered as a submanifold of
an Euclidean space with sufficiently high codimension. This was later proved in different
steps by Janet (1926), Cartan (1927), Burstin (1931) and extended to semi-Riemannian
manifolds by Friedmann (1965). In 1956, Nash proved that every n-Riemannian manifold
can be isometrically embedded in an Euclidean m-space E

m with m = n
2 (n + 1)(3n + 11).

From the aforementioned, it is difficult to apply Nash’ theorem, because it requires a very
large codimension and there is no general optimal relationships between the known intrin-
sic invariants and the main extrinsic invariants for Riemannian submanifold of Euclidean
spaces. To overcome the difficulties Chen introduced in 1993 a new type of Riemannian
invariants for a Riemannian manifold M [6]. We have

δM = τ (p) – inf K(p), (1)

where τ (p) is scalar curvature of M and inf(K)(p) = inf{K(π ) : K(π ) is a plane section of
TpM}.

In [5], Chen established the following general optimal inequality involving the new in-
trinsic invariant δM and the squared mean curvature ‖H‖2 for n-dimensional submanifold
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M of a real space form of constant sectional curvature c:

δM ≤ n2(n – 2)
2(n – 1)

‖H‖2 +
1
2

(n + 1)(n – 2)c. (2)

In [8], Chen proved a basic inequality involving the Ricci curvature and the squared mean
curvature of a submanifold of a real space form:

Ric(X) ≤ 1
4

n2‖H‖2 + (n – 1)c. (3)

In [7], B.Y. Chen estabished the inequality between the shape operator and the mean cur-
vature of isometric immersions in real space forms. In [16], the autors give some remarks
on B.Y. Chen’s inequality involving classical invariants. In [13] Hong and Tripathi stud-
ied this inequality and they presented a general theory for submanifolds of Riemannian
manifolds and proved a basic inequality using (3) as follows:

Ric(X) ≤ 1
4

n2‖H‖2 + Ric(TpM)(X), (4)

where M is a n-dimensional submanifold of M, Ric(TpM)(X) is the n-Ricci curvature of TpM
at X ∈ T1

p M with respect to the ambient manifold M and T1
p M is the set of unit vectors in

TpM. The equality case of (4) is satisfied by X ∈ T1
p M if and only if

{
α(X, Y ) = 0, ∀Y ∈ TpM, g(X, Y ) = 0,
2α(X, X) = nH .

(5)

In [18], this inequality was named a Chen–Ricci inequality by Tripathi where α is the sec-
ond fundamental form of M. The equality case of (4) holds for all unit vectors X ∈ T1

p M
and for all p ∈ M if and only if either M is totally geodesic, or n = 2 and p is a totally
umbilical point. In the degenerate submanifolds, Gülbahar, Kiliç and Keleş introduced
k-Ricci curvature, k-scalar curvature, k-degenerate Ricci curvature, k-degenerate scalar
curvature and they established some inequalities that characterize lightlike hypersurfaces
of a Lorentzian manifold ([10]). Afterward, in [11] they established some inequalities in-
volving k-Ricci curvature, k-scalar curvature, the screen scalar curvature on a screen ho-
mothetic lightlike hypersurface of a Lorentzian manifold and they computed the Chen–
Ricci inequality and the Chen inequality on a screen homothetic lightlike hypersurface of a
Lorentzian manifold. In [15], they established some inequalities on the sectional curvature
of lightlike submanifolds. In this present paper, we first consider the associated Rieman-
nian metric of a null hypersurface in a Lorentzian manifold as in [3] but arising from a null
rigging defined on a neighborhood of the null hypersurface, and we isometrically immerse
the null hypersurface equipped with the associated Riemannian metric (induced on it by
the rigging) into a Riemannian manifold suitably constructed on the Lorentzian manifold.
We establish the link between intrinsic and extrinsic geometry of such isometric immer-
sion (Proposition 4.1, Theorem 4.1). We connect the geometry of the Riemannian metric
constructed on the Lorentzian ambient manifold with the Lorentzian geometry (Theorem
4.2, Theorem 4.3, Theorem 4.4, Theorem 4.5). We establish the Chen inequalities of a null
hypersurface Mn+1 in a Lorentzian ambient manifold Mn+2 (Theorem 5.1, Theorem 5.2,
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Figure 1 Links between the null and Lorentzian
geometry

Theorem 5.3). It is here important first to give the organizational structure of this paper.
Section 2 gives the necessary preliminaries about null hypersurfaces. In Sect. 3, we give the
links between a null geometry and its associated Riemannian geometry. The relationships
between the intrinsic and extrinsic geometries of the immersion of the null hypersurface
Mn+1 equipped with the associated Riemannian metric (induced on it by the rigging) into
a Riemannian manifold suitably constructed on the Lorentzian ambient manifold Mn+2

and the relations between the Riemannian geometry constructed on the Lorentzian man-
ifold and the Lorentzian geometry are discussed in Sect. 4. We connect the intrinsic and
extrinsic geometries of this immersion in order to link those two geometries to the null
geometry and the Lorentzian one (see Fig. 1).

In the last section, we establish Chen’s inequalities for a null hypersurface in Lorentzian
manifold and we discover a topological obstruction to the minimal isometric immersion
of the null hypersurface in an ambient Lorentzian manifold.

2 Preliminaries
Consider a null hypersurface (Mn+1, g) of a (n + 2)-dimensional Lorentzian manifold (M, g)
of constant index 0 < ν < n+2. The normal bundle of the null hypersurface is the subbundle
TM⊥ = {V ∈ �(TM) : g(V , W ) = 0 ∀W ∈ �(TM)} of the tangent bundle TM. Since M is a
null hypersurface, dim(TxM⊥) = 1.

In the classical theory of non-degenerate hypersurfaces, we have the following decom-
position:

TM = TM ⊕orth TM⊥, TM ∩ TM⊥ = {0}, (6)

where ⊕orth denotes orthogonal direct sum. Any vector field of TM splits uniquely into
a component tangent to M and a component perpendicular to M. However, in the null
hypersurface case, (6) does not hold because TM and TM⊥ have a non-trivial intersection.
Therefore, the introduction of the main induced geometric objects on M as the Levi-Civita
connection, the second fundamental form, the operator form, have different properties
from the non-degenerate case. In [9], the authors introduced a complementary bundle
of TM⊥ in TM which is a rank n non-degenerate distribution over M, called a screen
distribution of M, which we denote by S(N), such as

TM = S(N) ⊕orth TM⊥. (7)

The existence of S(N) is secured provided that M is paracompact. A null hypersurface
with a specific screen distribution is given by (M, g,S(N)). It is well known from [9] that,
for such a triplet (M, g,S(N)), there exists a unique rank 1 vector subbundle tr(TM) of
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TM over M, such that, for any non-zero section ξ of TM⊥ on a coordinate neighborhood
U ⊂ M, there exists a unique section N of tr(TM) on U satisfying

ḡ(N , ξ ) = 1, ḡ(N , N) = ḡ(N , W ) = 0, ∀W ∈ �(SN)|U . (8)

Then TM is decomposed as follows:

TM̄ = S(N) ⊕orth
(
TM⊥ ⊕ tr(TM)

)
= TM ⊕ tr(TM), (9)

tr(TM) is called a (null) transversal vector bundle along M. In fact, from (8) and (9) one
shows that, conversely, a choice of a transversal bundle tr(TM) determines uniquely the
distribution S(N). A vector field N as defined in (8) is called a null rigging of M. It is
noteworthy that the choice of a null transversal vector field N along M determines the
null transversal vector bundle, the screen distribution and a unique radical vector field ξ ,
say the rigged vector field, satisfying (8).

Definition 2.1 ([12]) Let M be a null hypersurface of a Lorentzian manifold. A rigging for
M is a vector field L defined on some open set containing M such that Lp /∈ TpM for each
p ∈ M.

An outstanding property of a rigging is that it allows a definition of geometric objects
globally on M. We say that we have a null rigging when the restriction of L to the null
hypersurface is a null vector field. Throughout the paper, we fix a null rigging N for M
on M. In particular this rigging fixes a unique null vector field ξ ∈ �(TM⊥) called the
rigged vector field. From now on, we denote the normalized (or rigged) null hypersurface
by a triplet (M, g, N) where g = g|M is the first fundamental form and N is a null rigging
for M. Let N be a null rigging of a null hypersurface of a Lorentzian manifold (Mn+2, g)
and θ the 1-form metrically equivalent to N defined on some open set containing M and
given by

θ = g(N , ·). (10)

Suppose that

η = i�θ (11)

is a restriction to M, i : M → M being the inclusion map. The normalization N will be
said to be closed if the 1-form θ is closed on M. It is easy to check that S(N) = ker(η)
and the screen distribution S(N) is integrable whenever η is closed. On a normalized null
hypersurface (M, g, N), the Gauss and Weingarten type formulae are given by, respectively,

∇XY = ∇XY + BN (X, Y )N , (12)

∇XN = –AN X + τN (X)N , (13)

∇XPY = ∇∗
XPY + CN (X, PY )ξ , (14)

∇Xξ = –A∗
ξ X – τN (X)ξ (15)
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for any X, Y ∈ �(TM), where ∇ denotes the Levi-Civita connection on (M, g), ∇ denotes
the rigged connection on (M, g) induced from ∇ through the projection along N ; it satisfies

(∇Xg)(Y , Z) = BN (X, Y )η(Z) + BN (X, Z)η(Y ), (16)

and ∇∗ denotes the induced connection on the screen distribution.
Here η is an 1-form on TM defined by

η(X) = g(N , X), ∀X ∈ �(TM), (17)

BN is the null second fundamental form of M and CN is the second fundamental on (S(N)),
respectively. The second fundamental forms are related by their shape operators,

BN (X, Y ) = g
(
A∗

ξ X, Y
)
, g

(
A∗

ξ X, N
)

= 0, (18)

CN (X, PY ) = g(AN X, PY ), g(AN Y , N) = 0, ∀X, Y ∈ �(TM). (19)

A∗
ξ is the null shape operator with respect to the section ξ and

BN (X, ξ ) = 0, A�
ξ ξ = 0. (20)

τN is the 1-form on TM defined by τN (X) = g(∇XN , ξ ). From (15) and A∗
ξ ξ = 0, we find

that

∇ξ ξ = –τN (ξ )ξ , (21)

which means that integral curves of ξ are pregeodesic. Throughout the paper, we consider
the integral curves of ξ to be geodesics in M and M, which means that

τN (ξ ) = 0. (22)

Example 2.1 Let F be the immersion f : Mn+1
0 → R

n+2
1 defined by F (x1, . . . , xn) 
→

[x1, . . . , xn, (x1)2 + · · · + (xn)2], and the null hypersurface Mn+1
0 = {x = (x0, . . . , xn+1),

–x2
0 +

∑n+1
a=1 x2

a = 0}. Let N be the null rigging of M defined by N = –x0∂0 +
∑n+1

a=1 xa∂a;
and the null vector field ξ = 1

2x2
0

(x0∂0 +
∑n+1

a=1 xa∂a), x0 �= 0. Hence the null vector field ξ is
normal to M, thus M is a null hypersurface.

Let X = X0∂0 +
∑n+1

b=1 Xb∂b, the 1-form η is given by

η(X) = 〈N , X〉

=

〈
–x0∂0 +

n+1∑
a=1

xa∂a, X0∂0 +
n+1∑
b=1

Xb∂b

〉

=

(
x0X0 +

n+1∑
a=1

xaXa

)

= 2x0 dx0(X).
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Hence η = 2x0 dx0 and dη = 0. This shows that η is closed and τN (X) = –[2x2
0(– dx0

x3
0

) +
1

2x2
0

2x0 dx0](X) for all X ∈ �(TM).

Definition 2.2 A null hypersurface M is said to be totally umbilical (respectively, totally
geodesic) if there exists a smooth function ρ on M such that at each x ∈ M and for all
X, Y ∈ TxM, BN (x)(X, Y ) = ρ(x)g(X, Y ) (respectively, BN vanishes identically on M). This
is equivalent to write Aξ = ρP and Aξ = 0. Also, the screen distribution S(N) is totally
umbilical (respectively, totally geodesic) if CN (X, PY ) = ρ(x)g(X, Y ) for all X, Y ∈ �(TM)
(respectively, CN = 0), which is equivalent to writing AN = ρP (respectively, AN = 0).

Denote by R and R the Riemann curvature tensors of ∇ and ∇ , respectively. Re-
call the following Gauss–Codazzi equations ([9]) for all X, Y , Z ∈ �(TM), N ∈ tr(TM),
ξ ∈ �(TM⊥):

g
(
R(X, Y )Z, ξ

)
=

(∇XBN)
(Y , Z) –

(∇Y BN)
(X, Z) + BN (Y , Z)τN (X)

– BN (X, Z)τN (Y ); (23)

ḡ
(
R̄(X, Y )ξ , N

)
= g

(
R(X, Y )ξ , N

)
= CN(

Y , A∗
ξ X

)
– CN(

X, A∗
ξ Y

)
– 2 dτN (X, Y ); (24)

g
(
R(X, Y )PZ, N

)
=

(∇XCN)
(Y , PZ) –

(∇Y CN)
(X, PZ)

+ τN (Y )CN (X, PZ) – τN (X)CN (Y , PZ). (25)

The shape operator A�
ξ is self-adjoint as the second fundamental form BN is symmetric.

However, this is not the case for the operator AN as show in the following lemma.

Lemma 2.1 For all X, Y ∈ �(TM)

〈AN X, Y 〉 – 〈AN Y , X〉 = τN (X)η(Y ) – τN (Y )η(X) – 2 dη(X, Y ), (26)

where (throughout) 〈, 〉 = g stands for the Lorentzian metric.

Proof Recall that η = i�θ where θ = 〈N , ·〉. Taking the differential of θ and using the Wein-
garten formula, we have, for all X, Y ∈ �(TM),

2 dη(X, Y ) = 2 dθ (X, Y )

= 〈∇XN , Y 〉 – 〈∇Y N , X〉
= –〈AN X, Y 〉 + τN (X)η(Y ) + 〈AN Y , YX〉 – τ (Y )η(X).

Hence

〈AN X, Y 〉 – 〈AN Y , X〉 = τN (X)η(Y ) – τN (Y )η(X) (27)

as announced. �

We shall use the following notations:
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Notations 2.1 For x ∈ M, we set S0
x (1) = {X ∈ TxM, 〈X, X〉 = 1 – η(X)2}, S0(1) =⋃

x∈M S0
x (1), and for all X ∈ �(TM), we set Oη(X) = {Y ∈ TM, 〈X, Y 〉 = –η(X)η(Y )}, where

〈, 〉 stands for g or g . Observe that Y ∈ Oη(X) if and only if X ∈ Oη(Y ).

Due to the degeneracy of the first fundamental form g on the null hypersurface M, it is
not possible to define the natural dual isomorphism between the tangent vector bundle
TM and the cotangent vector bundle T�M following the usual Riemannian way. However,
this construction is possible by setting a rigging N (see [3], [1] for further details). Consider
a normalized null hypersurface (M, g, N) and 1-form defined by (17). For all X ∈ �(TM),
X = PX + η(X)ξ and η(X) = 0 if and ony if X ∈ �(S(N)). Now, we define �η by

�η : �(TM) → �
(
TM∗),

X 
→ X�η = g(X, ·) + η(X)η(·), ∀X ∈ �(TM),

X�η (Y ) = g(X, Y ) + η(X)η(Y ).

(28)

�η is an isomorphism of �(TM) on to �(T∗M) and can be used to generalize the usual
non-degenerate theory. In the latter case, �(S(N)) coincides with �(TM), and as a con-
sequence the 1-form η vanishes identically and the projection morphism P becomes the
identity map on �(TM). Let �η denote the inverse of the isomorphism �η given by (28). For
X ∈ �(TM) (respectively, w ∈ T∗M), X�η (respectively, w�η ) is called the dual 1-form of X
(respectively, the dual vector field of w) with respect to the degenerate metric g . It follows
from (28) that if w is a 1-form on M, we have, for X ∈ �(TM),

w(X) = g
(
w�η , X

)
+ w(ξ )η(X). (29)

Define a (0, 2)-tensor gη by gη(X, Y ) = X�η (Y ), ∀X, Y ∈ �(TM). Clearly, gη defines a non-
degenerate metric on M which plays an important role in defining the usual differential
operators (gradient, divergence, Laplacian) with respect to degenerate metric g on null
hypersurface (for details see [3]). In this case, gη is called the associated metric to g on
(M, g, N). Also, observe that gη coincides with g if the latter is non-degenerate. The (0, 2)-
tensor g–1

η , the inverse of gη , is called the pseudo-inverse of g with respect to the rigging N .
With the quasi-orthonormal local frame field {∂0 := ξ , ∂1, . . . , ∂n, N} adapted to the de-

composition (6) and (7) we have

gη(X, Y ) = g(X, Y ), ∀X, Y ∈ �
(
S(N)

)
.

gη(ξ , X) = η(X), ∀X ∈ �(TM).

gη(ξ , ξ ) = 1. (30)

Definition 2.3 ([2]) A normalized null hypersurface (M, g, N) of a pseudo-Riemannian
manifold (M, g) is said to have a conformal screen if there exists a non-vanishing smooth
function ϕ on M such that AN = ϕA�

ξ holds.

This is equivalent to the fact that CN (X, PY ) = ϕBN (X, Y ) for all tangent vector fields X
and Y . The function ϕ is called the conformal factor.
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Remark 2.1 For all x ∈ M

S0
x (1) =

{
X ∈ TxM, 〈X, X〉 = 1 – η(X)2} =

{
X ∈ TxM, gη(X, X) = 1

}
, (31)

that is, S0(1) coincides with the unit bundle of M with respect to the associated Rieman-
nian metric gη from the normalization. Also, for all X ∈ TxM, Oη(X) = X⊥gη .

3 Relations between null and the associated Riemannian geometry
Let (M, g, N) be a normalized null hypersurface of a pseudo-Riemannian manifold
(Mn+2, g), ∇ the induced connection on M. In order to relate the main geometric objects of
both null and associated non-degenerate geometry on the null hypersurface, we first need
to relate the covariant derivatives ∇η and ∇ . For this purpose, we recall the following.

Lemma 3.1 ([3]) For all X, Y , Z ∈ �(TM), we have

(∇Xgη)(Y , Z) = η(Y )
[
BN (X, PZ) – CN (X, PZ)

]
+ η(Z)

[
BN (X, PY ) – CN (X, PY )

]
+ 2τN (X)η(Y )η(Z). (32)

In this respect and using Lemma 3.1 we give the following result.

Proposition 3.1 ([14]) Let (M, g, N) be a normalized null hypersurface with rigged vector
field ξ . Then, for all X, Y ∈ �(TM), we have

∇η

XY = ∇XY +
1
2
[
2g

(
A∗

ξ X, Y
)

– g(AN X, Y ) – g(AN Y , X)

+ η(X)τN (Y ) + η(Y )τN (X)
]
ξ + η(X)(iY dη)�η + η(Y )(iX dη)�η . (33)

In particular for a closed normalization

∇η

XY = ∇XY +
1
2
[
2g

(
A∗

ξ X, Y
)

– g(AN X, Y ) – g(AN Y , X)

+ η(X)τN (Y ) + η(Y )τN (X)
]
ξ (34)

with dη(X, Y ) = 1
2 [X · η(Y ) – Y · η(X) – η([X, Y ])].

Using Proposition 3.1 we prove the following.

Proposition 3.2 Let (M, g, N) be a closed normalized null hypersurface with rigged vector
field ξ . Then, for all X, Y , W ∈ �(TM) and U ∈ �(TM⊥), we have

gη

(
Rη(X, Y )Z, PW

)
= g

(
R(X, Y )Z, PW

)
+

1
2
{
φ(X,Z)BN (Y , W ) – φ(Y ,Z)BN (X, W )

}
, (35)
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gη

(
Rη(X, Y )Z, U

)
= –g

(
R(X, Y )U , PZ

)
–

1
2
[
g(AN U , Y )BN (X, Z) – g(AN U , X)BN (Y , Z)

]
–

1
2
[
τN (X)BN (Y , Z) – τN (Y )BN (X, Z)

]
η(U), (36)

where φ(X, Z) is given by

φ(X,Z) = 2BN (X, Z) – g(AN X, Z) – g(AN Z, X)

+ τN (X)η(Z) + τN (Z)η(X). (37)

Proof The Riemann curvature tensor field Rη of type (1, 3) is defined by

Rη(X, Y )Z =
[∇η

X ,∇η

Y
]
Z – ∇η

[X,Y ]Z. (38)

Then (35) and (36) consist of repeated applications of (34) in Proposition 3.1. �

Let Ricη and Ric denote the Ricci curvature of (M, gη) and (M, g, N), respectively. We
shall give the following result, involving the extrinsic Ricci curvature Ric to the associated
Ricci curvature Ricη .

Theorem 3.1 Let (M, g, N) be a closed normalized null hypersurface with rigged vector
field ξ and τN (ξ ) = 0 in a (n + 2)-pseudo-Riemannian manifold. Then

Ricη(X, Y ) = Ric(X, Y ) –
[〈

A∗
ξ X, Y

〉
– 〈AN X, Y 〉 + τN (X)η(Y )

]
tr A∗

ξ

+
〈(∇ξ A∗

ξ

)
(X), Y

〉
–

〈
(∇ξ AN )(X), Y

〉
+

(∇ξ τ
N)

(X)η(Y ) –
(∇XτN)

(Y ). (39)

Proof Let p ∈ M and (E0 := ξ , E1, . . . , En) be a quasi-orthonormal basis for (TpM, gp) with
Span(E1, . . . , En) = S(N)p. When dealing with indices, we adopt the following conventions:
i, j, k, . . . ∈ {1, . . . , n}, α,β ,γ ∈ {0, . . . , n}, and a, b, . . . ,∈ {0, . . . , n + 1}. Then we have

Ricη(X, Y ) =
n∑

α=0

gαα
η

(
Rη(Eα , X)Y , Eα

)
. (40)

Thus, from (35) and (36), we get

Rηic(X, Y ) = gη

(
Rη(ξ , X)Y , ξ

)
+

n∑
i

gη

(
Rη(Ei, X)Y , Ei

)

= Ric(X, Y ) + g
(
A∗

ξ X, A∗
ξ Y

)
– g

(
A∗

ξ X, Y
)

– g
(
A∗

ξ X, Y
)

tr A∗
ξ

– g
(
A∗

ξ X, AN Y
)

+
1
2
[
g(AN X, Y ) + g(AN Y , X) – τN (X)η(Y )

– τN (Y )η(X)
]

tr A∗
ξ – g

(
R(ξ , X)ξ , Y

)
– g

(
R(ξ , X)Y , N

)
,
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Rηic(X, Y ) = Ric(X, Y ) –
[〈

A∗
ξ X, Y

〉
– 〈AN X, Y 〉] tr A∗

ξ

– τN (X)η(Y ) tr A∗
ξ +

〈
X,

(∇ξ A∗
ξ

)
(Y )

〉
–

(∇XτN)
(Y )

–
〈
(∇ξ AN )(X), Y

〉
+ 2dτN (ξ , X)η(Y ) + τN(

A∗
ξ X

)
η(Y ),

where

Ric(X, Y ) =
n∑

i=1

εig
(
R(Ei, X)Y , Ei

)
+ g

(
R(ξ , X)Y , N

)
(41)

is the induced Ricci tensor curvature on a null hypersurface. But 〈X, (∇ξ A∗
ξ )(Y )〉 =

〈(∇ξ A∗
ξ )(X), Y 〉 and 2 dτN (ξ , X) = (∇ξ τ

N )(X) – (∇XτN )(ξ ) and (∇XτN )(ξ ) = τN (A∗
ξ X). Also

g(R(ξ , X)ξ , Y ) = g(A∗
ξ X, A∗

ξ Y ) – g(X, (∇ξ A∗
ξ )(Y )) and

g
(
R(ξ , X)Y , N

)
=

(∇XτN)
(Y ) +

〈
(∇ξ AN )(X), Y

〉
– 2 dτN (ξ , X)η(Y ) –

〈
AN A∗

ξ X, Y
〉
.

By substituting previous terms in the above expression of Ricη(X, Y ) we get the desired
formula. �

For all X, Y ∈ �(TM) we define the (0, 2)-symmetrized Ricci tensor Ric0 on the null
hypersurface by

Ric0(X, Y ) =
1
2
{
Ric(X, Y ) + Ric(Y , X)

}
. (42)

Theorem 3.2 Let (M, g, N) be a closed normalized null hypersurface with rigged vector
field ξ and τN (ξ ) = 0 in a pseudo-Riemannian manifold. Then

rη = r0 –
[
tr A∗

ξ – tr AN
]

tr A∗
ξ

+
[
tr
(∇ξ A∗

ξ

)
– tr(∇ξ AN )

]
– divg τN �η , (43)

where rη denotes the scalar curvature of the non-degenerate metric gη on M, and r0 is the
extrinsic scalar curvature on the rigged null hypersurface (M, g, N) given by r0 = gαβ

η Ric0
αβ ,

with respect to a local quasi-orthonormal frame field (e0 := ξ , e1, . . . , en) for (M, gη).

Proof We have rη = gαα
η Ricη

αα in a local quasi-orthonormal frame field (e0 := ξ , e1, . . . , en)
for (M, gη) with span (e1, . . . , en) = S(N). But

Ricη
αα = Ric0

αα –
[〈

A�
ξ eα , eα

〉
– 〈AN eα , eα〉 + τN (eα)η(eα)

]
tr A�

ξ

+
[〈(∇ξ A�

ξ

)
(eα), eα

〉
–

〈
(∇ξ AN )(eα), eα

〉]
+

[(∇ξ τ
N)

(eα)η(eα) –
(∇eα τN)

(eα)
]
.

Hence, by contracting each side with gαα
η and taking into account Proposition 3.1

along with the following facts: (∇eiτ )(ei) = η(τ �)g(A�
ξ ei, ei) + g(∇eiτ

�, ei) = g(∇eiτ
�, ei),

gαα
η (∇ξ τ

N )(eα)η(eα) = 0, gαα
η 〈(∇ξ AN )(eα), eα〉 = tr(∇ξ AN ) + gη(∇ξ (τN�η ), ξ ) and

gαα
η τN (eα)η(eα) = 0, gαα

η 〈(∇ξ A�)(eα), eα〉 = tr(∇ξ A�
ξ ), we get Eq. (43). �
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Lemma 3.2 Let (M, g, N) be a closed normalized null hypersurface with rigged ξ and
τN (ξ ) = 0 in a Lorentzian manifold. Then, for all x ∈ M and a non-degenerate plane
π ∈ SxN , and ξ ∈ �(TM)⊥, we have

Kη(π ) = K(π ) + BN (X, Y )2 – BN (X, X)BN (Y , Y )

+ BN (X, X)CN (Y , Y ) – BN (X, Y )CN (X, Y ), (44)

where X and Y are orthogonal unit vectors in Sx(N) and π = Span{X, Y }.

Proof Suppose π is a non-degenerate plane (for gη) in TpM. The real number

Kη(π ) =
gη(Rη(U , V )V , U)

gη(U , U)gη(V , V ) – (gη(U , V ))2 (45)

is the sectional curvature of π (with respect to gη). Observe that a plane π ⊂ S(N) is both
non-degenerate with respect to gη and g (simultaneously) or not. Now, (44) is a direct
consequence of (35) in Eq. (45), taking into account the fact, without loss of generality,
that we have assumed X and Y to be gη-unit and orthogonal in S(N) (and hence also
for g). �

4 Relations between the associated Riemannian geometry and Riemannian
geometry constructed on Lorentzian manifold

4.1 Isometric immersion of a null hypersurface equipped with Riemannian
associated metric

Given a null hypersurface (M, g) in a Lorentzian manifold (Mn+2, g), first, we fix a null
rigging N fixed on M, θ is an 1-form given by (10). Let ν be an 1-form given by

ν(X) = g(ξ , X), X ∈ �(TM), (46)

with ξ defined along the null hypersurface, and also ν(N) = 1, ν(ξ ) = 0, θ (N) = 0,
θ (ξ ) = 1. From now on, we suppose that Eq. (8) holds globally on Mn+2, that is, gx(Nx, Nx) =
0, gx(Nx, ξx) = 1, gx(ξx, ξx) = 0 ∀x ∈ Mn+2. Now, we define the Riemannian metric gη from
the Lorentzian metric g , for all X, Y ∈ �(TM), by

gη(X, Y ) = g(X, Y ) +
[
(θ – ν) ⊗ (θ – ν)

]
(X, Y ). (47)

For the proof, it is well known that TM = D⊗orth S(N), whereD = Span{N , ξ}, which means
that, for all X ∈ �(TM), one has

X = XS(N) + αξ + βN , (48){
g(X, N) = g(XS(N), N) + αg(ξ , N) + βg(N , N),
g(ξ , X) = g(XS(N), ξ ) + αg(ξ , ξ ) + βg(N , ξ ),

(49)

α = θ (X), β = ν(X). (50)

Putting (50) in (48), we have

X = XS(N) + θ (X)ξ + ν(X)N (51)
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and

gη(X, X) = g
(
XS(N), XS(N)) + θ (X)2 + ν(X)2. (52)

As D = Span{Nx, ξx} is a hyperbolic, it follows that the screen distribution S(N) on M ⊂
Mn+2 is Riemannian and the induced metric on S(N) is positive definite,

0 ≤ g
(
XS(N), XS(N)) = g(X, X) – 2θ (X)ν(X). (53)

From (52) and (53), we have ∀X ∈ �(TM) gη(X, X) ≥ 0, and

gη(X, X) = 0 ⇒

⎧⎪⎨
⎪⎩

θ (X)2 = 0,
ν(X)2 = 0,
g(XS(N), XS(N)) = 0

⇒

⎧⎪⎨
⎪⎩

α = 0,
β = 0,
g(XS(N), XS(N)) = 0 ⇒ XS(N) = 0,

which shows that

gη(X, X) = 0 ⇒ X = 0. (54)

Clearly gη is a Riemannian metric on M and i�gη = gη , which shows that the null hypersur-
face Mn+1 equipped with a Riemannian metric gη is isometrically immersed in a Rieman-
nian manifold (Mn+2, gη).

4.2 Link between the associated Riemannian geometry of gη and Riemannian
geometry of gη

A striking fact is that the null rigging of the null hypersurface M is the normal unit vector
field to the immersion of (M, gη) into (M, gη). Thus,

gη(N , X) = 0, ∀X ∈ �(TM), (55)

gη(N , N) = 1. (56)

Let ∇η and ∇η be the Levi-Civita connections with respect to gη and gη . Therefore, the
Gauss–Weingarten formulae become

∇η

XY = ∇η

XY + α(X, Y )N , (57)

∇η

XN = –Aη

N X. (58)

The α from Eq. (57) is rather a (0, 2)-tensor on a line valued in �(TM⊥). Then the following
holds:

α(X, Y ) = gη

(
Aη

N X, Y
)
, ∀X, Y ∈ �(TM), N ∈ �

(
TM⊥)

, (59)

where Aη

N is the shape operator of M with respect to N . For any X ∈ �(TM), we note that
the following relations are satisfied: gη(N , X) = ν(X), gη(ξ , X) = θ (X).
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Proposition 4.1 Let (M, gη) be a null hypersurface equipped with associated Riemannian
metric gη in (n + 2)-dimensional Riemannian manifold (M, gη), Rη and Rη denote the Rie-
mann curvature tensors of ∇η and ∇η , respectively. Then, using the Gauss–Weingarten for-
mulae (57) and (58), for all X, Y , Z, W ∈ �(TM) and N ∈ �(TM⊥), we prove the following:

gη

(
Rη(X, Y )Z, W

)
= gη

(
Rη(X, Y )Z, W

)
+ α(X, Z)α(Y , W )

– α(Y , Z)α(X, W ), (60)

gη

(
Rη(X, Y )Z, N

)
=

(∇η

Xα
)
(Y , Z) –

(∇η

Y α
)
(X, Z). (61)

Let {e0 = ξ , e1, . . . , en+1 = N} be any orthonormal basis for TxM. The sectional curvature
of a plane π spanned by orthogonal unit vectors ea and eb is given by

Kη(π ) = gη

(
Rη(ea, eb)eb, ea

)
. (62)

For a fixed a ∈ {0, . . . , n + 1}, the Ricci curvature of ea, is defined by

Ric
η(ea) =

n+1∑
a�=b=0

Kη(π ). (63)

Theorem 4.1 Let (M, gη) be a null hypersurface equipped with associated Riemannian
metric gη in (n + 2)-dimensional Riemannian manifold (M, gη). Then, for all X, Y , Z, W ∈
�(TM) and N ∈ �(TM⊥), we have

Ric
η(X, Y ) = Ricη(X, Y ) + gη

(
Aη

N X, Aη

N Y
)

– gη

(
Aη

N X, Y
)

tr Aη

N , (64)

Kη(π ) = Kη(π ) + gη

(
Aη

N X, Y
)
gη

(
Aη

N Y , X
)

– gη

(
Aη

N Y , Y
)
gη

(
Aη

N X, X
)

(65)

for all orthonormal unit vectors X, Y ∈ �(TM). We have

rη(x) = rη(x) + tr
((

Aη

N
)2) –

(
tr Aη

N
)2; (66)

here Ric
η and Ricη denote the Ricci curvature of ∇η and ∇η , respectively, and Kη(π ) the sec-

tional curvature (with respect to gη), and Kη(π ) the sectional curvature of π = Span{X, Y }
(with respect to gη).

4.3 Relationship between the geometry of (M, gη) and (M, g)
First, we relate the Levi-Civita connection of gη and g in the following.

Proposition 4.2 Let (M, g) be a null hypersurface of a Lorentzian manifold (Mn+2, g),
(M, gη) be a Riemannian manifold constructed from the ambient Lorentzian, N be a
null rigging for M fixed on M satisfying (8) and ξ be a rigged field of M. Then, for all
X, Y ∈ �(TM), we have

∇η

XY = ∇XY –
1
2
{

(LN–ξ g)(X, Y )
}

(N – ξ )

+
(
θ (Y ) – ν(Y )

)[
iX(dθ – dν)

]�gη

+
(
θ (X) – ν(X)

)[
iY (dθ – dν)

]�gη . (67)
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In particular, for all X, Y ∈ (TM) ⊂ i�(TM), with θ closed, we have

∇η

XY = ∇XY –
1
2
{

(LN–ξ g)(X, Y )
}

(N – ξ ). (68)

Proof As the connections ∇η and ∇ are symmetric, we can write

∇η

XY = ∇XY + Dη(X, Y ), ∀X, Y ∈ �(TM).

Using the fact that Dη is a symmetric tensor and ∇η is a gη-metric connection, we have

gη

(
Dη(X, Y ), Z

)
+ gη

(
Y , Dη(X, Z)

)
= (∇Xgη)(Y , Z)

=
[
(∇Xθ )(Y ) – (∇Xν)(Y )

]
θ (Z)

+
[
(∇Xθ )(Z) – (∇Xν)(Z)

]
θ (Y )

–
[
(∇Xθ )(Z) – (∇Xν)(Z)

]
ν(Y )

–
[
(∇Xθ )(Y ) – (∇Xν)(Y )

]
ν(Z).

By a circular permutation, we get similar expressions for gη(Dη(Y , Z), X) + gη(Z, Dη(Y , X))
and gη(Dη(Z, X), Y ) + gη(X, Dη(Z, Y )). Summing the first two expressions minus the last
one leads to

2gη

(
Dη(X, Y ), Z

)
=

[
(LN g)(X, Y ) – (Lξ g)(X, Y )

]
g(N , Z)

–
[
(LN g)(X, Y ) – (Lξ g)(X, Y )

]
g(ξ , Z)

+ 2θ (Y )
[
dθ (X, Z) – dν(X, Z)

]
– 2ν(Y )

[
dθ (X, Z) – dν(X, Z)

]
+ 2θ (X)

[
dθ (Y , Z) – dν(Y , Z)

]
– 2ν(X)

[
dθ (Y , Z) – dν(Y , Z)

]
,

2gη

(
Dη(X, Y ), Z

)
=

[
(LN g)(X, Y ) – (Lξ g)(X, Y )

]
gη(ξ , Z)

–
[
(LN g)(X, Y ) – (Lξ g)(X, Y )

]
gη(N , Z)

+ 2θ (Y )
[
gη

((
iX(dθ – dν)

)�gη , Z
)]

– 2ν(Y )
[
gη

((
iX(dθ – dν)

)�gη , Z
)]

+ 2θ (X)
[
gη

((
iY (dθ – dν)

)�gη , Z
)]

– 2ν(X)
[
gη

((
iY (dθ – dν)

)�gη , Z
)]

.

With

(LN g)(X, Y ) = (∇Xθ )(Y ) + (∇Y θ )(X),

(Lξ g)(X, Y ) = (∇Xν)(Y ) + (∇Y ν)(X),

2(dθ )(X, Y ) = (∇Xθ )(Y ) – (∇Y θ )(X).
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It follows that

Dη(X, Y ) = –
1
2
{

(LN–ξ g)(X, Y )
}

(N – ξ ) +
(
θ (Y ) – ν(Y )

)[(
iX(dθ – dν)

)�gη
]

+
(
θ (X) – ν(X)

)[(
iY (dθ – dν)

)�gη
]
. �

Remark 4.1 ∀X, Y ∈ �(TM), ν(X) = 0, and if θ is closed, we have

∇η

XY = ∇XY –
1
2
{

(LN–ξ g)(X, Y )
}

(N – ξ ). (69)

For a proper conformal Killing field N – ξ , with conformal factor 2λ i.e. LN–ξ g = 2λg and
λ = 1

n+2 divg(N – ξ ), we have

Dη(X, Y ) = –λg(X, Y )(N – ξ ) (70)

and

∇η

XY = ∇XY – λg(X, Y )(N – ξ ). (71)

From now on, throughout the paper, assume N – ξ , to be proper conformal Killing with
conformal factor 2λ with respect to the metric g .

Lemma 4.1 Let (Mn+1, g, N) be a closed normalized null hypersurface in Lorentzian man-
ifold (M, g), (N – ξ ) be a proper conformal Killing with conformal factor 2λ and λ =

1
n+2 divg(N – ξ ) and τN (ξ ) = 0. Then

Aη

N = AN – τN (·)N + λη(·)(N – ξ ). (72)

Proof Putting Y = N in (71), we have

∇η

XN = ∇XN – λg(X, N)(N – ξ ). (73)

By applying (13) and (58) in (73), we have the desired result. �

Theorem 4.2 Let Rη and R denote the Riemann curvatures tensors of ∇η and ∇ , respec-
tively. Then, for all X, Y , Z ∈ �(TM) ⊂ i�(TM), ξ ∈ �(TM⊥), N be a null rigging for M fixed
on M and N – ξ a proper conformal Killing field with θ closed, the following holds:

gη

(
Rη(X, Y )Z, W

)
= g

(
R(X, Y )Z, W

)
+ η(W )

[(
R0(X, Y )Z · λ)

–
(∇XBN)

(Y , Z)

+
(∇Y BN)

(X, Z) – τN (X)BN (Y , Z) + τN (Y )BN (X, Z)

+
(∇XCN)

(Y , PZ) –
(∇Y CN)

(X, PZ) – 2 dτN (X, Y )η(Z)

+ τN (Y )CN (X, PZ) – τN (X)CN (Y , PZ)
]

+ λg(Y , Z)
[
CN (X, PW ) – BN (X, W )

– τN (X)η(W ) – λη(X)η(W )
]

– λg(X, Z)
[
CN (Y , PW ) – BN (Y , W )

– τN (Y )η(W ) – λη(Y )η(W )
]

(74)
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for all X, Y , Z, W ∈ �(TM). Here R0(X, Y )Z · λ = X(λ)g(Y , Z) – Y (λ)g(X, Z).

Proof The curvature tensor field of ∇η is defined by

Rη(X, Y )Z =
[∇η

X ,∇η

Y
]
Z – ∇η

[X,Y ]Z. (75)

By application of (71) in (75), we get (74). �

Theorem 4.3 Let Ric
η and Ric be the Ricci curvatures of ∇η and ∇ , respectively, then let,

for all X, Y , Z ∈ �(TM) ⊂ i�(TM), ξ ∈ TM⊥ and N be a null rigging for M fixed on M, and
N – ξ a proper conformal Killing field with θ closed, then the following holds:

Ric
η(X, Y ) = Ric(X, Y ) – R0(N , X)Y · λ +

(∇XτN)
(Y ) +

〈
(∇ξ AN )(X), Y

〉
–

(∇ξ τ
N)

(X)η(Y ) –
〈
A�

ξ X, AN Y
〉
+

(∇Y τN)
(X) +

〈
(∇ξ AN )(Y ), X

〉
–

(∇ξ τ
N)

(Y )η(X) –
〈
A�

ξ Y , AN X
〉
– λ

[〈AN X, Y 〉 –
〈
A�

ξ X, Y
〉]

+
[
ξ (λ) – λ2 + λ

(
tr AN – tr A�

ξ

)]〈X, Y 〉 + λη(Y )
[
τ (X) – λη(X)

]
. (76)

Proof Let x ∈ M and (e0 = ξ , e1, . . . , en, en + 1 = N) be a quasi-orthonormal basis for
(TxM, gx) with span (e1, . . . , en) = S(N)|p . Suppose that the indices i, j, k run over the range
1, . . . , n, α,β ,γ , . . . ∈ {0, . . . , n} and a, b, . . . ,∈ {0, . . . , n + 1}; then

Ric
η(X, Y ) = trace

(
Z 
→ Rη(Z, X)Y

)

=
n+1∑
a=o

gaa
η gη

(
Rη(ea, X)Y , ea

)

= gη

(
Rη(ξ , X)Y , ξ

)
+

n∑
i=1

gii
ηgη

(
Rη(ei, X)Y , ei

)
+ gη

(
Rη(N , X)Y , N

)
. (77)

From (74), with gη(N – ξ , ξ ) = –1, gη(N – ξ , N) = 1, and gη(AN X, ei) = g(AN X, ei), we get

gη

(
Rη(ξ , X)Y , ξ

)
= gη

(
R(ξ , X)Y , ξ

)
–

[
ξ (λ)g(X, Y ) – X(λ)g(ξ , Y )

]
gη(N – ξ , ξ )

– λg(X, Y )
[
–gη(ANξ , ξ ) + τN (ξ )gη(N , ξ ) + gη

(
A�

ξ ξ , ξ
)

+ τN (ξ )gη(ξ , ξ ) – λη(ξ )gη(N – ξ , ξ )
]

+ λg(ξ , Y )
[
–gη(AN X, ξ )

+ τN (X)gη(N , ξ ) + gη

(
A�

ξ X, ξ
)

+ τN (X)gη(ξ , ξ )

– λη(X)gη(N – ξ , ξ )
]

=
(∇XτN)

(Y ) + g
(
(∇ξ AN )(X), Y

)
–

(∇ξ τ
N)

(X)η(Y )

– g
(
A�

ξ X, AN Y
)

+
[
ξ (λ) – λ2]g(X, Y ), (78)

gη

(
Rη(ei, X)Y , ei

)
= gη

(
R(ei, X)Y , ei

)
–

[
ei(λ)g(X, Y ) – X(λ)g(ei, Y )

]
gη(N – ξ , ei)

– λg(X, Y )
[
–gη(AN ei, ei) + τN (ei)gη(N , ei) + gη

(
A�

ξ ei, ei
)

+ τN (ei)gη(ξ , ei) – λη(ei)gη(N – ξ , ei)
]

+ λg(ei, Y )
[
–gη(AN X, ei) + τN (X)gη(N , ei)
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+ gη

(
A�

ξ X, ei
)

+ τN (X)gη(ξ , ei) – λη(X)gη(N – ξ , ei)
]

= g
(
R(ei, X)Y , ei

)
) + λg(X, Y )

[
g(AN ei, ei) – g

(
A�

ξ ei, ei
)]

– λg(ei, Y )
[
g(AN X, ei) – g

(
A�

ξ X, ei
)]

, (79)

and

gη

(
Rη(N , X)Y , N

)
=

(∇Y τN)
(X) + g

(
(∇ξ AN )(Y ), X

)
–

(∇ξ τ
N)

(Y )η(X)

– g
(
A�

ξ Y , AN X
)

–
[
N(λ)g(X, Y ) – X(λ)g(N , Y )

]
+ λg(N , Y )

[
τN (X) – λη(X)

]
. (80)

By substituting (78), (79) and (80) in (77), we have (76). �

We have a formula relating the scalar curvature rη and r of the gη and g in x ∈ M as
follows.

Theorem 4.4

rη(x) = r(x) + divgη τ � + tr(∇ξ AN ) – tr
(
A�

ξ AN
)

– λ2 + ξ (λ) – N(λ). (81)

Let π be a non-degenerate plane (for gη), we define the sectional curvature of π (with
respect to gη) in TpM by

Kη(π ) =
gη(Rη(X, Y )Y , X)

gη(X, X)gη(Y , Y ) – (gη(X, Y ))2 , ∀X, Y ∈ �(TM) ⊂ i�(TM). (82)

We give now the relation between Kη(π ) and K (π ).

Theorem 4.5 For any orthonormal vectors X, Y ∈ �(TM) ⊂ i��(TM) with respect to gη ,
π = Span{X, Y }, ξ ∈ �(TM⊥), N be a null rigging for M fixed on M, N – ξ a proper confor-
mal Killing field with θ closed,

Kη(π ) =
[
1 – η(X)2 – η(Y )2]K(π ) + η(X)

[(
R0(X, Y )Y

) · λ –
(∇XBN)

(Y , Y )

+
(∇Y BN)

(X, Y ) + BN (X, Y )τN (Y ) – BN (Y , Y )τN (X)

+
(∇XCN)

(Y , PY ) –
(∇Y CN)

(X, PY ) – 2 dτN (X, Y )η(Y )

+ τN (Y )CN (X, PY ) – τN (X)CN (Y , PY )
]

– λη2(X)

+ λ
(
1 – η2(Y )

)[
CN (X, PX) – BN (X, X) – τN (X)η(X)

]
+ λη(X)η(Y )

[
CN (Y , PX) – BN (Y , X) – τN (Y )η(X)

]
. (83)

Proof From gη-orthonormal vectors X, Y ∈ �(TM) ⊂ i��(TM) and π = Span{X, Y }, we
have gη(X, Y ) = 1 and gη(X, Y ) = 0. It follows with (82) that

Kη(π ) = gη

(
Rη(X, Y )Y , X

)
. (84)
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Using Theorem 4.2, we get

Kη(π ) = gη

(
R(X, Y )Y , X

)
–

[
X(λ)g(Y , Y ) – Y (λ)g(X, Y )

]
gη(N – ξ , X)

– λg(Y , Y )
[
–gη(AN X, X) + τN (X)gη(N , X) + gη

(
A�

ξ X, X
)

+ τN (X)gη(ξ , X) – λη(X)gη(N – ξ , X)
]

+ λg(X, Y )
[
–gη(AN Y , X)

+ τN (Y )gη(N , X) + gη

(
A�

ξ Y , X
)

+ τN (Y )gη(ξ , X) – λη(Y )gη(N – ξ , X)
]

= g
(
R(X, Y )Y , X

)
– θ (X)

[
g
(
ξ , R(X, Y )Y

)
– g

(
N , R(X, Y )Y

)]
–

[(
R0(X, Y )Y

) · λ]
gη(N – ξ , X)

– λg(Y , Y )
[
–gη(AN X, X) + τN (X)gη(N , X) + gη

(
A�

ξ X, X
)

+ τN (X)gη(ξ , X) – λη(X)gη(N – ξ , X)
]

+ λg(X, Y )
[
–gη(AN Y , X)

+ τN (Y )gη(N , X) + gη

(
A�

ξ Y , X
)

+ τN (Y )gη(ξ , X) – λη(Y )gη(N – ξ , X)
]
. (85)

We take into account the fact that we obtain

g
(
R(X, Y )N , Y

)
= –g(∇XAN )(Y ), Y ) + g(∇Y AN )(X), Y ) – BN (X, AN Y )η(Y )

+ 2 dτN (X, Y )η(Y ) – τN (Y )g(AN X, Y )

+ BN (Y , AN X)η(Y ) + τN (X)g(AN Y , Y ) (86)

and

gη(N – ξ , X) = –θ (X), gη(ξ , X) = θ (X), gη(AN X, X) = g(AN X, X). (87)

Putting (23), (86), (87) in (85), we have

Kη(π ) =
[
1 – η2(X) – η2(Y )

]
K(π ) – η(X)

[(∇XBN)
(Y , Y ) –

(∇Y BN)
(X, Y )

+ τN (Y )BN (X, Y ) – τN (X)BN (Y , Y ) – g
((∇XCN)

(Y ), Y
)

+ BN (X, AN Y )η(Y ) +
(∇Y CN)

(X), Y ) – BN (Y , AN X)η(Y )

– BN (X, AN Y )η(Y ) + 2 dτN (X, Y )η(Y ) – τN (Y )g(AN X, Y )

+ BN (Y , AN X)η(Y ) + τN (X)g(AN Y , Y ) – R0(X, Y )Y · λ]
– λg(Y , Y )

[
–g(AN X, X) + g

(
A�

ξ X, X
)

+ τN (X)θ (X) + λη(X)η(X)
]

+ λg(X, Y )
[
–g(AN Y , X) + g

(
A�

ξ Y , X
)

+ τN (Y )η(X) + λη(Y )η(X)
]
.

With g((∇XAN )(Y ), Y ) = (∇XCN )(Y , PY ) – BN (X, AN Y )η(Y ), g(X, X) = 1 – η2(X) and
g(X, Y ) = η(X)η(Y ) �



Ménédore Journal of Inequalities and Applications  (2018) 2018:126 Page 19 of 27

Corollary 4.1 If the ambient manifold is of a constant sectional curvature k, then we have

Kη(π ) =
[
1 – η(X)2 – η(Y )2]k + η(X)

[(
R0(X, Y )Y

)
.λ

+
(∇XCN)

(Y , PY ) –
(∇Y CN)

(X, PY ) – 2 dτN (X, Y )η(Y )

+ τN (Y )CN (X, PY ) – τN (X)CN (Y , PY )
]

– λη2(X)

+ λ
(
1 – η2(Y )

)[
CN (X, PX) – BN (X, X) – τN (X)η(X)

]
+ λη(X)η(Y )

[
CN (Y , PX) – BN (Y , X) – τN (Y )η(X)

]
. (88)

Proof Using the Gauss–Codazzi equation (23) if the ambient manifold has constant sec-
tional curvature k, then we can write (∇XBN )(Y , Y ) – (∇Y BN )(X, Y ) = BN (Y , Y )τN (X) –
BN (X, Y )τN (Y ), and substituting this in (83), we have the desired result. �

Corollary 4.2 For all X, Y ∈ S(N),

Kη(π ) = K(π ) + λ
[
CN (X, PX) – BN (X, X)

]
. (89)

5 Chen–Ricci inequality
In this section, we establish some basic inequalities between intrinsic invariants namely
the Ricci curvature Ric, scalar curvature, shape operator AN , Chen invariant and the ex-
trinsic invariant called the squared mean curvature for null hypersurface (M, g) in (n + 2)-
dimensional Lorentzian manifold (M, g).

Theorem 5.1 Let (M, g, N) be a closed normalized null hypersurface in a (n + 2)-
dimensional Lorentzian manifold (M, g), N – ξ be a proper conformally Killing field with
conformal factor 2λ and λ = 1

n+2 divg(N – ξ ). Then, for all X ∈ S0
x (1), the following holds:

Ric(X) ≤ RicTxM(X) +
1
4

(n + 1)2‖H‖2
gη

–
(
R0(N , X)X

) · λ – 2
〈
A�

ξ X, AN X
〉

– λ
[〈AN X, X〉 –

〈
A�

ξ X, X
〉]

+
{
ξ (λ) – λ2 + λ

[
tr AN – tr A�

ξ

]}〈X, X〉
+ λη(X)

[
τN (X) – λη(X)

]
+

[〈
A�

ξ X, X
〉
– 〈AN X, X〉 + τN (X)η(X)

]
tr A�

ξ

–
〈(∇ξ A�

ξ

)
(X), X

〉
+ 3

[(∇XτN)
(X) +

〈
(∇ξ AN )(X), X

〉
–

(∇ξ τ
N)

(X)η(X)
]
, (90)

where Ric(TxM)(X) is the Ricci curvature of X at x with respect to (M, g), λ = 1
n+2 divg(N – ξ )

and the mean curvature vector H(x) is given by H(x) = 1
n+1 (tr Aη

N )Nx.
The equality case of (90) is satisfied by X ∈ S0

x (1) if and only if

{
α(X, Y ) = 0, ∀Y ∈ TM, gη(X, Y ) = 0,
2α(X, X) = (n + 1)H , ∀Y ∈ Oη(X).

(91)

The equality case of (90) holds for all unit vectors X ∈ S0
x (1) and for all x ∈ M if and only if

either M is totally geodesic or n = 1.

Proof The null hypersurface equipped with Riemannian metric gη is a Riemannian hyper-
surface, and as (M, gη) is isometrically immersed in a Riemannian manifold (M, gη), using
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standard techniques as [19], we have this inequality:

Ricη(X) ≤ Ric
η

(TxM)(X) +
1
4

(n + 1)2‖H‖2
gη

, (92)

where X ∈ S0
x (1). If we put the equality (39) of Theorem 3.1 in (92), we get

Ric(X) ≤ Ric
η

TxM(X) +
1
4

(n + 1)2‖H‖2
gη

+
[〈

A∗
ξ X, X

〉
– 〈AN X, X〉

+ τN (X)η(X)
]

tr A∗
ξ –

〈(∇ξ A∗
ξ

)
(X), X

〉
+

〈
(∇ξ AN )(X), X

〉
–

(∇ξ τ
N)

(X)η(X) +
(∇XτN)

(X); (93)

with (76) plugged into (93), we have the inequality (90) �

Corollary 5.1 Let (M, g, N) be a closed normalized null hypersurface in a (n + 2)-
dimensional Lorentzian manifold (M, g) with constant sectional curvature k, (N – ξ ) be
a proper conformal Killing field with conformal factor 2λ and λ = 1

n+2 divg(N – ξ ). Then for
all X ∈ S0

x (1) the following holds:

Ric(X) ≤ nk +
1
4

(n + 1)2‖H‖2
gη

–
(
R0(N , X)X

) · λ – 2
〈
A�

ξ X, AN X
〉

– λ
[〈AN X, X〉 –

〈
A�

ξ X, X
〉]

+
{
ξ (λ) – λ2 + λ

[
tr AN – tr A�

ξ

]}〈X, X〉
+ λη(X)

[
τN (X) – λη(X)

]
+

[〈
A�

ξ X, X
〉
– 〈AN X, X〉 + τN (X)η(X)

]
tr A�

ξ

–
〈(∇ξ A�

ξ

)
(X), X

〉
+ 3

[(∇XτN)
(X) +

〈
(∇ξ AN )(X), X

〉
–

(∇ξ τ
N)

(X)η(X)
]
. (94)

Corollary 5.2 Let (M, g, N) be a closed and conformal screen (with constant conformal fac-
tor ϕ) normalized null hypersurface in (n+2)-dimensional Lorentzian manifold (M, g), and
(N –ξ ) be a proper conformal Killing field with conformal factor 2λ and λ = 1

n+2 divg(N –ξ ).
Then, for all X ∈ S0

x (1), the following holds:

Ric(X) ≤ RicTxM(X) +
1
4

(n + 1)2‖H‖2
gη

–
(
R0(N , X)X

) · λ – 2ϕ
∥∥A�

ξ X
∥∥2

g

+
{
ξ (λ) – λ2 + λ(ϕ – 1) tr A�

ξ

}‖X‖2
g – λ2η2(X)

+ (3ϕ – 1)
〈(∇ξ A�

ξ

)
(X), X

〉
+

[
3(ξ · ϕ) – λ(ϕ – 1) + (1 – ϕ) tr A�

ξ

]〈
A�

ξ X, X
〉
. (95)

The equality case holds for all X ∈ S0
x (1) if and only if either x is a totally geodesic point or

n = 1.

Proof In the closed normalized and conformal screen case, it well-known in Definition 2.3
that

AN = ϕA�
ξ . (96)
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By Lemma 2.2 in [14], the 1-form τN vanishes identically. Putting (96) in (90) and taking
acount of τN = 0, we have

Ric(X) ≤ RicTxM(X) +
1
4

(n + 1)2‖H‖2
gη

–
(
R0(N , X)X

) · λ – 2ϕ
〈
A�

ξ X, A�
ξ X

〉
– λ(ϕ – 1)

〈
A�

ξ X, X
〉
+

{
ξ (λ) – λ2 + λ

[
(ϕ – 1) tr A�

ξ

]}〈X, X〉
– λ2η2(X) + (1 – ϕ)

〈
A�

ξ X, X
〉
tr A�

ξ

–
〈(∇ξ A�

ξ

)
(X), X

〉
+ 3

〈(∇ξ ϕA�
ξ

)
(X), X

〉
. �

Remark 5.1 In the conformal sreen case with conformal factor ϕ = 1 we have τN = 0,
divg N = divg ξ , λ = 0, Aη

N = AN = A�
ξ . Hence the following holds:

Corollary 5.3 Let (M, g, N) be a closed and conformal screen (with conformal factor ϕ = 1)
normalized null hypersurface in (n + 2)-dimensional Lorentzian manifold (M, g), (N – ξ )
be a proper conformal Killing field with conformal factor 2λ and λ = 1

n+2 divg(N – ξ ). Then,
for all X ∈ S0

x (1), the following holds:

Ric(X) ≤ RicTxM(X) +
1
4

(n + 1)2‖H‖2
g – 2

(∥∥A�
ξ X

∥∥2
g –

〈(∇ξ A�
ξ

)
(X), X

〉)
. (97)

The equality case holds for all X ∈ S0
x (1) if and only if either x is totally geodesic point or

n = 1.

We give now a basic inequality for shape operator and the squared mean curvature of a
null hypersurface in the following.

Theorem 5.2 Let (M, g, N) be a closed normalized null hypersurface in (n+2)-dimensional
Lorentzian manifold (M, g), N – ξ be a proper conformal Killing field with conformal factor
2λ and λ = 1

n+2 divg(N – ξ ). Then, for all X ∈ S0
x (1), we have the following.

1
4

(n + 1)2‖H‖2
gη

≥ [
g(AN X, X) – τN (X)η(X)

]
tr AN – g(AN X, AN X)

– 2λτN (X)η(X) + λ2η(X)2. (98)

The equality case is true for all unit vectors in X ∈ S0
x (1), x ∈ M, if and only if either M is

totally geodesic or n = 1.

Proof The null hypersurface equipped of Riemannian metric gη is Riemannian. Using (64)
in (92), we have, for all X ∈ S0

x (1),

Ric
η

(TpM)(X) – gη

(
Aη

N X, Aη

N X
)

+ gη

(
Aη

N X, X
)

tr Aη

N ≤ Ric
η

(TpM)(X) +
1
4

(n + 1)2‖H‖2
gη

,

which gives the following inequality:

1
4

(n + 1)2‖H‖2
gη

≥ gη

(
Aη

N X, X
)

tr
(
Aη

N
)

– gη

(
Aη

N X, Aη

N X
)
. (99)

Putting (72) of Lemma 4.1 into (99), we have (98). �
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Corollary 5.4 Let (M, g, N) be a closed and conformal screen (with conformal factor ϕ = 1)
normalized null hypersurface in (n/ + 2)-dimensional Lorentzian manifold (M, g), (N – ξ )
be a proper conformal Killing field with conformal factor 2λ and λ = 1

n+2 divg(N – ξ ). Then,
for all X ∈ S0

x (1), the following holds:

1
4

(n + 1)2‖H‖2
g ≥ g

(
A�

ξ X, X
)

tr(Aξ ) – g
(
A�

ξ X, A�
ξ X

)
. (100)

Now, to establish inequality between the extrinsic scalar curvature of M and the scalar
curvature of (M, g), we shall need the following lemma.

Lemma 5.1 [17] If a1, . . . , an are real numbers then

1
n

( n∑
i=1

ai

)2

≤
n∑

i=1

a2
i , (101)

with equality if and only if a1 = · · · = an.

Theorem 5.3 Let (Mn+1, g, N) be a closed normalized null hypersurface in a Lorentzian
(n + 2)-manifold (M, g), N – ξ be a proper conformal Killing field. Then at every point
x ∈ M, the following holds:

r0(x) ≤ r(x) + divgη τN�η + tr(∇ξ AN ) – tr
(
A�

ξ AN
)

– λ2 + ξ (λ) – N(λ)

+
n

(n + 1)
(tr AN )2 +

[
tr A�

ξ – tr AN
]

tr A�
ξ – tr

(∇ξ A�
ξ

)
+ divgη τN�η , (102)

where r0(x) is the extrinsic scalar curvature of M and r(x) is the scalar curvature of (M, g)
at x. The equality case is obtained if and only if x ∈ M is a umbilical point.

Proof By Lemma 5.1, we can write

tr
(
Aη

N
)2 ≥ 1

n + 1
(
tr Aη

N
)2. (103)

The equality (66) shows that

tr
(
Aη

N
)2 = rη(x) – rη(x) +

(
tr Aη

N
)2. (104)

Putting (104) in (103), we have

rη(x) – rη(x) +
(
tr Aη

N
)2 ≥ 1

(n + 1)
(
tr Aη

N
)2. (105)

For this purpose, we use

–rη(x) ≥ –
n

(n + 1)
(
tr Aη

N
)2 – rη(x). (106)
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By substitution of the equality (43) in (106), we have

r0(x) ≤ rη(x) +
n

(n + 1)
(
tr Aη

N
)2 +

[
tr A�

ξ – tr AN
]

tr A�
ξ

– tr
(∇ξ A�

ξ

)
+ tr(∇ξ AN ) + divg

η τN�η . (107)

Putting (81) in (107), one has the desired result. �

Corollary 5.5 Let (Mn+1, g, N) be a closed normalized and conformal screen null hyper-
surface in a Lorentzian (n + 2)-manifold (M, g) with conformal factor ϕ = 1 and N – ξ be a
proper conformal Killing field. Then, at every point x ∈ M, we have

r0(x) ≤ r(x) +
n

(n + 1)
(
tr A�

ξ

)2 –
(
tr
(
A�

ξ

)2), (108)

where r0(x) is the extrinsic scalar curvature of M and r(x) is the scalar curvature of (M, g)
at x. The equality case is obtained if and only if x ∈ M is a totally umbilical point.

Now, we establish the inequality which gives a general optimal relationship involving
the squared mean curvature of the null hypersurface and the Chen invariants.

Theorem 5.4 Let (Mn+1, g, N) be a closed null hypersurface of (n + 2)-dimensional n > 2
Lorentzian manifold (M, g) with τN (ξ ) = 0, N – ξ be a proper conformal Killing field with
conformal factor 2λ, λ = 1

n+2 divg(N –ξ ). Then, for each point x ∈ M and for all orthonormal
vectors fields X, Y and π = Span{X, Y }, the following holds:

δM(x) ≤ δM(x) + n(n + 1)‖H‖2
gη

+ inf
{

BN (X, Y )2 – BN (X, X)BN (Y , Y ) + BN (X, X)CN (Y , Y )

– BN (X, Y )CN (X, Y ) – λ
[
CN (X, PX) – BN (X, X)

]}
+ CN (X, PY )CN (Y , PX) – CN (Y , PY )CN (X, PX) +

[
tr A�

ξ – tr AN
]

tr A�
ξ

– tr
(∇ξ A�

ξ

)
+ tr(∇ξ AN ) + 2 div τN�

– tr
(
A�

ξ AN
)

– λ2 + ξ (λ) – N(λ), (109)

with δM(x) = r0(x) – inf K(π ) and δM(x) = r(x) – inf K(π ). The equality in (109) holds at
x ∈ M if and only if there exists an orthonormal basis {e0, . . . , en} of TxM such that π =
Span{e1, e2} and the shape operator Aη

N becomes of the form

Aη

N =

⎛
⎜⎝

a 0 0
0 b 0
0 0 (a + b)In–1

⎞
⎟⎠ . (110)

Proof By the equality (65) and (66) we have

rη(x) – Kη(π ) = rη(x) – tr
(
Aη

N
)2 +

(
tr Aη

N
)2 – Kη(π )

+ gη

(
Aη

N X, Y
)
gη

(
Aη

N Y , X
)

– gη

(
Aη

N Y , Y
)
gη

(
Aη

N X, X
)
. (111)
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By Lemma 5.1, we can write

tr
(
Aη

N
)2 ≥ 1

(n + 1)
(
tr Aη

N
)2. (112)

In (66), we have

tr
(
Aη

N
)2 = rη(x) – Kη(π ) + gη

(
Aη

N X, Y
)
gη

(
Aη

N Y , X
)

– gη

(
Aη

N Y , Y
)
gη

(
Aη

N X, X
)

+
(
tr Aη

N
)2 – rη(x) + Kη(π ). (113)

Equation (112) with (113) gives

1
(n + 1)

(
tr Aη

N
)2 ≤ rη(x) – Kη(π ) + gη

(
Aη

N X, Y
)
gη

(
Aη

N Y , X
)

– gη

(
Aη

N Y , Y
)
gη

(
Aη

N X, X
)

+
(
tr Aη

N
)2 – rη(p) + Kη(π ), (114)

rη(x) – Kη(π ) ≤ rη(x) – Kη(π ) + gη

(
Aη

N X, Y
)
gη

(
Aη

N Y , X
)

– gη

(
Aη

N Y , Y
)
gη

(
Aη

N X, X
)

+
(
tr Aη

N
)2 –

1
(n + 1)

(
tr Aη

N
)2

≤ rη – Kη(π ) + gη

(
Aη

N X, Y
)
gη

(
Aη

N Y , X
)

– gη

(
Aη

N Y , Y
)
gη

(
Aη

N X, X
)

+
n

(n + 1)
(
tr Aη

N
)2, (115)

which gives

rη(x) – Kη(π ) ≤ rη(x) – Kη(π ) + n(n + 1)‖H‖2
gη

+ gη

(
Aη

N X, Y
)
gη

(
Aη

N Y , X
)

– gη

(
Aη

N Y , Y
)
gη

(
Aη

N X, X
)
. (116)

With

(
tr Aη

N
)2 = (n + 1)2‖H‖2

gη
.

Putting (43), (44), (81) and (89) in (116), we have

r0(x) – inf K(π ) ≤ r(x) – inf K(π ) + n(n + 1)‖H‖2
gη

+ inf
{

BN (X, Y )2 – BN (X, X)BN (Y , Y ) + BN (X, X)CN (Y , Y )

– BN (X, Y )CN (X, Y ) – λ
[
CN (X, PX) – BN (X, X)

]}
+ CN (X, PY )CN (Y , PX) – CN (Y , PY )CN (X, PX)

+
[
tr A�

ξ – tr AN
]

tr A�
ξ

– tr
(∇ξ A�

ξ

)
+ tr(∇ξ AN ) + 2 div τN�

– tr
(
A�

ξ AN
)

– λ2 + ξ (λ) – N(λ). (117)
�

By (18), we have the following.
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Corollary 5.6 Let (Mn+1, g, N) be a closed normalized and conformal screen null hypersur-
face of (n + 2)-dimensional n > 2 Lorentzian manifold (M, g) with conformal factor ϕ = 1,
τN (ξ ) = 0 and N – ξ be a proper conformal Killing field. Then, for each point x ∈ M, for all
orthonormal vectors X, Y and π = Span{X, Y }, the following holds:

δM(x) ≤ δM(x) + n(n + 1)‖H‖2
g +

〈
A�

ξ X, Y
〉2

–
〈
A�

ξ X, X
〉〈

A�
ξ Y , Y

〉
–

(
tr
(
A�

ξ

)2) (118)

with δM(x) = r0(x) – inf K(π ) and δM(x) = r(x) – inf K(π ). The equality in (118) holds at
x ∈ M if and only if there exists an orthonormal basis {e0, . . . , en} of TxM such that π =
Span{e1, e2} and the shape operator A�

ξ becomes of the form

A�
ξ =

⎛
⎜⎝

a 0 0
0 b 0
0 0 (a + b)In–1

⎞
⎟⎠ . (119)

Remark 5.2 Since the sectional curvature of null hypersurface equipped with associated
Riemannian metric is symmetric, we can denote the scalar curvature by

ϒη(x) =
∑

1≤i<j≤n+1

Kη(ei, ej) =
1
2

rη. (120)

By (120), the equalities (43) and (66) become

ϒη = r0 –
1
2
{[

tr A∗
ξ – tr AN

]
tr A∗

ξ – tr
(∇ξ A∗

ξ

)
+ tr(∇ξ AN ) + divg τN �η

}
,

rη(x) = ϒη(x) +
1
2
[
tr
((

Aη

N
)2) –

(
tr Aη

N
)2];

and the inequalities (108) and (118) become

r0(x) ≤ r(x) +
n

2(n + 1)
(
tr A�

ξ

)2 –
1
2
(
tr
(
A�

ξ

)2), (121)

δM(x) ≤ δM(x) +
1

2(n + 1)
‖H‖2

g +
〈
A�

ξ X, Y
〉2

–
〈
A�

ξ X, X
〉〈

A�
ξ Y , Y

〉
–

(
tr
(
A�

ξ

)2). (122)

5.1 Application example
One important application of the Chen–Ricci inequalities for null hypersurfaces is to pro-
vide solutions to the basic problem of minimal immersions: given a null hypersurface Mn+1

in Lorentzian manifolds Rn+2
1 , what are the necessary conditions for M to admit a minimal

isometric immersion in a semi-Euclidean space? As an application of our results, we have
the following topological obstruction to minimal isometric immersions of null hypersur-
face in Lorentzian manifolds.

Theorem 5.5 Let (Mn+1, g, N) be a closed normalized and conformal screen null hypersur-
face of (n + 2)-dimensional n > 2 Lorentzian manifold (M, g) with conformal factor ϕ = 1,
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N – ξ be a proper conformal Killing field. If for all x ∈ M and X ∈ S(N)0
x(1)

Ric(X, Y ) ≤ [〈
A∗

ξ X, Y
〉
– 〈AN X, Y 〉 + τN (X)η(Y )

]
tr A∗

ξ

–
〈(∇ξ A∗

ξ

)
(X), Y

〉
+

〈
(∇ξ AN )(X), Y

〉
–

(∇ξ τ
N)

(X)η(Y ) +
(∇XτN)

(Y ), (123)

then the null hypersurface admits a minimal isometric immersion in Lorentzian manifold
R

n
1 and the null hypersurface is non-compact.

Proof The null hypersurface equipped with associated Riemannian metric gη is a Rieman-
nian hypersurface. By Nash theorem, we can immerse this in a space Euclidian. By the
equality (39), (123) is equivalent to say that Ricη(X, Y ) ≤ 0. Given that the null hypersur-
face is a closed normalized and conformal screen with conformal factor ϕ = 1, the associ-
ated Riemannian metric gη agrees with the degenerate metric g , the 1-form τN vanishes
identically and by Definition 2.3 AN = A�

ξ . This shows that Ric(X, X) ≤ 0, which is a neces-
sary condition for M to admit a minimal immersion in a R

n
1 .The equality hold if and only

if the submanifold is totally geodesic. A well-known result of Beltrami [4] proves that the
Laplacian � of M satisfies

� ϕ = –(n + 1)H , n + 1, n + 1 = dim M (124)

where ϕ : M → Em denotes the immersion and H is the mean curvature vector of M. Since
the only harmonic functions on compact Riemannian manifolds are constant functions,
it follows immediately from Eq. (124) that each minimal hypersurface is non-compact. �

6 Conclusion
In this paper, using rigging techniques we isometrically immerse the null hypersurface
equipped with the associated Riemannian metric into a Riemannian manifold suitably
constructed on the Lorentzian manifold. Through this immersion, we establish the Chen–
Ricci inequalities of the null hypersurface in Lorentzian manifold. As an application, we
give a topological obstruction to the minimal isometric immersion of the null hypersurface
in an ambient Lorentzian.
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