RESEARCH

Open Access

Probabilistic linear widths of Sobolev space with Jacobi weights on [-1, 1]

Xuebo Zhai^{*} b and Xiuyan Hu

*Correspondence: zhaixuebo@163.com School of Mathematical and Statistics, Zaozhuang University, Zaozhuang, 277160, China

Abstract

Optimal asymptotic orders of the probabilistic linear (n, δ) -widths of $\lambda_{n,\delta}(W_{2,\alpha,\beta}^r, \nu, L_{q,\alpha,\beta})$ of the weighted Sobolev space $W_{2,\alpha,\beta}^r$ equipped with a Gaussian measure ν are established, where $L_{q,\alpha,\beta}$, $1 \le q \le \infty$, denotes the L_q space on [-1, 1] with respect to the measure $(1 - x)^{\alpha} (1 + x)^{\beta}$, $\alpha, \beta > -1/2$.

MSC: 41A46; 41A25; 28C20; 42C15

Keywords: probabilistic linear widths; Jacobi weights; weighted Sobolev classes; Gaussian measure

1 Introduction

This paper mainly focuses on the study of probabilistic linear (n, δ) -widths of a Sobolev space with Jacobi weights on the interval [-1,1]. This problem has been investigated only recently. For calculation of probabilistic linear (n, δ) -widths of the Sobolev spaces equipped with Gaussian measure, we refer to [1-5]. Let us recall some definitions.

Let *K* be a bounded subset of a normed linear space *X* with the norm $\|\cdot\|_X$. The linear *n*-width of the set *K* in *X* is defined by

$$\lambda_n(K,X) = \inf_{L_n} \sup_{x \in K} \|x - L_n x\|_X$$

where L_n runs over all linear operators from X to X with rank at most n.

Let W be equipped with a Borel field \mathcal{B} which is the smallest σ -algebra containing all open subsets. Assume that ν is a probability measure defined on \mathcal{B} . Let $\delta \in [0,1)$. The probabilistic linear (n, δ) -width is defined by

$$\lambda_{n,\delta}(W,\nu,X) = \inf_{G_{\delta}} \lambda_n(W \setminus G_{\delta},X),$$

where G_{δ} runs through all possible ν -measurable subsets of W with measure $\nu(G_{\delta}) \leq \delta$. Compared with the classical case analysis (see [2] or [6]), the probabilistic case analysis, which reflects the intrinsic structure of the class, can be understood as the ν -distribution of the approximation on all subsets of W by n-dimensional subspaces and linear operators with rank n.

In his recent paper [7], Wang has obtained the asymptotic orders of probabilistic linear (n, δ) -widths of the weighted Sobolev space on the ball with a Gaussian measure in a

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

weighted L_q space. Motivated by Wang's work, this paper considers the probabilistic linear (n, δ) -widths on the interval [-1, 1] with Jacobi weights and determines the asymptotic orders of the probabilistic linear (n, δ) -widths. The difference between the work of Wang and ours lies in the different choices of the weighted points for the proofs of discretization theorems.

2 Main results

Consider the Jacobi weights

$$w_{\alpha,\beta}(x) := (1-x)^{\alpha}(1+x)^{\beta}, \quad \alpha, \beta > -1/2.$$

Denote by $L_{p,\alpha,\beta} \equiv L_p(w_{\alpha,\beta})$, $1 \le p < \infty$, the space of measurable functions defined on [-1, 1] with the finite norm

$$\|f\|_{p,\alpha,\beta} := \left(\int_{-1}^{1} |f(x)|^p w_{\alpha,\beta}(x) dx\right)^{1/p}, \quad 1 \leq p < \infty,$$

and for $p = \infty$ we assume that $L_{\infty,\alpha,\beta}$ is replaced by the space C[-1,1] of continuous functions on [-1,1] with the uniform norm. Let Π_n be the space of all polynomials of degree at most n. Denote by \mathbb{P}_n the space of all polynomials of degree n which are orthogonal to polynomials of low degree in $L_2(w_{\alpha,\beta})$. It is well known that the classical Jacobi polynomials $\{P_n^{(\alpha,\beta)}\}_{n=0}^{\infty}$ form an orthogonal basis for $L_{2,\alpha,\beta} := L_2([-1,1], w_{\alpha,\beta})$ and are normalized by $P_n^{(\alpha,\beta)}(1) = \binom{n+\alpha}{n}$ (see [8]). In particular,

$$\int_{-1}^{1} P_n^{(\alpha,\beta)}(x) P_n^{(\alpha,\beta)}(y) w_{\alpha,\beta}(x) \, dx = \delta_{n,m} h_n(\alpha,\beta),$$

where

$$h_n(\alpha,\beta) = \frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1)\Gamma(\beta+1)} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{(2n+\alpha+\beta+1)\Gamma(n+1)\Gamma(n+\alpha+\beta+1)} \sim n^{-1}$$

with constants of equivalence depending only on α and β . Then the normalized Jacobi polynomials $P_n(x)$, defined by

$$P_n(x) = (h_n^{(\alpha,\beta)})^{-1/2} P_n^{(\alpha,\beta)}(x), \quad n = 0, 1, ...,$$

form an orthonormal basis for $L_{2,\alpha,\beta}$, where the inner product is defined by

$$\langle f,g\rangle := \int_{-1}^{1} f(x)\overline{g(x)}w_{\alpha,\beta}(x)\,dx.$$

Denote by S_n the orthogonal projector of $L_2(w_{\alpha,\beta})$ onto Π_n in $L_2(w_{\alpha,\beta})$, which is called the Fourier partial summation operator. Consequently, for any $f \in L_2(W_{\alpha,\beta})$,

$$f = \sum_{l=0}^{\infty} \langle f, P_l \rangle P_l, \qquad S_n f := \sum_{l=0}^n \langle f, P_l \rangle P_l.$$
(2.1)

It is well known that (see Proposition 1.4.15 in [9]) $P_n^{(\alpha,\beta)}$ is just the eigenfunction corresponding to the eigenvalues $-n(n + \alpha + \beta + 1)$ of the second-order differential operator

$$D_{\alpha,\beta} := (1-x^2)D^2 - (\alpha - \beta + (\alpha + \beta + 2)x)D,$$

which means that

$$D_{\alpha,\beta}P_n^{(\alpha,\beta)}(x) = -n(n+\alpha+\beta+1)P_n^{(\alpha,\beta)}(x).$$

Given r > 0, we define the fractional power $(-D_{\alpha,\beta})^{r/2}$ of the operator $-D_{\alpha,\beta}$ on f by

$$(-D_{\alpha,\beta})^{r/2}(f)=\sum_{k=0}^{\infty}\bigl(k(k+\alpha+\beta+1)\bigr)^{r/2}\langle f,P_k\rangle P_k,$$

in the sense of distribution. We call $f^{(r)} := (-D_{\alpha,\beta})^{r/2}$ the *r*th order derivative of the distribution *f*. It then follows that for $f \in L_{2,\alpha,\beta}$, $r \in R$, the Fourier series of the distribution $f^{(r)}$ is

$$f^{(r)} = \sum_{k=1}^{\infty} \left(k(k+\alpha+\beta+1) \right)^{r/2} \langle f, P_k \rangle P_k.$$

Using this operator, we define the weighted Sobolev class as follows: For r > 0 and $1 \le p \le \infty$,

$$W_{p,\alpha,\beta}^r\big([-1,1]\big) \equiv W_{p,\alpha,\beta}^r \coloneqq \left\{ f \in L_{p,\alpha,\beta} : \|f\|_{W_{p,\alpha,\beta}^r} \coloneqq \|f\|_{p,\alpha,\beta} + \left\| (-D_{\alpha,\beta})^{\frac{r}{2}} (f) \right\|_{p,\alpha,\beta} < \infty \right\},$$

while the weighted Sobolev class $BW_{p,\alpha,\beta}^r$ is defined to be the unit ball of $W_{p,\alpha,\beta}^r$. When p = 2, the norm $\|\cdot\|_{W_{2,\alpha,\beta}^r}$ is equivalent to the norm $\|\cdot\|_{\overline{W}_{2,\alpha,\beta}^r}$, and we can rewrite $W_{2,\alpha,\beta}^r$ as

$$\begin{split} W_{2,\alpha,\beta}^{r} &= \overline{W}_{2,\alpha,\beta}^{r} \\ &:= \left\{ f(x) = \sum_{l=0}^{\infty} \langle f, P_{n} \rangle P_{n}(x) : \|f\|_{\overline{W}_{2,\alpha,\beta}}^{2} := \langle f, P_{0} \rangle^{2} + \langle f^{(r)}, f^{(r)} \rangle \right. \\ &= \langle f, P_{0} \rangle^{2} + \sum_{k=1}^{\infty} \left(k(k+\alpha+\beta+1) \right)^{r} \langle f, P_{k} \rangle^{2} < \infty \right\} \end{split}$$

with the inner product

$$\langle f,g\rangle_r := \langle f,P_0\rangle\langle g,P_0\rangle + \langle f^{(r)},g^{(r)}\rangle.$$

Obviously, $\overline{W}_{2,\alpha,\beta}^r$ is a Hilbert space. We equip $\overline{W}_{2,\alpha,\beta}^r = W_{2,\alpha,\beta}^r$ with a Gaussian measure ν whose mean is zero and whose correlation operator C_{ν} has eigenfunctions $P_l(x)$, l = 0, 1, 2, ..., and eigenvalues

$$\lambda_0 = 1, \qquad \lambda_l = (l(l + \alpha + \beta + 1))^{-s/2}, \quad l = 1, 2, ..., s > 1,$$

that is,

$$C_{\nu}P_0 = P_0, \qquad C_{\nu}P_l = \lambda_l P_l, \quad l = 1, 2, \dots$$

Then (see [10], pp.48-49),

$$\langle C_{\nu}f,g\rangle_r = \int_{\overline{W}_{2,\alpha,\beta}^r} \langle f,h\rangle_r \langle g,h\rangle_r \nu(dh).$$

By Theorem 2.3.1 of [10] the Cameron-Martin space $H(\nu)$ of the Gaussian measure ν is $\overline{W}_{2,\alpha,\beta}^{r+s/2}$, i.e.,

$$H(\nu)=\overline{W}_{2,\alpha,\beta}^{r+s/2}.$$

See [10] and [11] for more information about the Gaussian measure on Banach spaces.

Throughout the paper, $A(n,\delta) \simeq B(n,\delta)$ means $A(n,\delta) \ll B(n,\delta)$ and $A(n,\delta) \gg B(n,\delta)$, $A(n,\delta) \ll B(n,\delta)$ means that there exists a positive constant *c* independent of *n* and δ such that $A(n,\delta) \le cB(n,\delta)$. If $1 \le q \le \infty$, $r > (2 + 2\min\{0, \max\{\alpha, \beta\}\})(1/p - 1/q)_+$, the space $W_{p,\alpha,\beta}^r$ can be continuously embedded into the space $L_{q,\alpha,\beta}$ (see Lemma 2.3 in [12]). Set $\rho = r + \frac{s}{2}$. The main result of this paper can be formulated as follows.

Theorem 2.1 Let $1 \le q \le \infty$, $\delta \in (0, 1/2]$, and let $\rho > 1/2 + (2 \max\{\alpha, \beta\} + 1)(1/2 + 1/q)_+$. *Then*

$$\lambda_{n,\delta} \left(W_{2,\alpha,\beta}^r, \nu, L_{q,\alpha,\beta} \right) \asymp \begin{cases} n^{1/2-\rho} (1+n^{-\min\{1/2,1/q\}}) (\ln(\frac{1}{\delta}))^{\frac{1}{2}}, & 1 \le q < \infty, \\ n^{1/2-\rho} (\ln(\frac{n}{\delta}))^{\frac{1}{2}}, & q = \infty. \end{cases}$$
(2.2)

For the proof of Theorem 2.1, the discretization technique is used (see [1, 4, 13, 14]). Since the known results of the probabilistic linear widths of the identity matrix on \mathbb{R}^m are inappropriate here, the probabilistic linear widths of diagonal matrixes on \mathbb{R}^m are adopted for the proof of the upper estimates.

3 Main lemmas

Let $\ell_q^m \ (1 \leq q \leq \infty)$ denote the space \mathbb{R}^m equipped with the ℓ_q^m -norm defined by

$$\|x\|_{\ell_q^m} := \begin{cases} (\sum_{i=1}^m |x_i|^q)^{\frac{1}{q}}, & 1 \le q < \infty, \\ \max_{1 \le i \le m} |x_i|, & q = \infty. \end{cases}$$

We identify \mathbb{R}^m with the space ℓ_2^m , denote by $\langle x, y \rangle$ the Euclidean inner product of $x, y \in \mathbb{R}^m$, and write $\| \cdot \|_2$ instead of $\| \cdot \|_{\ell_2^m}$.

Consider in \mathbb{R}^m the standard Gaussian measure γ_m , which is given by

$$\gamma_m(G) = (2\pi)^{-m/2} \int_G \exp^{\frac{-\|x\|^2}{2}} dx,$$

where *G* is any Borel subset in \mathbb{R}^m . Let $1 \le q \le \infty$, $1 \le n < m$, and $\delta \in [0, 1)$. The probabilistic linear (n, δ) -width of a linear mapping $T : \mathbb{R}^m \to l_q^m$ is defined by

$$\lambda_{n,\delta}(T:\mathbb{R}^m\to l_q^m,\gamma_m)=\inf_{G_\delta}\inf_{T_n}\sup_{\mathbb{R}^m\setminus G_\delta}\|Tx-T_nx\|_{l_q^m},$$

where G_{δ} runs over all possible Borel subsets of \mathbb{R}^m with measure $\gamma_m(G_{\delta}) \leq \delta$, and T_n runs over all linear operators from \mathbb{R}^m to l_a^m with rank at most n.

Throughout the paper, *D* denotes the $m \times m$ real diagonal matrix diag (d_1, \ldots, d_m) with $d_1 \ge d_2 \ge \cdots \ge d_m > 0$, D_n denotes the $m \times m$ real diagonal matrix diag $(d_1, \ldots, d_n, 0, \ldots, 0)$ with $1 \le n \le m$, and I_m denotes the $m \times m$ identity matrix. Moreover, $\{e_1, \ldots, e_m\}$ denotes the standard orthonormal basis in \mathbb{R}^m :

$$e_1 = (1, 0, \dots, 0), \qquad \dots, \qquad e_m = (0, \dots, 0, 1).$$

Now, we introduce several lemmas which will be used in the proof of Theorem 2.1.

Lemma 3.1

(1) (See [1]) If $1 \le q \le 2$, $m \ge 2n$, $\delta \in (0, 1/2]$, then

$$\lambda_{n,\delta}(I_m:\mathbb{R}^m \to l_q^m, \gamma_m) \asymp m^{1/q} + m^{1/q-1/2}\sqrt{\ln(1/\delta)}.$$
(3.1)

(2) (See [4]) If $2 \le q < \infty$, $m \ge 2n$, $\delta \in (0, 1/2]$, then

$$\lambda_{n,\delta} (I_m : \mathbb{R}^m \to l_q^m, \gamma_m) \asymp m^{1/q} + \sqrt{\ln(1/\delta)}.$$
(3.2)

(3) (See [5]) If $q = \infty$, $m \ge 2n$, $\delta \in (0, 1/2]$, then

$$\lambda_{n,\delta}(I_m:\mathbb{R}^m\to l_q^m,\gamma_m)\asymp\sqrt{\ln((m-n)/\delta)}\asymp\sqrt{\ln m+\ln(1/\delta)}.$$
(3.3)

Lemma 3.2 (See [7]) Assume that

$$\sum_{i=1}^m d_i^\beta \le C(m,\beta) \quad for \ some \ \beta > 0.$$

Then, for $2 \le q \le \infty$, $m \ge 2n$, $\delta \in (0, 1/2]$, we have

$$\lambda_{n,\delta}\left(D:\mathbb{R}^m\to l_q^m,\gamma_m\right)\ll \left(\frac{C(m,\beta)}{n+1}\right)^{\frac{1}{\beta}} \begin{cases} (m^{1/q}+\sqrt{\ln(1/\delta)}, & 2\leq q<\infty,\\ \sqrt{\ln m+\ln(1/\delta)}, & q=\infty. \end{cases}$$
(3.4)

Let $\xi_j = \cos \theta_j$, $1 \le j \le 2n$, denote the zeros of the Jacobi polynomial $P_{2n}^{(\alpha,\beta)}(t)$, ordered so that

$$0 =: \theta_0 < \theta_1 < \cdots < \theta_{2n} < \theta_{2n+1} := \pi.$$

Let $\lambda_{2n}(t)$ be the Christoffel function and $b_j = \lambda_{2n}(\xi_j)$. Denote

$$W(n;\xi_j) = (1-x+n^{-2})^{\alpha+\frac{1}{2}} (1-x+n^{-2})^{\beta+\frac{1}{2}}.$$

It is well known uniformly (see [15])

$$\theta_{j+1} - \theta_j \asymp n^{-1}$$
, $\theta_j \asymp j n^{-1}$ $(1 \le j \le 2n)$,

and also

$$b_j \simeq n^{-1} w_{\alpha,\beta}(\xi_j) (1-\xi_j^2)^{1/2} \simeq n^{-1} W(n;\xi_j),$$

where the constants of equivalence depend only on α , β (see [16] or [17]).

The following lemma is well known as Gaussian quadrature formulae.

Lemma 3.3 (See [8]) *For each* $n \ge 1$ *, the quadrature*

$$\int_{-1}^{1} f(x) w_{\alpha,\beta}(x) \, dx \asymp \sum_{j=1}^{2n} b_j f(\xi_j) \tag{3.5}$$

is exact for all polynomials of degree 4n - 1. Moreover, for any $1 \le p \le \infty$, $f \in \Pi_n$, we have

$$\|f\|_{p,\alpha,\beta} \asymp \left(\sum_{j=1}^{2n} b_j \left| f(\xi_j) \right|^p \right)^{1/p}.$$
(3.6)

An equivalence like (3.6) is generally called a Marcinkiewicz-Zygmund type inequality.

Lemma 3.4 (See [12], Lemma 2.7) Let $\alpha, \beta > -1/2, \sigma \in (0, \frac{1}{2 \max\{\alpha, \beta\}+1})$ and let $b_j, 1 \le j \le n$, be defined as in Lemma 3.3. Then

$$\sum_{j=1}^{n} b_j^{-\sigma} \ll n^{1+\sigma}.$$
(3.7)

Let

$$L_n(x,y) := \sum_{j=0}^{\infty} \eta\left(\frac{j}{n}\right) P_j(x) P_j(y), \quad x, y \in [-1,1],$$
(3.8)

where $\eta \in C^{\infty}(R)$ is a nonnegative C^{∞} -function on $[0, \infty)$ supported in [0, 2] with the properties that $\eta(t) = 1$ for $0 \le t \le 1$ and $\eta(t) > 0$ for $t \in [0, 2)$. For any $f \in L_{2,\alpha,\beta}$, we define

$$\delta_1(f) = S_2(f), \qquad \delta_k(f) = S_{2^k}(f) - S_{2^{k-1}}(f) \quad \text{for } k = 2, 3...,$$
(3.9)

where S_n is given in (2.1). Denote by

$$M_k(x,y) = \sum_{l=2^{k-1}+1}^{2^k} P_l(x) P_l(y)$$
(3.10)

the reproducing kernel of the Hilbert space $L_{2,\alpha,\beta} \cap \bigoplus_{n=2^{k-1}+1}^{2^k} \mathbb{P}_n$. Then, for $x \in [0,1]$,

$$\delta_k(f)(x) = \sum_{l=2^{k-1}+1}^{2^k} \int_{-1}^1 f(x) P_l(x) P_l(y) w_{\alpha,\beta}(y) \, dx = \langle f, M_k(\cdot, x) \rangle.$$

For
$$f \in \bigoplus_{n=2^{k-1}+1}^{2^k} \mathbb{P}_n$$
,
 $f(x) = \delta_k(f)(x) = \langle f, M_k(\cdot, x) \rangle$.

By Lemma 3.3, there exists a sequence of positive numbers $w_i = b_i \simeq n^{-1} W_{\alpha,\beta}(n;\xi_i)$, $1 \le i \le 2^{k+1}$, for which the following quadrature formula holds for all $f \in \Pi_{2^{k+3}-1}$:

$$\int_{-1}^{1} f(t) W_{\alpha,\beta}(t) dt = \sum_{i=1}^{2^{k+1}} w_i f(\xi_i).$$
(3.11)

Moreover, for any $1 \le p \le \infty$, $f \in \Pi_{2^k}$, we have

$$\|f\|_{p,\alpha,\beta} \asymp \left(\sum_{i=1}^{2^{k+1}} w_i |f(\xi_i)|^p\right)^{1/p} = \|U_n(f)\|_{\ell_{p,w}^{2^{k+1}}},$$

where $w = (w_1, \dots, w_{2^{k+1}}), U_k : \prod_{2^k} \longmapsto \mathbb{R}^{2^{k+1}}$ is defined by

$$U_k(f) = (f(\xi_1), \dots, f(\xi_{2^{k+1}})), \tag{3.12}$$

and for $x \in \mathbb{R}^{2^{k+1}}$,

$$\|x\|_{\ell^{2^{k+1}}_{p,w}} := \begin{cases} \left(\sum_{i=1}^{2^{k+1}} |x_i|^p w_i\right)^{\frac{1}{p}}, & 1 \le p < \infty, \\ \max_{1 \le i \le 2^{k+1}} |x_i|, & p = \infty. \end{cases}$$

Let the operator $T_k : \mathbb{R}^{2^{k+1}} \mapsto \Pi_{2^{k+1}}$ be defined by

$$T_k a(x) \coloneqq \sum_{i=1}^{2^{k+1}} a_i w_i L_{2^{k+1}}(x, \xi_i),$$
(3.13)

where $a := (a_1, ..., a_{2^{k+1}}) \in \mathbb{R}^{2^{k+1}}$. It is shown in [12] that for $1 \le q \le \infty$,

$$\|T_k a\|_{q,\alpha,\beta} \ll \|\nu\|_{\ell^{2^{k+1}}_{q,w}}.$$
(3.14)

For $f \in \Pi_{2^{k+1}}$, we have

$$f(x) = \int_{-1}^{1} f(y) L_{2^{k+1}}(x, y) w_{\alpha, \beta}(x, y) \, dy = \sum_{i=1}^{2^{k+1}} w_i f(\xi_i) L_{2^{k+1}}(x, \xi_i) = T_k U_k(f)(x).$$

In what follows, we use the letters S_k , R_k , V_k to denote $u_k \times u_k$ real diagonal matrixes as follows:

$$S_{k} = \operatorname{diag}\left(w_{1}^{\frac{1}{2}}, \dots, w_{2^{k+1}}^{\frac{1}{2}}\right),$$

$$R_{k} = \operatorname{diag}\left(w_{1}^{\frac{1}{q}}, \dots, w_{2^{k+1}}^{\frac{1}{q}}\right),$$

$$V_{k} = \operatorname{diag}\left(w_{1}^{-\frac{1}{2}+\frac{1}{q}}, \dots, w_{2^{k+1}}^{-\frac{1}{2}+\frac{1}{q}}\right),$$
(3.15)

and use the letter R_k^{-1} to represent the inverse matrix of R_k .

Lemma 3.5 *For any* $z = (z_1, ..., z_{2^{k+1}}) \in \mathbb{R}^{2^{k+1}}$, we have

$$\left\|\sum_{j=1}^{2^{k+1}} w_j^{\frac{1}{2}} z_j M_k(\cdot,\xi_j)\right\|_{2,\alpha,\beta} \ll \|z\|_{l_2^{2^{k+1}}},$$
(3.16)

where $M_k(x, y)$ is given in (3.10), and $(\xi_1, \ldots, \xi_{2^{k+1}})$ is defined as above.

Proof Denote by *K* the set

$$\left\{g\in \bigoplus_{j=2^{k-1}-1}^{2^k} \mathbb{P}_j: \|g\|_{2,\alpha,\beta} \leq 1\right\}.$$

Since

$$\sum_{j=1}^{2^{k+1}} w_j^{1/2} z_j M_k(\cdot,\xi_j) \in L_{2,\alpha,\beta} \cap \left(\bigoplus_{j=2^{k-1}-1}^{2^k} \mathbb{P}_j\right).$$

By the Riesz representation theorem and the Cauchy-Schwarz inequality, we have

$$\begin{split} \left\| \sum_{j=1}^{2^{k+1}} w_j^{1/2} z_j M_k(\cdot, \xi_j) \right\|_{2,\alpha,\beta} &= \sup_{g \in K} \left| \left\{ \sum_{j=1}^{2^{k+1}} w_j^{1/2} z_j M_k(\cdot, \xi_j), g \right\} \right| \\ &= \sup_{g \in K} \left| \sum_{j=1}^{2^{k+1}} w_j^{1/2} z_j g(\xi_j) \right| \\ &\leq \sup_{g \in K} \left(\sum_{j=1}^{2^{k+1}} |z_j|^2 \right)^{1/2} \left(\sum_{j=1}^{2^{k+1}} w_j |g(\xi_j)|^2 \right)^{1/2} \\ &\ll \sup_{g \in K} \left(\sum_{j=1}^{2^{k+1}} |z_j|^2 \right)^{1/2} \|g\|_{2,\alpha,\beta} \\ &\leq \|z\|_{l_2^{2^{k+1}}}. \end{split}$$

4 Proofs of main results

Before Theorem 2.1 is proved, we establish the discretization theorems which give the reduction of the calculation of the probabilistic widths.

Theorem 4.1 Let $1 \le q \le \infty$, $\sigma \in (0, 1)$, and let the sequences of numbers $\{n_k\}$ and $\{\sigma_k\}$ be such that $0 \le n_k \le 2^{k+1} =: m_k$, $\sum_{k=1}^{\infty} n_k \le n$, $\sigma_k \in (0, 1)$, $\sum_{k=1}^{\infty} \sigma_k \le \sigma$. Then

$$\lambda_{n,\sigma} \left(W_{2,\alpha,\beta}^r, \nu, L_{q,\alpha,\beta} \right) \le \sum_{k=1}^{\infty} 2^{-k\rho} \lambda_{n_k,\sigma_k} \left(V_k : \mathbb{R}^{m_k} \to l_q^{m_k}, \gamma_{m_k} \right).$$

$$(4.1)$$

Proof For convenience, we write

$$\lambda_{n_k,\sigma_k} := \lambda_{n_k,\sigma_k} \big(V_k : \mathbb{R}^{m_k} \to l_q^{m_k}, \gamma_{m_k} \big),$$

where γ_{m_k} is the standard Gaussian measure in \mathbb{R}^{m_k} . Denote by L_k a linear operator from \mathbb{R}^{m_k} to \mathbb{R}^{m_k} such that the rank of L_k is at most n_k and

$$\gamma_{m_k}(\{y \in \mathbb{R}^{m_k} | \|V_k y - L_k y\| > 2\lambda_{n_k,\sigma_k}\}) \leq \sigma_k.$$

Then, for any $f \in W^{r}_{2,\alpha,\beta}$, by (3.8)-(3.10), (3.14) and (3.15) we have

$$\begin{aligned} \left\| \delta_{k}(f) - T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f) \right\|_{q,\alpha,\beta} &= \left\| T_{k} U_{k} \delta_{k}(f) - T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f) \right\|_{q,\alpha,\beta} \\ &\leq \left\| U_{k} \delta_{k}(f) - R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f) \right\|_{l_{q,w}^{m_{k}}} \\ &= \left\| V_{k} S_{k} U_{k} \delta_{k}(f) - L_{k} S_{k} U_{k} \delta_{k}(f) \right\|_{l_{q}^{m_{k}}}. \end{aligned}$$

$$(4.2)$$

Let
$$y = S_k U_k \delta_k(f) = (w_1^{\frac{1}{2}} \delta_k(f)(\xi_1), \dots, w_{m_k}^{\frac{1}{2}} \delta_k(f)(\xi_{m_k})) \in \mathbb{R}_{m_k}$$
, for $x \in [-1, -1]$,
 $\delta_k(f)(x) = \langle f, M_k(\cdot, x) \rangle = \langle f^{(-r)}, M_k^{(-r,0)}(\cdot, x) \rangle_r = \langle f, M_k^{(-2r,0)}(\cdot, x) \rangle_r$,

where $M_k^{(r_1,0)}(x,y)$ is the r_1 -order partial derivative of $M_k(x,y)$ with respect to the variable $x, r_1 \in \mathbb{R}$. Since the random vector f in $W_{2,\alpha,\beta}^r$ is a centered Gaussian random vector with a covariance operator C_{ν} , the vector

$$y = S_k U_k \delta_k(f) = \left(\left(f, w_1^{\frac{1}{2}} M_k^{(-2r,0)}(\cdot,\xi_1) \right)_r, \dots, w_{m_k}^{\frac{1}{2}} M_k^{(-2r,0)}(\cdot,\xi_{m_k}) \right)_r \right)$$

in \mathbb{R}^{m_k} is a random vector with a centered Gaussian distribution γ in \mathbb{R}^{m_k} , and its covariance matrix C_{γ} is given by

$$C_{\gamma} = \left(\left\{ C_{\nu} \left(w_i^{\frac{1}{2}} M_k^{(-2r,0)}(\cdot,\xi_i) \right), w_j^{\frac{1}{2}} M_k^{(-2r,0)}(\cdot,\xi_j) \right\}_r \right)_{i,j=1}^{m_k}$$

Since for any $z = (z_1, \ldots, z_{m_k}) \in \mathbb{R}^{m_k}$,

$$\sum_{j=1}^{m_k} w_j^{\frac{1}{2}} z_j M_k(\cdot,\xi_j) \in \bigoplus_{j=2^{k-1}+1}^{2^k} \mathbb{P}_j,$$

and

$$\begin{split} \left\langle C_{v} \left(w_{i}^{\frac{1}{2}} M_{k}^{(-2r,0)}(\cdot,\xi_{i}) \right), w_{j}^{\frac{1}{2}} M_{k}^{(-2r,0)}(\cdot,\xi_{j}) \right\rangle_{r} &= \left\langle w_{i}^{\frac{1}{2}} M_{k}^{(-2r-s,0)}(\cdot,\xi_{i}), w_{j}^{\frac{1}{2}} M_{k}^{(-2r,0)}(\cdot,\xi_{j}) \right\rangle_{r} \\ &= \left\langle w_{i}^{\frac{1}{2}} M_{k}^{(-\rho,0)}(\cdot,\xi_{i}), w_{j}^{\frac{1}{2}} M_{k}^{(-\rho,0)}(\cdot,\xi_{j}) \right\rangle, \end{split}$$

by Lemma 3.5 we get

$$\begin{split} \int_{\mathbb{R}^{m_k}} (y, z)^2 \gamma(dy) &= z C_{\gamma} z^T = \sum_{i,j=1}^{m_k} z_i z_j \left\{ w_i^{\frac{1}{2}} M_k^{(-\rho,0)}(\cdot,\xi_i), w_j^{\frac{1}{2}} M_k^{(-\rho,0)}(\cdot,\xi_j) \right\} \\ &= \left\langle \sum_{j=1}^{m_k} w_j^{\frac{1}{2}} z_j M_k^{(-\rho,0)}(\cdot,\xi_j), \sum_{j=1}^{m_k} w_j^{\frac{1}{2}} z_j M_k^{(-\rho,0)}(\cdot,\xi_j) \right\rangle \end{split}$$

$$= \left\| \sum_{j=1}^{m_k} w_j^{\frac{1}{2}} z_j M_k^{(-\rho,0)}(\cdot,\xi_j) \right\|_2^2 \approx 2^{-2k\rho} \left\| \sum_{j=1}^{m_k} w_j^{\frac{1}{2}} z_j M_k(\cdot,\xi_j) \right\|_2^2$$
$$\ll 2^{-2k\rho} \|z\|_{l_2^{m_k}} = 2^{-2k\rho} \int_{\mathbb{R}^{m_k}} (y,z)^2 \gamma_{m_k}(dy).$$
(4.3)

Now we consider the subset of $W^r_{2,\alpha,\beta}$

$$G_k := \{ f \in W_{2,\alpha,\beta}^r | \| \delta_k(f) - T_k R_k^{-1} L_k S_k U_k \delta_k(f) \|_{l_q^{m_k}} > 2c_1 c_2 2^{-k\rho} \lambda_{n_k,\sigma_k} \},$$

where c_1 , c_2 are the positive constants given in (4.2), (4.3). Then by (4.2) we get

$$\begin{split} \nu(G_k) &\leq \nu(\{f \in W_{2,\alpha,\beta}^r | \| V_k S_k U_k \delta_k(f) - L_k S_k U_k \delta_k(f) \|_{l_q^{m_k}} > 2c_2 2^{-k\rho} \lambda_{n_k,\sigma_k} \}) \\ &= \gamma(\{y \in \mathbb{R}^{m_k} | \| V_k y - L_k y \|_{l_q^{m_k}} > 2c_2 2^{-k\rho} \lambda_{n_k,\sigma_k} \}). \end{split}$$

Note that for any t > 0, the set $\{y \in \mathbb{R}^{m_k} : \|V_k y - L_k y\|_{l_q^{m_k}} \le t\}$ is convex symmetric. It then follows by Theorem 1.8.9 in [10] and (4.3), we have

$$\begin{split} \nu(G_k) &\leq \gamma \left(\left\{ y \in \mathbb{R}^{m_k} : \| V_k y - L_k y \|_{l_q^{m_k}} > 2c_2 2^{-k\rho} \lambda_{n_k,\sigma_k} \right\} \right) \\ &\leq \lambda \left(\left\{ y \in \mathbb{R}^{m_k} : \| V_k y - L_k y \|_{l_q^{m_k}} > 2c_2 2^{-k\rho} \lambda_{n_k,\sigma_k} \right\} \right) \\ &\leq \gamma_{m_k} \left(\left\{ y \in \mathbb{R}^{m_k} : \| V_k y - L_k y \|_{l_q^{m_k}} > 2\lambda_{n_k,\sigma_k} \right\} \right) \leq \sigma_k, \end{split}$$

where λ is a centered Gaussian measure in \mathbb{R}^{m_k} with covariance matrix $c_2^2 2^{-2k\rho} I_{m_k}$. Consider $G = \bigcup_{k=1}^{\infty} G_k$ and the linear operator \widetilde{T}_n on $W_{2,\alpha,\beta}^r$ which is given by

$$\widetilde{T}_n f = \sum_{k=1}^{\infty} T_k R_k^{-1} L_k S_k U_k \delta_k(f).$$

Then

$$u(G) =
u\left(\bigcup_{k=1}^{\infty} G_k\right) \le \sum_{k=1}^{\infty} \nu(G_k) \le \sum_{k=1}^{\infty} \nu(\sigma_k) \le \sigma,$$

and

$$\operatorname{rank} \widetilde{T}_n \leq \sum_{k=1}^{\infty} \operatorname{rank} \left(T_k R_k^{-1} L_k S_k U_k \delta_k \right)$$
$$\leq \sum_{k=1}^{\infty} n_k \leq n.$$

Thus, according to the definitions of G, \widetilde{T}_n , and L_k , we obtain

$$\begin{split} \lambda_{n,\delta} \Big(W^r_{2,\alpha,\beta}, \nu, L_{q,\alpha,\beta} \Big) &= \sup_{f \in W^r_{2,\alpha,\beta} \setminus G} \| f - \widetilde{T}_n f \|_{q,\alpha,\beta} \\ &\leq \sup_{f \in W^r_{2,\alpha,\beta} \setminus G} \sum_{k=1}^{\infty} \left\| \delta_k(f) - T_k R_k^{-1} L_k S_k U_k \delta_k(f) \right\|_{q,\alpha,\beta} \end{split}$$

$$\leq \sum_{k=1}^{\infty} \sup_{f \in W_{2,\alpha,\beta}^{r} \setminus G} \left\| \delta_{k}(f) - T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f) \right\|_{q,\alpha,\beta}$$
$$\ll \sum_{k=1}^{\infty} 2^{-k\rho} \lambda_{n_{k},\sigma_{k}},$$

which completes the proof of Theorem 4.1.

Now we turn to the lower estimates. Assume that $m \ge 6$ and $b_1m \le n \le 2b_1m$ with $b_1 > 0$ being independent of n and m. Set $\{x_j\}_{j=1}^N \subset \{x \in [-1,1] : |x| \le 2/3\}$ and $x_{j+1} - x_j = 3/m$, j = 1, ..., N - 1. Then $M \asymp N$ and

$$\{x \in [-1,1] : |x-x_j| \le 1/m\} \cap \{x \in [-1,1] : |x-x_i| \le 1/m\} = \emptyset, \text{ if } i \ne j.$$

We may take $b_1 > 0$ sufficiently large so that $N \ge 2n$. Let φ^1 be a C^{∞} -function on \mathbb{R} supported in [-1,1], and be equal to 1 on [-2/3, 2/3]. Let φ^2 be a nonnegative C^{∞} -function on \mathbb{R} supported in [-1/2, 1/2], and be equal to 1 on [-1/4, 1/4]. Define

$$\varphi_i(x) = \varphi^1 \big(m(x-x_i) \big) - c_i \varphi^2 \big(m(x-x_i) \big),$$

for some c_i such that $\int_{-1}^{1} \varphi_i(x) W_{\alpha,\beta}(x) dx = 0, i = 1, ..., N$. Set

$$A_N := \operatorname{span}\{\varphi_1, \ldots, \varphi_N\} = \left\{ F_a(x) = \sum_{j=1}^N a_j \varphi_j(x) : a = (a_1, \ldots, a_N) \in \mathbb{R}^N \right\}.$$

Clearly,

$$\begin{split} \varphi_{j} \in W_{2,\alpha,\beta}^{2}, \quad \sup \varphi_{j} \subset \left\{ x \in [-1,1] : |x - x_{j}| \le 1/m \right\} \subset \left\{ x \in [-1,1] : |x| \le 5/6 \right\}, \\ \|\varphi_{j}\|_{q,\alpha,\beta} &\asymp \left(\int_{-2/3}^{2/3} |\varphi_{j}(x)|^{q} dx \right)^{1/q} = \left(\int_{-2/3}^{2/3} |\varphi^{1}(m(x - x_{j})) - c_{j}\varphi^{2}(m(x - x_{j})) |^{q} dx \right)^{1/q} \\ &\asymp m^{-1/q}, \quad 1 \le q \le \infty, j = 1, \dots, N, \end{split}$$

and

 $\operatorname{supp} \varphi_j \cap \operatorname{supp} \varphi_i = \emptyset \quad (i \neq j).$

It follows that for $F_a \in A_n$, $a = (a_1, ..., a_N) \in \mathbb{R}^N$, we have

$$\|F_a\|_{q,\alpha,\beta} \asymp \left(m^{-1}\sum_{j=1}^N |a_j|^q\right)^{1/q} = m^{-1/q} \|a\|_{l_q^N}.$$
(4.4)

For a nonnegative integer $\nu = 0, 1, ..., and F_a \in A_N$, $a = (a_1, ..., a_N) \in \mathbb{R}^N$, it follows from the definition of $-D_{\alpha,\beta}$ that

$$\operatorname{supp}(-D_{\alpha,\beta})^{\nu}(\varphi_j) \subset \left\{ x \in [-1,1] : |x-x_j| \le 1/m \right\}$$

and

$$\|(D_{\alpha,\beta})^{\nu}(\varphi_j)\|_{q,\alpha,\beta} \leq m^{2\nu-1/q}.$$

Hence, for $1 \le q \le \infty$ and $F_a = \sum_{j=1}^N a_j \varphi_j \in A_N$,

$$\left\|\left(-(D_{\alpha,\beta})^{\nu}(F_a)\right\|_{q,\alpha,\beta} \le m^{2\nu-1/q} \|a\|_{l^N_q}.$$

It then follows by the Kolmogorov type inequality (see Theorem 8.1 in [18]) that

$$\begin{split} \left\|F_{a}^{(\rho)}\right\|_{q,\alpha,\beta} &= \left\|\left(-D_{\alpha,\beta}\right)^{\rho/2}(F_{a})\right\|_{q,\alpha,\beta} \\ &\ll \left\|\left(-D_{\alpha,\beta}\right)^{1+[\rho]}(F_{a})\right\|_{q,\alpha,\beta}^{\frac{\rho}{p+2[\rho]}} \left\|F_{a}\right\|_{q,\alpha,\beta}^{1-\frac{\rho}{2+2[\rho]}} \\ &\ll m^{\rho-1/q} \left\|a\right\|_{l_{q}^{N}} \ll m^{\rho} \left\|F_{a}\right\|_{q,\alpha,\beta}. \end{split}$$

$$\tag{4.5}$$

For $f \in L_{1,\alpha,\beta}$ and $x \in [-1,1]$, we define

$$P_N(f)(x) = \sum_{j=1}^N \frac{\varphi_j(x)}{\|\varphi_j\|_{2,\alpha,\beta}^2} \int_{-1}^1 f(y)\varphi_j(y) W_{\alpha,\beta}(y) \, dy$$

and

$$Q_N(f)(x) = \sum_{j=1}^N \frac{\varphi_j(x)}{\|\varphi_j\|_{2,\alpha,\beta}^2} \int_{-1}^1 f(y) \varphi_j^{(\rho)}(y) W_{\alpha,\beta}(y) \, dy.$$

Clearly, the operator P_N is the orthogonal projector from $L_{2,\alpha,\beta}$ to A_N , and if $f \in W^{\rho}_{2,\alpha,\beta}$, then $Q_N(f)(x) = P_N(f^{\rho})(x)$. Also, using the method in [19], we can prove that P_N is the bounded operator from $L_{q,\alpha,\beta}$ to $A_N \cap L_{q,\mu}$ for $1 \le q \le \infty$,

$$\left\|P_N(f)\right\|_{q,\alpha,\beta} \ll \|f\|_{q,\alpha,\beta}.$$
(4.6)

Since $Q_N(f) \in A_N$ for $f \in W^{\rho}_{2,\alpha,\beta}$, we have

$$\|Q_N(f)^{(\rho)}\|_{2,\alpha,\beta} \ll m^{\rho} \|Q_N(f)\|_{2,\alpha,\beta} = m^{\rho} \|P_N(f)^{(\rho)}\|_{2,\alpha,\beta} \ll m^{\rho} \|f^{(\rho)}\|_{2,\alpha,\beta}.$$
(4.7)

Theorem 4.2 Let $1 \le q \le \infty$, $\delta \in (0,1)$, and let N be given above. Then

$$\lambda_{n,\delta}(W_{2,\alpha,\beta}^r,\nu,L_{q,\alpha,\beta}) \gg n^{1/2-\rho-1/q}\lambda_{n,\delta}(I_N:\mathbb{R}^N\to l_q^N,\gamma_N),$$

where $N \simeq n$, $N \ge 2n$ and γ_N is the standard Gaussian measure in \mathbb{R}^N .

Proof Let T_n be a bounded linear operator on $W_{2,\alpha,\beta}^r$ with rank $T_n \leq n$ such that

$$\nu\left(\left\{f\in W^r_{2,\alpha,\beta}: \|f-T_nf\|_{q,\alpha,\beta}>2\lambda_{n,\delta}\right\}\right)\leq \delta,$$

where $\lambda_{n,\delta} := \lambda_{n,\delta}(W_{2,\alpha,\beta}^r, \nu, L_{q,\alpha,\beta})$. Note that if *A* is a bounded linear operator from $W_{2,\alpha,\beta}^r$ to $W_{2,\alpha,\beta}^r$ and from $H(\nu)$ to $H(\nu)$, then the image measure λ of ν under *A* is also a centered Gaussian measure on $W_{2,\alpha,\beta}^r$ with covariance

$$R_{\lambda}(f)(f) = \langle A^* C_{\nu} f, A^* C_{\nu} f \rangle_{H(\nu)}, \quad f \in W^r_{2,\alpha,\beta},$$

where C_{ν} is the covariance of the measure ν , $H(\nu) = W^{\rho}_{2,\alpha,\beta}$ is the Camera-Martin space of ν , and A^* is the adjoint of A in $H(\nu)$ (see Theorem 3.5.1 of [10]). Furthermore, if the operator A also satisfies

$$||Af||_{H(v)} \le ||f||_{H(v)},$$

then

$$R_{\lambda}(f)(f) = \left\|A^*C_{\nu}f\right\|_{H(\nu)}^2 \leq \left\|A^*\right\|^2 \|C_{\nu}f\| \leq \langle C_{\nu}f, C_{\nu}f\rangle_{H(\nu)} = R_{\nu}(f)(f).$$

By Theorem 3.3.6 in [10], we get that for any absolutely convex Borel set *E* of $W_{2,\alpha,\beta}^r$ there holds the inequality

$$\nu(E) \leq \lambda(E).$$

Applying (4.7) we assert that

$$\|Q_N(f)\|_{H(\nu)} = \|(Q_N(f))^{(\rho)}\|_{2,\alpha,\beta} \ll m^{\rho} \|f^{(\rho)}\|_{2,\alpha,\beta} = m^{\rho} \|f\|_{H(\nu)}$$

Then there exists a positive constant c_3 such that

$$\left\|\frac{1}{c_3 m^{\rho}} Q_N(f)\right\|_{H(\nu)} \le \|f\|_{H(\nu)}.$$

Note that, for any t > 0, the set $\{f \in W_{2,\alpha,\beta}^r : ||f - T_n f||_{q,\alpha,\beta} \le t\}$ is absolutely convex. It then follows that

$$\nu\left(\left\{f \in W_{2,\alpha,\beta}^r : \|f - T_n f\|_{q,\alpha,\beta} < 2\lambda_{n,\delta}\right\}\right) \leq \lambda\left(\left\{f \in W_{2,\alpha,\beta}^r : \|f - T_n f\|_{q,\alpha,\beta} < 2\lambda_{n,\delta}\right\}\right),$$

which leads to

$$\nu\left(\left\{f \in W_{2,\alpha,\beta}^r : \|f - T_n f\|_{q,\alpha,\beta} > 2\lambda_{n,\delta}\right\}\right)$$

$$\geq \nu\left(\left\{f \in W_{2,\alpha,\beta}^r : \|Q_N f - T_n Q_N f\|_{q,\alpha,\beta} > 2c_3 m^{\rho} \lambda_{n,\delta}\right\}\right).$$

Let $L_N : \mathbb{R}^N \to A_N$ and $J_N : A_N \to \mathbb{R}^N$ be defined by

$$L_N(a)(x) = \sum_{i=1}^N \frac{a_i \varphi_i(x)}{\|\varphi_i\|_{2,\alpha,\beta}}, \quad a = (a_1, \dots, a_N) \in \mathbb{R}^N$$

and

$$J_N(F_a) = (a_1 \|\varphi_1\|_{2,\alpha,\beta}, \dots, a_N \|\varphi_N\|_{2,\alpha,\beta}), \quad F_a \in A_N.$$

We see at once that $L_N J_N(F_a) = F_a$ for any $F_a \in A_N$. Set $y = (y_1, \dots, y_N) \in \mathbb{R}^N$, where $y_j = \frac{1}{\|\varphi_j\|_{2,\alpha,\beta}} \langle f, \varphi_j^{(\rho)} \rangle$. Then $y = J_N Q_N(f)$. Thus by (4.4) and $\|\varphi_j\|_{2,\alpha,\beta} \asymp m^{-\frac{1}{2}}$, we obtain

$$\|L_N(a)\|_{q,\alpha,\beta} \asymp m^{-\frac{1}{q}+\frac{1}{2}} \|a\|_{l^N_q}.$$
(4.8)

Combining (4.6) with (4.8), we conclude that for any $f \in W^r_{2,\alpha,\beta}$,

$$\begin{split} \|Q_{N}(f) - T_{N}Q_{N}(f)\|_{q,\alpha,\beta} &\gg \|P_{N}(Q_{N}(f)) - P_{N}T_{n}Q_{N}(f)Q\|_{q,\alpha,\beta} \\ &= \|L_{N}J_{N}Q_{N}(f) - L_{N}J_{N}P_{N}T_{N}L_{N}J_{N}Q_{N}(f)\|_{q,\alpha,\beta} \\ &\gg m^{-\frac{1}{q}+\frac{1}{2}}\|J_{N}Q_{N}(f) - J_{N}P_{N}T_{n}L_{N}J_{N}Q_{N}(f)\|_{l^{N}_{q}} \\ &\gg m^{-\frac{1}{q}+\frac{1}{2}}\|y - J_{N}P_{N}T_{n}L_{N}y\|_{l^{N}_{q}}. \end{split}$$

Remark that $g_k = \frac{\varphi_k}{\|\varphi_k\|_{2,\alpha,\beta}}$, k = 1, 2, ..., N, is an orthonormal system in $L_{2,\alpha,\beta}$ and $g_k \in H(\nu) = W_{2,\alpha,\beta}^{\rho}$. Then the random vector $(\langle f, g_1^{(\rho)} \rangle, ..., \langle f, g_N^{(\rho)} \rangle) = y$ in \mathbb{R}^N on the measurable space $(W_{2,\alpha,\beta}^r, \nu)$ has the standard Gaussian distribution r_N in \mathbb{R}^N . It then follows that

$$\begin{split} \nu \left(\left\{ f \in W_{2,\alpha,\beta}^{r} : \left\| Q_{N}(f) - T_{n}Q_{N}(f) \right\|_{q,\alpha,\beta} > 2c_{3}m^{\rho}\lambda_{n,\delta} \right\} \right) \\ &\geq \nu \left(\left\{ f \in W_{2,\alpha,\beta}^{r} : \left\| y - T_{J}NP_{N}T_{n}L_{N}y \right\|_{l_{q}^{N}} > c_{4}m^{\rho + \frac{1}{q} - \frac{1}{2}}\lambda_{n,\delta} \right\} \right) \\ &= r_{N} \left(\left\{ y \in \mathbb{R}^{N} : \left\| y - T_{J}NP_{N}T_{n}L_{N}y \right\|_{l_{q}^{N}} > c_{4}m^{\rho + \frac{1}{q} - \frac{1}{2}}\lambda_{n,\delta} \right\} \right) \\ &=: r_{N}(G), \end{split}$$

where c_4 is a positive constant. Clearly, rank $(J_N P_N T_n L_N) \le n$ and

$$r_N(G) \le \nu \left(\left\{ f \in W_{2,\alpha,\beta}^r : \|f - T_n f\|_{q,\alpha,\beta} > 2\lambda_{n,\delta} \right\} \right) \le \delta.$$

Consequently,

$$\begin{split} \lambda_{n,\delta}\big(I_N:\mathbb{R}^N\to l_q^N,r_N\big) &= \inf_G \inf_{I_N} \sup_{x\in\mathbb{R}^N\setminus G} \|I_Nx-T_nx\|_{l_q^N} \\ &\leq \sup_{y\in\mathbb{R}^N\setminus G} \|I_Ny-J_NP_NT_nL_Ny\|_{l_q^N} \\ &\ll m^{\rho+\frac{1}{q}-\frac{1}{2}}\lambda_{n,\delta}, \end{split}$$

which implies

$$\lambda_{n,\delta} (W_{2,\alpha,\beta}^r, \nu, L_{q,\alpha,\beta}) \ll m^{-\rho - \frac{1}{q} + \frac{1}{2}} \lambda_{n,\delta} (I_N : \mathbb{R}^N \to l_q^N, r_N)$$
$$\approx n^{-\rho - \frac{1}{q} + \frac{1}{2}} \lambda_{n,\delta} (I_N : \mathbb{R}^N \to l_q^N, r_N).$$

This completes the proof of Theorem 4.2.

Now, we are in a position to prove Theorem 2.1.

 $\textit{Proof}\,$ For the lower estimates, using Theorem 4.2 and Lemma 3.1, we have for $1 \leq q \leq 2$

For $2 \le q < \infty$, we have

$$\begin{split} \lambda_{n,\delta} \big(W^r_{2,\alpha,\beta}, \nu, L_{q,\alpha,\beta} \big) &\gg n^{-\rho + 1/2 - 1/q} \bigg(n^{1/q} + \left(\ln \bigg(\frac{1}{\delta} \bigg) \bigg)^{1/2} \bigg) \\ &\asymp n^{1/2 - \rho} \bigg(1 + n^{-1/q} \bigg(\ln \bigg(\frac{1}{\delta} \bigg) \bigg)^{1/2} \bigg). \end{split}$$

And for $q = \infty$,

$$\begin{split} \lambda_{n,\delta} \Big(W^r_{2,\alpha,\beta}, \nu, L_{q,\alpha,\beta} \Big) &\gg n^{-\rho + 1/2 - 1/q} \left(\ln m + \ln \left(\frac{1}{\delta} \right) \right)^{1/2} \\ &= n^{1/2 - \rho} \left(\ln \left(\frac{m}{\delta} \right) \right)^{1/2}. \end{split}$$

It remains to prove the upper estimates. For $2 \le q \le \infty$ and any fixed natural number *n*, assume $C_1 2^m \le n \le C_1^2 2^m$ with $C_1 > 0$ to be specified later. We may take sufficiently small positive numbers $\varepsilon > 0$ such that $\rho > \frac{1}{2} + (1 + \varepsilon)(2 \max\{\alpha, \beta\} + 1 + \varepsilon)(\frac{1}{2} - \frac{1}{q})$. Set

$$n_j = \begin{cases} 2^{j+1}, & \text{if } j \le m, \\ 2^{j+1} 2^{(1+\varepsilon)(m-j)-1}, & \text{if } j > m, \end{cases}$$

and

$$\delta_j = \begin{cases} 0, & \text{if } j \le m, \\ \delta 2^{m-j}, & \text{if } j > m. \end{cases}$$

Then

$$\sum_{j\geq 0} n_j \ll \sum_{j\leq m} 2^j + \sum_{j>m} 2^{m(1+\varepsilon)-\varepsilon j} \ll 2^m$$

and

$$\sum_{j\geq 0}\delta_j=\delta\sum_{j\leq m}2^{m-j}\leq\delta.$$

Thus, we can take C_1 sufficiently large so that

$$\sum_{j=0}^{\infty} n_j \le C_1 2^m \le n.$$

It follows from Lemma 3.4 for $\tau \in (0, \frac{1}{(2 \max\{\alpha, \beta\}+1)(1/2-1/q)})$, $2 \le q \le \infty$,

$$\sum_{j=1}^{n} b_{j}^{-\tau(1/2-1/q)} \ll 2^{k[1+\tau(1/2-1/q)]} = 2^{k+k\tau(1/2-1/q)}.$$

If $j \le m$, then $n_j = 2^{j+1}$, and thence $\lambda_{n_j,\delta_j}(V_j : \mathbb{R}^{2^{j+1}} \to l_q^{2^{j+1}}, \gamma_{2^{j+1}}) = 0$. If j > m, then taking $\frac{1}{\tau} = (2 \max\{\alpha, \beta\} + 1 + \varepsilon)(1/2 - 1/q)$ and applying Lemma 3.2, Theorem 4.1, we obtain for $2 \le q < \infty$,

$$\begin{split} \lambda_{n_{j},\delta_{j}} \left(V_{j} : \mathbb{R}^{2^{j+1}} \to l_{q}^{2^{j+1}}, \gamma_{2^{j+1}} \right) \\ \ll \left(\frac{C(m,\tau)}{n_{j}+1} \right)^{1/\tau} \left(2^{(j+1)/q} + \sqrt{\ln \frac{1}{\delta}} \right) \\ \ll 2^{j(1/2-1/q)} 2^{-(1+\varepsilon)(m-j)(2\max\{\alpha,\beta\}+1+\varepsilon)(\frac{1}{2}-\frac{1}{q})} \left(2^{\frac{j}{q}} + \sqrt{\ln \frac{1}{\delta}} \right), \end{split}$$

which yields

$$\lambda_{n,\delta} \Big(W_{2,\alpha,\beta}^{r}, \nu, L_{q,\alpha,\beta} \Big) \\ \ll \sum_{j=m+1}^{\infty} 2^{-j\rho} 2^{j(1/2-1/q)} 2^{-(1+\varepsilon)(m-j)(2\max\{\alpha,\beta\}+1+\varepsilon)(\frac{1}{2}-\frac{1}{q})} 2^{1/2-1/q} \Big(2^{\frac{j}{q}} + \sqrt{\ln\frac{1}{\delta}} \Big) \\ \ll 2^{-m(\rho-\frac{1}{2}+\frac{1}{q})} \Big(2^{\frac{m}{q}} + \sqrt{\ln\frac{1}{\delta}} \Big) \asymp n^{1/2-\rho} \Big(1 + n^{-1/q} \sqrt{\ln\frac{1}{\delta}} \Big).$$

$$(4.9)$$

For $q = \infty$, by Lemma 3.2 we get

$$\begin{split} \lambda_{n_{j},\delta_{j}} \big(V_{j} : \mathbb{R}^{2^{j+1}} \to l_{q}^{2^{j+1}}, \gamma_{2^{j+1}} \big) \ll \bigg(\frac{C(2^{j+1},\tau)}{n_{j}+1} \bigg)^{1/\tau} \sqrt{\ln 2^{j+1} + \ln \frac{1}{\delta}} \\ &= 2^{j/2 - (1+\varepsilon)(m-j)(2\max\{\alpha,\beta\} + 1+\varepsilon)/2} \sqrt{j + \ln \frac{1}{\delta}}, \end{split}$$

then applying Theorem 4.1, we obtain

$$\lambda_{n,\delta} \left(W_{2,\alpha,\beta}^r, \nu, L_{\infty,\alpha,\beta} \right) \ll \sum_{j=m+1}^{\infty} 2^{-j\rho} 2^{j/2 - (1+\varepsilon)(m-j)(2\max\{\alpha,\beta\}+1+\varepsilon)/2} \sqrt{j + \ln\frac{1}{\delta}}$$
$$\ll 2^{-m(\rho - \frac{1}{2})} \sqrt{m + \ln\frac{1}{\delta}} \asymp n^{1/2 - \rho} \sqrt{\ln\frac{n}{\delta}}.$$
(4.10)

To finish the proof of the upper estimates, we only need to show that, for $1 \le q < 2$,

$$\lambda_{n,\delta}\left(W_{2,\alpha,\beta}^r,\nu,L_{q,\alpha,\beta}\right) \ll \lambda_{n,\delta}\left(W_{2,\alpha,\beta}^r,\nu,L_{2,\alpha,\beta}\right) \ll n^{1/2-\rho}\left(1+n^{-1}\sqrt{\ln\frac{1}{\delta}}\right)^{1/2}.$$

Theorem 2.1 is proved.

5 Conclusions

In this paper, optimal estimates of the probabilistic linear (n, δ) -widths of the weighted Sobolev space $W_{2,\alpha,\beta}^r$ on [-1,1] are established. This kind of estimates play an important role in the widths theory and have a wide range of applications in the approximation theory of functions, numerical solutions of differential and integral equations, and statistical estimates.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project no. 11401520), by the Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province (BS2014SF019), by the National Natural Science Foundation of China (11271263), by the Beijing Natural Science Foundation (1132001), and BCMIIS.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this article. All the authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 March 2017 Accepted: 11 October 2017 Published online: 23 October 2017

References

- 1. Fang, G, Ye, P: Probabilistic and average linear widths of Sobolev space with Gaussian measure. J. Complex. **19**, 73-84 (2003)
- 2. Fang, G, Ye, P: Probabilistic and average linear widths of Sobolev space with Gaussian measure in *L*∞-norm. Constr. Approx. **20**, 159-172 (2004)
- 3. Maiorov, VE: Widths of spaces equipped with a Gaussian measure. Russ. Acad. Sci. Dokl. Math. 45(2), 305-309 (1993)
- 4. Maiorov, VE: Linear widths of function spaces equipped with the Gaussian measure. J. Approx. Theory 77(1), 74-88 (1994)
- Maiorov, VE, Wasilkowski, GW: Probabilistic and average linear widths in L∞-norm with respect to r-fold Wiener measure. J. Approx. Theory 84(1), 31-40 (1996)
- Wang, H, Zhai, X: Approximation of functions on the sphere on a Sobolev space with a Gaussian measure in the probabilistic case setting. Int. J. Wavelets Multiresolut. Inf. Process. 12(5), 1461012 (2014)
- 7. Wang, H: Probabilistic and average widths of weighted Sobolev spaces on the ball equipped with a Gaussian measure (2016) https://arxiv.org/abs/1603.04578
- 8. Szegö, G: Orthogonal Polynomials, 4th edn., vol. 23. Amer. Math. Soc., Providence (1975)
- 9. Dunkl, CF, Xu, Y: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)
- 10. Bogachev, VI: Gaussian Measures. Mathematical Surveys and Monographs, vol. 62. Am. Math. Soc., Providence (1998)
- 11. Kuo, HH: Gaussian Measure in Banach Space. Lecture Notes in Mathematics, vol. 463. Springer, Berlin (1975)
- 12. Zhai, X, Hu, X: Approximation of functions on [-1, 1] with Jacobi weights in the worst and average case settings. Sci. Sin., Math. 44(2), 165-182 (2014) (in Chinese)
- 13. Maiorov, VE: Discretization of a problem about *n*-widths. Usp. Mat. Nauk **30**, 179-180 (1976)
- Maiorov, VE: Kolmogorov's (n, δ)-widths of spaces of the smooth functions. Russ. Acad. Sci. Sb. Math. 79(2), 265-279 (1994)
- Frenzen, CL, Wong, R: A uniform asymptotic expansion of the Jacobi polynomials with error bounds. Can. J. Math. 37, 979-1007 (1985)
- 16. Nevai, P: Orthogonal Polynomials. Memoirs of AMS, vol. 18 (1979)
- 17. Szabados, J, Vértesi, P: Interpolation of Functions. World Scientific, Singapore (1990)
- 18. Ditzan, Z: Fractional derivatives and best approximation. Acta Math. Hung. 81(4), 323-348 (1998)
- 19. Wang, H, Huang, H: Widths of weighted Sobolev classes on the ball. J. Approx. Theory 154(2), 126-139 (2008)