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Abstract
The purpose of this paper is to give identities and relations including the
Milne–Thomson polynomials, the Hermite polynomials, the Bernoulli numbers, the
Euler numbers, the Stirling numbers, the central factorial numbers, and the Cauchy
numbers. By using fermionic and bosonic p-adic integrals, we derive some new
relations and formulas related to these numbers and polynomials, and also the
combinatorial sums.
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1 Introduction
Recently, many authors have studied special numbers and polynomials with their gener-
ating functions. Because these special numbers and polynomials including the Bernoulli
numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers, the
Milne–Thomson numbers and polynomials, the Hermite numbers and polynomials, Cen-
tral factorial numbers, Cauchy numbers, and the others have many applications not only
in mathematics, but also in other related areas. It is well-known that there are also many
combinatorial interpretations of these special numbers especially, the Stirling numbers
and the central factorial numbers in partition theory, in set theory, in probability the-
ory and in other sciences. For combinatorial interpretations of these special numbers
and polynomials with their generating functions see for details [1–31], and the references
therein.

In this paper the following notation is used.
N = {1, 2, 3, . . .}, N0 = {0, 1, 2, 3, . . .} = N∪{0} and Z denotes the set of integers, R denotes

the set of real numbers and C denotes the set of complex numbers. Assuming that ln(z)
denotes the principal branch of the multi-valued function ln(z) with the imaginary part
Im(ln(z)) constrained by –π < Im(ln(z)) ≤ π . Furthermore, 0n = 1 if n = 0, and, 0n = 0 if
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n ∈N.(
x
v

)
=

x(x – 1) · · · (x – v + 1)
v!

=
(x)v

v!

(cf. [1–31], and the references therein).
In order to prove identities, relations, formulas, and combinatorial sums related to the

special numbers and polynomials of this paper, we need the following generating functions
for these special numbers and polynomials including some basic properties of them.

The Bernoulli polynomials are defined by

FB(t, x) =
text

et – 1
=

∞∑
n=0

Bn(x)
tn

n!
. (1)

Substituting x = 0 into (1), we have the Bernoulli numbers Bn:

Bn = Bn(0).

The Euler polynomials are defined by

FE(t, x) =
2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
. (2)

Substituting x = 0 into (2), we have the Euler numbers En:

En = En(0)

(cf. [1–31], and the references therein).
The array polynomials are defined by

FA(t, x, v) =
(et – 1)vext

v!
=

∞∑
n=0

Sn
v (x)

tn

n!
, (3)

where v ∈ N0. By (3), we have

Sn
v (x) =

1
v!

v∑
j=0

(–1)v–j

(
v
j

)
(x + j)n

(cf. [1, 3, 24, 26]). Substituting x = 0 into (3), we have the Stirling numbers of the second
kind S2(n, v):

S2(n, v) := Sn
v (0)

which defined by means of the following generating function:

FS(t, v) =
(et – 1)v

v!
=

∞∑
n=0

S2(n, v)
tn

n!
, (4)

where v ∈ N0 (cf. [3, 5, 7, 24, 30, 31] and the references therein).
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The Stirling numbers of the first kind are defined by the following generating function:

FS1(t, v) =
(log(1 + t))v

v!
=

∞∑
n=0

S1(n, v)
tn

n!
, (5)

where v ∈ N0 (cf. [1–31], and the references therein).
The central factorial numbers T(n, k) of the second kind are defined by means of the

following generating function:

FT (t, k) =
1

(2k)!
(
et + e–t – 2

)k =
∞∑

n=k

T(n, k)
t2n

(2n)!
. (6)

By using (6), for n, k ∈N, T(0, k) = T(n, 0) = 0, T(n, 1) = 1 and also

T(n, k) =
1

(2k)!

2k∑
j=0

(–1)j

(
2k
j

)
(j – k)2n

(cf. [2, 4, 5, 26, 32], and the references therein).
Two-variable Hermite polynomials are defined by

F(t, x, y : v) = ext+ytv
=

∞∑
n=0

H (v)
n (x, y)

tn

n!
(7)

(cf. [7, 20, 22]).
Let v be integer v ≥ 2. The polynomials H (v)

n (x, y) are given by the following explicit
formula:

H (v)
n (x, y) = n!

[ n
v ]∑

r=0

xn–vryr

r!(n – vr)!
(8)

(cf. [7, 20, 22]). Substituting y = –1 and v = 2 into (8), we have classical Hermite polyno-
mials

Hn(x) = H (2)
n (x, –1)

(cf. [7, 20, 22]).
The Hermite numbers are defined by

FH (t) = e–t2
=

∞∑
n=0

Hn
tn

n!
(9)

(cf. [7, 10, 20, 22]).
Three-variable polynomials y6(n; x, y, z; a, b, v) are defined by the first author [29] as fol-

lows:

G(t, x, y, z; a, b, v) =
(
b + f (t, a)

)zext+yh(t,v) =
∞∑

n=0

y6(n; x, y, z; a, b, v)
tn

n!
, (10)
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where f (t, a) is a member of family of analytic functions or meromorphic functions, a and
b are any real numbers, v is positive integer. When x = 0, y = z = 1, Equation (10) reduces
to the following numbers:

y6(n; 0, 1, 1; a, b, v) = y6(n; a, b, v)

which defined by means of the following generating function:

J (t; a, b, v) =
(
b + f (t, a)

)
eh(t,v) =

∞∑
n=0

y6(n; a, b, v)
tn

n!

(cf. [29]). When b = 0, in the numbers y6(n; a, b, v) reduce to the Milne–Thomson numbers
of order a, φ(a)

n :

y6(n; a, 0, v) = φ(a)
n

(cf. [19, p. 514, Eq-(2)], [9, 29]). Substituting z = 1 and b = 0 into (10), we have

y6(n; x, y, 1; a, 0, v) = � (a)
n (x, y, v)

which is related to a relation between the y6(n; x, y, z; a, b, v) and the generalized Milne–
Thomson’s polynomials [6]. Setting z = 1, b = 0, y = 1 and h(t, 0) = g(t) into (10), we
also have a relation between the y6(n; x, y, z; a, b, v) and the Milne–Thomson polynomials
�

(a)
n (x):

y6(n; x, 1, 1; a, 0, 0) = �(a)
n (x)

(cf. [19, 29]). When z = 1, b = 0, y = 1, f (t, a) = 1 and h(t, v) = – vt2

2 , Equation (10) reduces
to the Hermite polynomials H (v)

n (x):

y6(n; x, 1, 1; a, 0, v) = H (v)
n (x)

(cf. [10, 20, 22, 29]) and also the Hermite numbers

y6(2n; 0, 1, 1; a, 0, 2) = H2n =
(–1)n(2n)!

n!

for n ≥ 0 (cf. [10, 20, 22]).

1.1 p-adic integral
Here, we survey some properties of the p-adic integral. Thus, we give some notations
and definitions. Zp denotes the set of p-adic integers, Qp denotes the set of p-adic rational
numbers,K denotes a field with a complete valuation andCp is completion of the algebraic
closure of Qp. C1(Zp → K) denotes the set of continuous derivative functions. Let f (x) ∈
C1(Zp →K). Kim [14] defined the p-adic q-integral as follows:

Iq
(
f (x)

)
=

∫
Zp

f (x) dμq(x) = lim
N→∞

1
[pN ]q

pN –1∑
x=0

f (x)qx, (11)
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where q ∈Cp with |1 – q|p < 1, f ∈ C1(Zp →K),

[x] = [x : q] =

⎧⎨
⎩

1–qx

1–q , q �= 1,

x, q = 1

and

μq(x) = μq
(
x + pN

Zp
)

=
qx

[pN ]

is a q-distribution on Zp (cf. [14]).

Remark 1 If q → 1, then (11) reduces to the Volkenborn integral (or so-called the bosonic
integral):

lim
q→1

Iq
(
f (x)

)
= I1

(
f (x)

)
=

∫
Zp

f (x) dμ1(x) = lim
N→∞

1
pN

pN –1∑
x=0

f (x), (12)

where

μ1(x) = μ1
(
x + pN

Zp
)

=
1

pN

denotes the Haar distribution on Zp (cf. [23]), and the references therein).

Remark 2 If q → –1, then (11) reduces to the fermionic p-adic integral:

lim
q→–1

Iq
(
f (x)

)
= I–1

(
f (x)

)
=

∫
Zp

f (x) dμ–1(x) = lim
N→∞

pN –1∑
x=0

(–1)xf (x) (13)

and

μ–1(x) = μ–1
(
x + pN

Zp
)

=
(–1)x

pN

(cf. [13]).

The Bernoulli numbers are also given by the following bosonic p-adic integral:

Bn =
∫
Zp

xn dμ1(x) (14)

(cf. [14, 23]).
On the other hand, the Euler numbers are also given by the following fermionic p-adic

integral:

En =
∫
Zp

xn dμ–1(x) (15)

(cf. [13]).
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The Daehee numbers Dn are introduced by the following bosonic p-adic integral:

Dn =
∫
Zp

(x)n dμ1(x) =
n∑

k=0

S1(n, k)Bk =
(–1)nn!

n + 1
(16)

(cf. [8, 11], [21, p. 45], and the references therein).
The Changhee numbers Chn are introduced by the following fermionic p-adic integral:

Chn =
∫
Zp

(x)n dμ–1(x) =
n∑

k=0

S1(n, k)Ek = (–1)n2–nn! (17)

(cf. [12–14], and the references therein).
We now summarize the results of this paper as follows:
In Sect. 2, by using generating functions and their functional equations, we give some

identities including the three-variable polynomials y6(n; x, y, z; a, b, v), the Hermite poly-
nomials, the array polynomials and the Stirling numbers of the second kind.

In Sect. 3, by using p-adic integrals, we give some identities, combinatorial sums and
relations related to the three-variable polynomials y6(n; x, y, z; a, b, v), the Bernoulli num-
bers, the Euler numbers, the Stirling numbers, the Cauchy numbers (or the Bernoulli num-
bers of the second kind) and other special numbers such as the Daehee numbers and the
Changhee numbers.

In Sect. 4, by using generating functions associated with trigonometric functions and
the central factorial numbers of the second kind, we derive identities related to the central
factorial numbers of the second kind, the array polynomials, and combinatorial sum.

2 Identities related to the Hermite polynomials, array polynomials and Stirling
numbers of the second kind: generating functions and their functional
equations approach

In this section, by applying generating functions and their functional approach, we derive
some identities including the three-variable polynomials y6(n; x, y, z; a, b, v), the Hermite
polynomials, the array polynomials and the Stirling numbers of the second kind.

Theorem 1

y6(n; x, y, 1; a, 0, v) = n!
[ n

v ]∑
j=0

Sn–vj
a (x)yj

j!(n – vj)!
, (18)

where [x] denotes the greatest integer function.

Proof Substituting b = 0, h(t, v) = tvand f (t, a) = 1
a! (e

t – 1)a with a ∈N0 and z = 1 into (10),
we get the following functional equation:

G(t, x, y, 1; a, 0, v) = eytv
FA(t, x, v).

Combining the above equation with (10), and (3), we obtain

∞∑
n=0

y6(n; x, y, 1; a, 0, v)
tn

n!
=

∞∑
n=0

Sn
a(x)

tn

n!

∞∑
n=0

yntvn

n!
.
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Now, combining the above equation with the following well-known series identity:

∞∑
n=0

∞∑
k=0

A(n, k) =
∞∑

n=0

[ n
v ]∑

k=0

A(n, n – vk)

(cf. [20, Lemma 11, Eq-(7)]), we get

∞∑
n=0

y6(n; x, y, 1; a, 0, v)
tn

n!
=

∞∑
n=0

(
n!

[ n
v ]∑

j=0

Sn–vj
a (x)yj

j!(n – vj)!

)
tn

n!
.

Equating the coefficients of tn

n! on both sides of the equation, we arrive at the desired re-
sult. �

Theorem 2

y6(n; x, y, 1; a, 0, v) =
n∑

j=0

(
n
j

)
S2(n – j, a)H (v)

j (x, y). (19)

Proof Proof of this theorem was also given in [33, Theorem 2]. We now briefly give another
proof of this theorem. Substituting b = 0, h(t, v) = tvand f (t, a) = 1

a! (e
t – 1)a with a ∈N0 and

z = 1 into (10), we construct the following functional equation:

G(t, x, y, 1; a, 0, v) = F(t, x, y : v)FS(t, a).

Combining the above equation with (10), (7), and (4), we get

∞∑
n=0

y6(n; x, y, 1; a, 0, v)
tn

n!
=

∞∑
n=0

S2(n, a)
tn

n!

∞∑
n=0

H (v)
n (x, y)

tn

n!
.

Therefore

∞∑
n=0

y6(n; x, y, 1; a, 0, v)
tn

n!
=

∞∑
n=0

⎛
⎝ n∑

j=0

(
n
j

)
S2(n – j, a)H (v)

j (x, y)

⎞
⎠ tn

n!
.

Equating the coefficients tn

n! on both sides of the equation, we arrive at the desired result. �

Combining (18) and (19), we arrive at the following theorem.

Theorem 3

n∑
j=0

(
n
j

)
S2(n – j, a)H (v)

j (x, y) = n!
[ n

v ]∑
j=0

Sn–vj
a (x)yj

j!(n – vj)!
.
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3 Identities and relations related to Stirling numbers and other special
numbers: p-adic integral approach

In this section, by applying p-adic integrals approach, we derive some identities, combi-
natorial sums and relations related to the three-variable polynomials y6(n; x, y, z; a, b, v),
the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Cauchy numbers (or
the Bernoulli numbers of the second kind) and other special numbers such as the Daehee
numbers and the Changhee numbers.

Theorem 4 Let m ∈N0 and z ∈R. We have

y6(m; 0, 0, z; 1, 1, 1) =
m∑

n=0

S2(m, n)(z)n = zm. (20)

Proof Substituting a = b = v = 1, x = y = 0 and f (t, 1) = et – 1 into (10), we get

G(t, 0, 0, z; 1, 1, 1) =
(
1 +

(
et – 1

))z =
∞∑

n=0

y6(n; 0, 0, z; 1, 1, 1)
tn

n!
.

We assume that |et – 1| < 1. We obtain

∞∑
m=0

y6(m; 0, 0, z; 1, 1, 1)
tm

m!
=

∞∑
n=0

(z)n
(et – 1)n

n!
,

where

(z)n = z(z – 1) · · · (z – n + 1).

Combining the above equation with (4), since S2(m, n) = 0 for m < n, we obtain

∞∑
m=0

y6(m; 0, 0, z; 1, 1, 1)
tm

m!
=

∞∑
m=0

( m∑
n=0

S2(m, n)(z)n

)
tm

m!
.

Equating the coefficients of tm

m! on both sides of the equation, we arrive at the desired re-
sult. �

It is time to give integral formulas for the three-variable polynomials y6(n; x, y, z; a, b, v).
By applying the bosonic p-adic integral (or the Volkenborn integral) to (20), we obtain

∫
Zp

y6(m; 0, 0, z; 1, 1, 1) dμ1(z) =
m∑

n=0

S2(m, n)
∫
Zp

(z)n dμ1(z).

By combining the above equation with (16), we obtain the following p-adic integral for-
mulas, respectively:

∫
Zp

y6(m; 0, 0, z; 1, 1, 1) dμ1(z) =
m∑

n=0

S2(m, n)Dn,

∫
Zp

y6(m; 0, 0, z; 1, 1, 1) dμ1(z) =
m∑

n=0

(–1)n n!S2(m, n)
n + 1

,

(21)
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and we also have

∫
Zp

y6(m; 0, 0, z; 1, 1, 1) dμ1(z) =
m∑

n=0

n∑
j=0

S2(m, n)S1(n, j)Bj. (22)

Combining Eqs. (21) and (22), we get the following theorem.

Theorem 5 Let m ∈N0. We have

m∑
n=0

n∑
j=0

S2(m, n)S1(n, j)Bj =
m∑

n=0

(–1)n n!S2(m, n)
n + 1

. (23)

We observe that, using the orthogonality relation of the Stirling numbers, Eq. (23) re-
duces to the following well-known relations for the Bernoulli numbers:

Bm =
m∑

n=0

(–1)n n!S2(m, n)
n + 1

(cf. [3, 7, 11, 17, 18, 25], and the references therein).
By applying the fermionic p-adic integral to (20), we obtain

∫
Zp

y6(m; 0, 0, z; 1, 1, 1) dμ–1(z) =
m∑

n=0

S2(m, n)
∫
Zp

(z)n dμ–1(z).

By combining the above equation with (17), we obtain

∫
Zp

y6(m; 0, 0, z; 1, 1, 1) dμ–1(z) =
m∑

n=0

(–1)n n!
2n S2(m, n), (24)

and we also obtain

∫
Zp

y6(m; 0, 0, z; 1, 1, 1) dμ–1(z) =
m∑

n=0

n∑
j=0

S2(m, n)S1(n, j)Ej. (25)

Combining the above equations, we get the following theorem.

Theorem 6 Let m ∈N0. We have

m∑
n=0

n∑
j=0

S2(m, n)S1(n, j)Ej =
m∑

n=0

(–1)n n!
2n S2(m, n). (26)

We also observe that, using the orthogonality relation of the Stirling numbers, Eq. (26)
reduces to the following well-known relations for the Bernoulli numbers:

Em =
m∑

n=0

(–1)n n!
2n S2(m, n)

(cf. [7, 12, 17, 18, 25], and the references therein).
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Integrating Eq. (20) with respect to z from 0 to 1, we obtain

∫ 1

0
y6(m; 0, 0, z; 1, 1, 1) dz =

m∑
n=0

S2(m, n)
∫ 1

0
(z)n dz.

Combining the above integral equation with the integral equation for the Cauchy numbers
(the Bernoulli numbers of the second kind),

bn(0) =
∫ 1

0
(z)n dz

(cf. [22, p. 114]), we get the following integral representation of the polynomials
y6(m; 0, 0, z; 1, 1, 1).

Corollary 1 Let m ∈N0. We have

∫ 1

0
y6(m; 0, 0, z; 1, 1, 1) dz =

m∑
n=0

S2(m, n)bn(0).

4 Identities including the central factorial numbers of the second kind and
array polynomials

In this section, by using special infinite series including trigonometric functions and the
central factorial numbers of the second kind, we derive identities associated with the cen-
tral factorial numbers of the second kind and the array polynomials.

In [2, Theorem 4.1.1 and Proposition 4.1.5], Butzer et al. gave the following alternative
generating functions for the central factorial numbers of the second kind:

1
(2m)!

(
2 sin

(
t
2

))2m

=
∞∑

n=0

(–1)n+mT(2n, 2m)
t2n

(2n)!
, (27)

(
cos

(
t
2

))2m

=
∞∑

n=0

(–1)n+mT(2n, 2m)
t2n

(2n)!

m∑
j=0

(
m
j

)
4–j(2j)!T(2n, 2j), (28)

m ∈ N0.
Since

sin(t) =
eit – e–it

2i
,

where i2 = –1, after some elementary calculations, we obtain

(
sin(t)

)2m = (2m)!
∞∑

n=0

(–1)n–m(i)n2n–2mSn
2m(–m)

tn

n!
. (29)
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Combining (27) and (28), and also using the Cauchy product formula for a series product,
we also obtain

(
2 sin

(
t
2

)
cos

(
t
2

))2m

=
∞∑

n=0

n∑
v=0

(–1)n+m

(
2n
2v

)
(2m)!

× T(2n – 2v, 2m)
m∑

j=0

(
m
j

)
4–j(2j)!T(2v, 2j)

t2n

(2n)!
. (30)

Since

2 sin

(
t
2

)
cos

(
t
2

)
= sin(t),

combining (29) and (30), after some calculations, we arrive at the following theorem in-
cluding a relation between the central factorial numbers of the second kind and the array
polynomials.

Theorem 7 For m, n ∈N0 we have

S2n
2m(–m) =

n∑
v=0

(
2n
2v

)
T(2n – 2v, 2m)

m∑
j=0

(
m
j

)
4n–m–j(2j)!T(2v, 2j).

By combining (29) and (30), we also get following corollary.

Corollary 2 For m, n ∈N0 we have

S2n+1
2m (–m) = 0. (31)

With the help of Eq. (31), we also obtain the following combinatorial sum.

Corollary 3 For m, n ∈N0 we have

2m∑
j=0

2n+1∑
k=0

(–1)–j–k

(
2m

j

)(
2n + 1

k

)
jkm2n+1–k = 0.

5 Conclusion
This paper contains many kind of identities and relations related to the Milne–Thomson
polynomials, the Hermite polynomials, the Bernoulli numbers, the Euler numbers, the
Stirling numbers, the central factorial numbers, and the Cauchy numbers. By applying not
only p-adic integral, but also the Riemann integral methods, many identities relations and
formulas related to the aforementioned numbers and polynomials, and also the combina-
torial sums are given. By using the orthogonality relation of the Stirling numbers, explicit
formulas for the Bernoulli numbers and the Euler numbers are provided.

The results of this paper have potential applicability to physics, engineering and other
related fields, especially branches of mathematics.
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