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Abstract
Optimal asymptotic orders of the probabilistic linear (n,δ)-widths of
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1 Introduction
This paper mainly focuses on the study of probabilistic linear (n, δ)-widths of a Sobolev
space with Jacobi weights on the interval [–, ]. This problem has been investigated
only recently. For calculation of probabilistic linear (n, δ)-widths of the Sobolev spaces
equipped with Gaussian measure, we refer to [–]. Let us recall some definitions.

Let K be a bounded subset of a normed linear space X with the norm ‖ · ‖X . The linear
n-width of the set K in X is defined by

λn(K , X) = inf
Ln

sup
x∈K

‖x – Lnx‖X ,

where Ln runs over all linear operators from X to X with rank at most n.
Let W be equipped with a Borel field B which is the smallest σ -algebra containing all

open subsets. Assume that ν is a probability measure defined on B. Let δ ∈ [, ). The
probabilistic linear (n, δ)-width is defined by

λn,δ(W ,ν, X) = inf
Gδ

λn(W\Gδ , X),

where Gδ runs through all possible ν-measurable subsets of W with measure ν(Gδ) ≤ δ.
Compared with the classical case analysis (see [] or []), the probabilistic case analysis,
which reflects the intrinsic structure of the class, can be understood as the ν-distribution
of the approximation on all subsets of W by n-dimensional subspaces and linear operators
with rank n.

In his recent paper [], Wang has obtained the asymptotic orders of probabilistic lin-
ear (n, δ)-widths of the weighted Sobolev space on the ball with a Gaussian measure in a
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weighted Lq space. Motivated by Wang’s work, this paper considers the probabilistic lin-
ear (n, δ)-widths on the interval [–, ] with Jacobi weights and determines the asymptotic
orders of the probabilistic linear (n, δ)-widths. The difference between the work of Wang
and ours lies in the different choices of the weighted points for the proofs of discretization
theorems.

2 Main results
Consider the Jacobi weights

wα,β (x) := ( – x)α( + x)β , α,β > –/.

Denote by Lp,α,β ≡ Lp(wα,β ),  ≤ p < ∞, the space of measurable functions defined on
[–, ] with the finite norm

‖f ‖p,α,β :=
(∫ 

–

∣∣f (x)
∣∣pwα,β (x) dx

)/p

,  ≤ p < ∞,

and for p = ∞ we assume that L∞,α,β is replaced by the space C[–, ] of continuous func-
tions on [–, ] with the uniform norm. Let �n be the space of all polynomials of degree
at most n. Denote by Pn the space of all polynomials of degree n which are orthogonal to
polynomials of low degree in L(wα,β ). It is well known that the classical Jacobi polynomi-
als {P(α,β)

n }∞n= form an orthogonal basis for L,α,β := L([–, ], wα,β ) and are normalized by
P(α,β)

n () =
( n+α

n
)

(see []). In particular,

∫ 

–
P(α,β)

n (x)P(α,β)
n (y)wα,β (x) dx = δn,mhn(α,β),

where

hn(α,β) =
	(α + β + )

	(α + )	(β + )
	(n + α + )	(n + β + )

(n + α + β + )	(n + )	(n + α + β + )
∼ n–

with constants of equivalence depending only on α and β . Then the normalized Jacobi
polynomials Pn(x), defined by

Pn(x) =
(
h(α,β)

n
)–/P(α,β)

n (x), n = , , . . . ,

form an orthonormal basis for L,α,β , where the inner product is defined by

〈f , g〉 :=
∫ 

–
f (x)g(x)wα,β (x) dx.

Denote by Sn the orthogonal projector of L(wα,β ) onto �n in L(wα,β ), which is called the
Fourier partial summation operator. Consequently, for any f ∈ L(Wα,β ),

f =
∞∑
l=

〈f , Pl〉Pl, Snf :=
n∑

l=

〈f , Pl〉Pl. (.)
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It is well known that (see Proposition .. in []) P(α,β)
n is just the eigenfunction corre-

sponding to the eigenvalues –n(n + α + β + ) of the second-order differential operator

Dα,β :=
(
 – x)D –

(
α – β + (α + β + )x

)
D,

which means that

Dα,βP(α,β)
n (x) = –n(n + α + β + )P(α,β)

n (x).

Given r > , we define the fractional power (–Dα,β)r/ of the operator –Dα,β on f by

(–Dα,β )r/(f ) =
∞∑

k=

(
k(k + α + β + )

)r/〈f , Pk〉Pk ,

in the sense of distribution. We call f (r) := (–Dα,β)r/ the rth order derivative of the distri-
bution f . It then follows that for f ∈ L,α,β , r ∈ R, the Fourier series of the distribution f (r)

is

f (r) =
∞∑

k=

(
k(k + α + β + )

)r/〈f , Pk〉Pk .

Using this operator, we define the weighted Sobolev class as follows: For r >  and  ≤
p ≤ ∞,

W r
p,α,β
(
[–, ]

)≡ W r
p,α,β :=

{
f ∈ Lp,α,β : ‖f ‖W r

p,α,β
:= ‖f ‖p,α,β +

∥∥(–Dα,β )
r
 (f )
∥∥

p,α,β < ∞},
while the weighted Sobolev class BW r

p,α,β is defined to be the unit ball of W r
p,α,β . When

p = , the norm ‖ · ‖W r
,α,β

is equivalent to the norm ‖ · ‖W r
,α,β

, and we can rewrite W r
,α,β

as

W r
,α,β = W r

,α,β

:=

{
f (x) =

∞∑
l=

〈f , Pn〉Pn(x) : ‖f ‖
W r

,α,β
:= 〈f , P〉 +

〈
f (r), f (r)〉

= 〈f , P〉 +
∞∑

k=

(
k(k + α + β + )

)r〈f , Pk〉 < ∞
}

with the inner product

〈f , g〉r := 〈f , P〉〈g, P〉 +
〈
f (r), g(r)〉.

Obviously, W r
,α,β is a Hilbert space. We equip W r

,α,β = W r
,α,β with a Gaussian measure

ν whose mean is zero and whose correlation operator Cν has eigenfunctions Pl(x), l =
, , , . . . , and eigenvalues

λ = , λl =
(
l(l + α + β + )

)–s/, l = , , . . . , s > ,
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that is,

CνP = P, CνPl = λlPl, l = , , . . . .

Then (see [], pp.-),

〈Cν f , g〉r =
∫

W r
,α,β

〈f , h〉r〈g, h〉rν(dh).

By Theorem .. of [] the Cameron-Martin space H(ν) of the Gaussian measure ν is
W r+s/

,α,β , i.e.,

H(ν) = W r+s/
,α,β .

See [] and [] for more information about the Gaussian measure on Banach spaces.
Throughout the paper, A(n, δ) 
 B(n, δ) means A(n, δ) � B(n, δ) and A(n, δ) � B(n, δ),

A(n, δ) � B(n, δ) means that there exists a positive constant c independent of n and δ such
that A(n, δ) ≤ cB(n, δ). If  ≤ q ≤ ∞, r > ( +  min{, max{α,β}})(/p – /q)+, the space
W r

p,α,β can be continuously embedded into the space Lq,α,β (see Lemma . in []).
Set ρ = r + s

 . The main result of this paper can be formulated as follows.

Theorem . Let  ≤ q ≤ ∞, δ ∈ (, /], and let ρ > / + ( max{α,β} + )(/ + /q)+.
Then

λn,δ
(
W r

,α,β ,ν, Lq,α,β
)

⎧⎨
⎩

n/–ρ( + n– min{/,/q})(ln( 
δ
)) 

 ,  ≤ q < ∞,

n/–ρ(ln( n
δ

)) 
 , q = ∞.

(.)

For the proof of Theorem ., the discretization technique is used (see [, , , ]).
Since the known results of the probabilistic linear widths of the identity matrix on R

m are
inappropriate here, the probabilistic linear widths of diagonal matrixes on R

m are adopted
for the proof of the upper estimates.

3 Main lemmas
Let �m

q ( ≤ q ≤ ∞) denote the space R
m equipped with the �m

q -norm defined by

‖x‖�m
q :=

⎧⎨
⎩

(
∑m

i= |xi|q)

q ,  ≤ q < ∞,

max≤i≤m |xi|, q = ∞.

We identifyRm with the space �m
 , denote by 〈x, y〉 the Euclidean inner product of x, y ∈R

m,
and write ‖ · ‖ instead of ‖ · ‖�m


.

Consider in R
m the standard Gaussian measure γm, which is given by

γm(G) = (π )–m/
∫

G
exp

–‖x‖
 dx,
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where G is any Borel subset in R
m. Let  ≤ q ≤ ∞,  ≤ n < m, and δ ∈ [, ). The proba-

bilistic linear (n, δ)-width of a linear mapping T : Rm → lm
q is defined by

λn,δ
(
T : Rm → lm

q ,γm
)

= inf
Gδ

inf
Tn

sup
Rm\Gδ

‖Tx – Tnx‖lmq ,

where Gδ runs over all possible Borel subsets of Rm with measure γm(Gδ) ≤ δ, and Tn runs
over all linear operators from R

m to lm
q with rank at most n.

Throughout the paper, D denotes the m × m real diagonal matrix diag(d, . . . , dm) with
d ≥ d ≥ · · · ≥ dm > , Dn denotes the m × m real diagonal matrix diag(d, . . . , dn, , . . . , )
with  ≤ n ≤ m, and Im denotes the m × m identity matrix. Moreover, {e, . . . , em} denotes
the standard orthonormal basis in R

m:

e = (, , . . . , ), . . . , em = (, . . . , , ).

Now, we introduce several lemmas which will be used in the proof of Theorem ..

Lemma .
() (See []) If  ≤ q ≤ , m ≥ n, δ ∈ (, /], then

λn,δ
(
Im : Rm → lm

q ,γm
)
 m/q + m/q–/

√
ln(/δ). (.)

() (See []) If  ≤ q < ∞, m ≥ n, δ ∈ (, /], then

λn,δ
(
Im : Rm → lm

q ,γm
)
 m/q +

√
ln(/δ). (.)

() (See []) If q = ∞, m ≥ n, δ ∈ (, /], then

λn,δ
(
Im : Rm → lm

q ,γm
)

√

ln
(
(m – n)/δ

)
√ln m + ln(/δ). (.)

Lemma . (See []) Assume that

m∑
i=

dβ

i ≤ C(m,β) for some β > .

Then, for  ≤ q ≤ ∞, m ≥ n, δ ∈ (, /], we have

λn,δ
(
D : Rm → lm

q ,γm
)�

(
C(m,β)

n + 

) 
β

⎧⎨
⎩

(m/q +
√

ln(/δ),  ≤ q < ∞,
√

ln m + ln(/δ), q = ∞.
(.)

Let ξj = cos θj,  ≤ j ≤ n, denote the zeros of the Jacobi polynomial P(α,β)
n (t), ordered so

that

 =: θ < θ < · · · < θn < θn+ := π .

Let λn(t) be the Christoffel function and bj = λn(ξj). Denote

W (n; ξj) =
(
 – x + n–)α+ 


(
 – x + n–)β+ 

 .
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It is well known uniformly (see [])

θj+ – θj 
 n–, θj 
 jn– ( ≤ j ≤ n),

and also

bj 
 n–wα,β (ξj)
(
 – ξ 

j
)/ 
 n–W (n; ξj),

where the constants of equivalence depend only on α, β (see [] or []).
The following lemma is well known as Gaussian quadrature formulae.

Lemma . (See []) For each n ≥ , the quadrature

∫ 

–
f (x)wα,β(x) dx 


n∑
j=

bjf (ξj) (.)

is exact for all polynomials of degree n – . Moreover, for any  ≤ p ≤ ∞, f ∈ �n, we have

‖f ‖p,α,β 

( n∑

j=

bj
∣∣f (ξj)

∣∣p
)/p

. (.)

An equivalence like (.) is generally called a Marcinkiewicz-Zygmund type inequality.

Lemma . (See [], Lemma .) Let α,β > –/, σ ∈ (, 
 max{α,β}+ ) and let bj,  ≤ j ≤ n,

be defined as in Lemma .. Then

n∑
j=

b–σ
j � n+σ . (.)

Let

Ln(x, y) :=
∞∑
j=

η

(
j
n

)
Pj(x)Pj(y), x, y ∈ [–, ], (.)

where η ∈ C∞(R) is a nonnegative C∞-function on [,∞) supported in [, ] with the
properties that η(t) =  for  ≤ t ≤  and η(t) >  for t ∈ [, ). For any f ∈ L,α,β , we define

δ(f ) = S(f ), δk(f ) = Sk (f ) – Sk– (f ) for k = ,  . . . , (.)

where Sn is given in (.). Denote by

Mk(x, y) =
k∑

l=k–+

Pl(x)Pl(y) (.)

the reproducing kernel of the Hilbert space L,α,β ∩⊕k

n=k–+ Pn. Then, for x ∈ [, ],

δk(f )(x) =
k∑

l=k–+

∫ 

–
f (x)Pl(x)Pl(y)wα,β (y) dx =

〈
f , Mk(·, x)

〉
.
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For f ∈⊕k

n=k–+ Pn,

f (x) = δk(f )(x) =
〈
f , Mk(·, x)

〉
.

By Lemma ., there exists a sequence of positive numbers wi = bi 
 n–Wα,β (n; ξi),  ≤
i ≤ k+, for which the following quadrature formula holds for all f ∈ �k+–:

∫ 

–
f (t)Wα,β(t) dt =

k+∑
i=

wif (ξi). (.)

Moreover, for any  ≤ p ≤ ∞, f ∈ �k , we have

‖f ‖p,α,β 

(k+∑

i=

wi
∣∣f (ξi)

∣∣p
)/p

=
∥∥Un(f )

∥∥
�k+

p,w
,

where w = (w, . . . , wk+ ), Uk : �k �−→R
k+ is defined by

Uk(f ) =
(
f (ξ), . . . , f (ξk+ )

)
, (.)

and for x ∈R
k+ ,

‖x‖
�k+

p,w
:=

⎧⎨
⎩

(
∑k+

i= |xi|pwi)

p ,  ≤ p < ∞,

max≤i≤k+ |xi|, p = ∞.

Let the operator Tk : Rk+ �−→ �k+ be defined by

Tka(x) :=
k+∑
i=

aiwiLk+ (x, ξi), (.)

where a := (a, . . . , ak+ ) ∈ R
k+ . It is shown in [] that for  ≤ q ≤ ∞,

‖Tka‖q,α,β � ‖v‖
�k+

q,w
. (.)

For f ∈ �k+ , we have

f (x) =
∫ 

–
f (y)Lk+ (x, y)wα,β (x, y) dy =

k+∑
i=

wif (ξi)Lk+ (x, ξi) = TkUk(f )(x).

In what follows, we use the letters Sk , Rk , Vk to denote uk × uk real diagonal matrixes as
follows:

Sk = diag
(
w



 , . . . , w



k+

)
,

Rk = diag
(
w


q
 , . . . , w


q
k+

)
,

Vk = diag
(
w

– 
 + 

q
 , . . . , w

– 
 + 

q
k+

)
,

(.)

and use the letter R–
k to represent the inverse matrix of Rk .
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Lemma . For any z = (z, . . . , zk+ ) ∈ R
k+ , we have

∥∥∥∥∥
k+∑
j=

w


j zjMk(·, ξj)

∥∥∥∥∥
,α,β

� ‖z‖
lk+


, (.)

where Mk(x, y) is given in (.), and (ξ, . . . , ξk+ ) is defined as above.

Proof Denote by K the set

{
g ∈

k⊕
j=k––

Pj : ‖g‖,α,β ≤ 

}
.

Since

k+∑
j=

w/
j zjMk(·, ξj) ∈ L,α,β ∩

( k⊕
j=k––

Pj

)
.

By the Riesz representation theorem and the Cauchy-Schwarz inequality, we have

∥∥∥∥∥
k+∑
j=

w/
j zjMk(·, ξj)

∥∥∥∥∥
,α,β

= sup
g∈K

∣∣∣∣∣
〈k+∑

j=

w/
j zjMk(·, ξj), g

〉∣∣∣∣∣

= sup
g∈K

∣∣∣∣∣
k+∑
j=

w/
j zjg(ξj)

∣∣∣∣∣

≤ sup
g∈K

(k+∑
j=

|zj|
)/(k+∑

j=

wj
∣∣g(ξj)

∣∣
)/

� sup
g∈K

(k+∑
j=

|zj|
)/

‖g‖,α,β

≤ ‖z‖
lk+


. �

4 Proofs of main results
Before Theorem . is proved, we establish the discretization theorems which give the
reduction of the calculation of the probabilistic widths.

Theorem . Let  ≤ q ≤ ∞, σ ∈ (, ), and let the sequences of numbers {nk} and {σk} be
such that  ≤ nk ≤ k+ =: mk ,

∑∞
k= nk ≤ n, σk ∈ (, ),

∑∞
k= σk ≤ σ . Then

λn,σ
(
W r

,α,β ,ν, Lq,α,β
)≤

∞∑
k=

–kρλnk ,σk

(
Vk : Rmk → lmk

q ,γmk

)
. (.)

Proof For convenience, we write

λnk ,σk := λnk ,σk

(
Vk : Rmk → lmk

q ,γmk

)
,
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where γmk is the standard Gaussian measure in R
mk . Denote by Lk a linear operator from

R
mk to R

mk such that the rank of Lk is at most nk and

γmk

({
y ∈ R

mk |‖Vky – Lky‖ > λnk ,σk

})≤ σk .

Then, for any f ∈ W r
,α,β , by (.)-(.), (.) and (.) we have

∥∥δk(f ) – TkR–
k LkSkUkδk(f )

∥∥
q,α,β =

∥∥TkUkδk(f ) – TkR–
k LkSkUkδk(f )

∥∥
q,α,β

≤ ∥∥Ukδk(f ) – R–
k LkSkUkδk(f )

∥∥
lmk
q,w

=
∥∥VkSkUkδk(f ) – LkSkUkδk(f )

∥∥
l
mk
q

. (.)

Let y = SkUkδk(f ) = (w


 δk(f )(ξ), . . . , w



mk δk(f )(ξmk )) ∈ Rmk , for x ∈ [–, –],

δk(f )(x) =
〈
f , Mk(·, x)

〉
=
〈
f (–r), M(–r,)

k (·, x)
〉
r =
〈
f , M(–r,)

k (·, x)
〉
r ,

where M(r,)
k (x, y) is the r-order partial derivative of Mk(x, y) with respect to the variable

x, r ∈ R. Since the random vector f in W r
,α,β is a centered Gaussian random vector with

a covariance operator Cν , the vector

y = SkUkδk(f ) =
(〈

f , w


 M(–r,)

k (·, ξ)
〉
r , . . . , w



mk M(–r,)

k (·, ξmk )〉r
)

in R
mk is a random vector with a centered Gaussian distribution γ in R

mk , and its covari-
ance matrix Cγ is given by

Cγ =
(〈

Cν

(
w



i M(–r,)

k (·, ξi)
)
, w



j M(–r,)

k (·, ξj)
〉
r

)mk
i,j=.

Since for any z = (z, . . . , zmk ) ∈R
mk ,

mk∑
j=

w


j zjMk(·, ξj) ∈

k⊕
j=k–+

Pj,

and

〈
Cν

(
w



i M(–r,)

k (·, ξi)
)
, w



j M(–r,)

k (·, ξj)
〉
r =
〈
w



i M(–r–s,)

k (·, ξi), w


j M(–r,)

k (·, ξj)
〉
r

=
〈
w



i M(–ρ,)

k (·, ξi), w


j M(–ρ,)

k (·, ξj)
〉
,

by Lemma . we get

∫
R

mk
(y, z)γ (dy) = zCγ zT =

mk∑
i,j=

zizj
〈
w



i M(–ρ,)

k (·, ξi), w


j M(–ρ,)

k (·, ξj)
〉

=

〈 mk∑
j=

w


j zjM(–ρ,)

k (·, ξj),
mk∑
j=

w


j zjM(–ρ,)

k (·, ξj)

〉
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=

∥∥∥∥∥
mk∑
j=

w


j zjM(–ρ,)

k (·, ξj)

∥∥∥∥∥





 –kρ

∥∥∥∥∥
mk∑
j=

w


j zjMk(·, ξj)

∥∥∥∥∥




� –kρ‖z‖l
mk


= –kρ

∫
R

mk
(y, z)γmk (dy). (.)

Now we consider the subset of W r
,α,β

Gk :=
{

f ∈ W r
,α,β |∥∥δk(f ) – TkR–

k LkSkUkδk(f )
∥∥

l
mk
q

> cc–kρλnk ,σk

}
,

where c, c are the positive constants given in (.), (.). Then by (.) we get

ν(Gk) ≤ ν
({

f ∈ W r
,α,β |∥∥VkSkUkδk(f ) – LkSkUkδk(f )

∥∥
l
mk
q

> c–kρλnk ,σk

})

= γ
({

y ∈R
mk |‖Vky – Lky‖l

mk
q

> c–kρλnk ,σk

})
.

Note that for any t > , the set {y ∈ R
mk : ‖Vky – Lky‖l

mk
q

≤ t} is convex symmetric. It then
follows by Theorem .. in [] and (.), we have

ν(Gk) ≤ γ
({

y ∈R
mk : ‖Vky – Lky‖l

mk
q

> c–kρλnk ,σk

})

≤ λ
({

y ∈R
mk : ‖Vky – Lky‖l

mk
q

> c–kρλnk ,σk

})

≤ γmk

({
y ∈R

mk : ‖Vky – Lky‖l
mk
q

> λnk ,σk

})≤ σk ,

where λ is a centered Gaussian measure in R
mk with covariance matrix c

–kρImk . Con-
sider G =

⋃∞
k= Gk and the linear operator T̃n on W r

,α,β which is given by

T̃nf =
∞∑

k=

TkR–
k LkSkUkδk(f ).

Then

ν(G) = ν

( ∞⋃
k=

Gk

)
≤

∞∑
k=

ν(Gk) ≤
∞∑

k=

ν(σk) ≤ σ ,

and

rank T̃n ≤
∞∑

k=

rank
(
TkR–

k LkSkUkδk
)

≤
∞∑

k=

nk ≤ n.

Thus, according to the definitions of G, T̃n, and Lk , we obtain

λn,δ
(
W r

,α,β ,ν, Lq,α,β
)

= sup
f ∈W r

,α,β\G
‖f – T̃nf ‖q,α,β

≤ sup
f ∈W r

,α,β\G

∞∑
k=

∥∥δk(f ) – TkR–
k LkSkUkδk(f )

∥∥
q,α,β
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≤
∞∑

k=

sup
f ∈W r

,α,β\G

∥∥δk(f ) – TkR–
k LkSkUkδk(f )

∥∥
q,α,β

�
∞∑

k=

–kρλnk ,σk ,

which completes the proof of Theorem .. �

Now we turn to the lower estimates. Assume that m ≥  and bm ≤ n ≤ bm with b > 
being independent of n and m. Set {xj}N

j= ⊂ {x ∈ [–, ] : |x| ≤ /} and xj+ – xj = /m,
j = , . . . , N – . Then M 
 N and

{
x ∈ [–, ] : |x – xj| ≤ /m

}∩ {x ∈ [–, ] : |x – xi| ≤ /m
}

= ∅, if i �= j.

We may take b >  sufficiently large so that N ≥ n. Let ϕ be a C∞-function on R sup-
ported in [–, ], and be equal to  on [–/, /]. Let ϕ be a nonnegative C∞-function on
R supported in [–/, /], and be equal to  on [–/, /]. Define

ϕi(x) = ϕ(m(x – xi)
)

– ciϕ
(m(x – xi)

)
,

for some ci such that
∫ 

– ϕi(x)Wα,β(x) dx = , i = , . . . , N . Set

AN := span{ϕ, . . . ,ϕN } =

{
Fa(x) =

N∑
j=

ajϕj(x) : a = (a, . . . , aN ) ∈R
N

}
.

Clearly,

ϕj ∈ W 
,α,β , suppϕj ⊂

{
x ∈ [–, ] : |x – xj| ≤ /m

}⊂ {x ∈ [–, ] : |x| ≤ /
}

,

‖ϕj‖q,α,β 

(∫ /

–/

∣∣ϕj(x)
∣∣q dx

)/q

=
(∫ /

–/

∣∣ϕ(m(x – xj)
)

– cjϕ
(m(x – xj)

)∣∣q dx
)/q


 m–/q,  ≤ q ≤ ∞, j = , . . . , N ,

and

suppϕj ∩ suppϕi = ∅ (i �= j).

It follows that for Fa ∈ An, a = (a, . . . , aN ) ∈R
N , we have

‖Fa‖q,α,β 

(

m–
N∑
j=

|aj|q
)/q

= m–/q‖a‖lNq . (.)

For a nonnegative integer ν = , , . . . , and Fa ∈ AN , a = (a, . . . , aN ) ∈ R
N , it follows from

the definition of –Dα,β that

supp(–Dα,β)ν(ϕj) ⊂ {x ∈ [–, ] : |x – xj| ≤ /m
}
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and

∥∥(Dα,β )ν(ϕj)
∥∥

q,α,β ≤ mν–/q.

Hence, for  ≤ q ≤ ∞ and Fa =
∑N

j= ajϕj ∈ AN ,

∥∥(–(Dα,β )ν(Fa)
∥∥

q,α,β ≤ mν–/q‖a‖lNq .

It then follows by the Kolmogorov type inequality (see Theorem . in []) that

∥∥F (ρ)
a
∥∥

q,α,β =
∥∥(–Dα,β )ρ/(Fa)

∥∥
q,α,β

� ∥∥(–Dα,β )+[ρ](Fa)
∥∥ ρ

+[ρ]
q,α,β ‖Fa‖

– ρ
+[ρ]

q,α,β

� mρ–/q‖a‖lNq � mρ‖Fa‖q,α,β . (.)

For f ∈ L,α,β and x ∈ [–, ], we define

PN (f )(x) =
N∑
j=

ϕj(x)
‖ϕj‖

,α,β

∫ 

–
f (y)ϕj(y)Wα,β (y) dy

and

QN (f )(x) =
N∑
j=

ϕj(x)
‖ϕj‖

,α,β

∫ 

–
f (y)ϕ(ρ)

j (y)Wα,β (y) dy.

Clearly, the operator PN is the orthogonal projector from L,α,β to AN , and if f ∈ W ρ
,α,β ,

then QN (f )(x) = PN (f ρ)(x). Also, using the method in [], we can prove that PN is the
bounded operator from Lq,α,β to AN ∩ Lq,μ for  ≤ q ≤ ∞,

∥∥PN (f )
∥∥

q,α,β � ‖f ‖q,α,β . (.)

Since QN (f ) ∈ AN for f ∈ W ρ
,α,β , we have

∥∥QN (f )(ρ)∥∥
,α,β � mρ

∥∥QN (f ))
∥∥

,α,β = mρ
∥∥PN (f )(ρ)∥∥

,α,β � mρ
∥∥f (ρ)∥∥

,α,β . (.)

Theorem . Let  ≤ q ≤ ∞, δ ∈ (, ), and let N be given above. Then

λn,δ
(
W r

,α,β ,ν, Lq,α,β
)� n/–ρ–/qλn,δ

(
IN : RN → lN

q ,γN
)
,

where N 
 n, N ≥ n and γN is the standard Gaussian measure in R
N .

Proof Let Tn be a bounded linear operator on W r
,α,β with rank Tn ≤ n such that

ν
({

f ∈ W r
,α,β : ‖f – Tnf ‖q,α,β > λn,δ

})≤ δ,
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where λn,δ := λn,δ(W r
,α,β ,ν, Lq,α,β). Note that if A is a bounded linear operator from W r

,α,β
to W r

,α,β and from H(ν) to H(ν), then the image measure λ of ν under A is also a centered
Gaussian measure on W r

,α,β with covariance

Rλ(f )(f ) =
〈
A∗Cν f , A∗Cν f

〉
H(ν), f ∈ W r

,α,β ,

where Cν is the covariance of the measure ν , H(ν) = W ρ
,α,β is the Camera-Martin space

of ν , and A∗ is the adjoint of A in H(ν) (see Theorem .. of []). Furthermore, if the
operator A also satisfies

‖Af ‖H(ν) ≤ ‖f ‖H(ν),

then

Rλ(f )(f ) =
∥∥A∗Cν f

∥∥
H(ν) ≤ ∥∥A∗∥∥‖Cν f ‖ ≤ 〈Cν f , Cν f 〉H(ν) = Rν(f )(f ).

By Theorem .. in [], we get that for any absolutely convex Borel set E of W r
,α,β there

holds the inequality

ν(E) ≤ λ(E).

Applying (.) we assert that

∥∥QN (f )
∥∥

H(ν) =
∥∥(QN (f )

)(ρ)∥∥
,α,β � mρ

∥∥f (ρ)∥∥
,α,β = mρ‖f ‖H(ν).

Then there exists a positive constant c such that
∥∥∥∥ 

cmρ
QN (f )

∥∥∥∥
H(ν)

≤ ‖f ‖H(ν).

Note that, for any t > , the set {f ∈ W r
,α,β : ‖f – Tnf ‖q,α,β ≤ t} is absolutely convex. It then

follows that

ν
({

f ∈ W r
,α,β : ‖f – Tnf ‖q,α,β < λn,δ

})≤ λ
({

f ∈ W r
,α,β : ‖f – Tnf ‖q,α,β < λn,δ

})
,

which leads to

ν
({

f ∈ W r
,α,β : ‖f – Tnf ‖q,α,β > λn,δ

})
≥ ν
({

f ∈ W r
,α,β : ‖QN f – TnQN f ‖q,α,β > cmρλn,δ

})
.

Let LN : RN → AN and JN : AN →R
N be defined by

LN (a)(x) =
N∑

i=

aiϕi(x)
‖ϕi‖,α,β

, a = (a, . . . , aN ) ∈R
N

and

JN (Fa) =
(
a‖ϕ‖,α,β , . . . , aN‖ϕN‖,α,β

)
, Fa ∈ AN .
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We see at once that LN JN (Fa) = Fa for any Fa ∈ AN . Set y = (y, . . . , yN ) ∈ R
N , where yj =


‖ϕj‖,α,β

〈f ,ϕ(ρ)
j 〉. Then y = JN QN (f ). Thus by (.) and ‖ϕj‖,α,β 
 m– 

 , we obtain

∥∥LN (a)
∥∥

q,α,β 
 m– 
q + 

 ‖a‖lNq . (.)

Combining (.) with (.), we conclude that for any f ∈ W r
,α,β ,

∥∥QN (f ) – TN QN (f )
∥∥

q,α,β � ∥∥PN
(
QN (f )

)
– PN TnQN (f )Q

∥∥
q,α,β

=
∥∥LN JN QN (f ) – LN JN PN TN LN JN QN (f )

∥∥
q,α,β

� m– 
q + 


∥∥JN QN (f ) – JN PN TnLN JN QN (f )

∥∥
lNq

� m– 
q + 

 ‖y – JN PN TnLN y‖lNq .

Remark that gk = ϕk
‖ϕk‖,α,β

, k = , , . . . , N , is an orthonormal system in L,α,β and gk ∈ H(v) =

W ρ
,α,β . Then the random vector (〈f , g(ρ)

 〉, . . . , 〈f , g(ρ)
N 〉) = y in R

N on the measurable space
(W r

,α,β ,ν) has the standard Gaussian distribution rN in R
N . It then follows that

ν
({

f ∈ W r
,α,β :

∥∥QN (f ) – TnQN (f )
∥∥

q,α,β > cmρλn,δ
})

≥ ν
({

f ∈ W r
,α,β : ‖y – TJ NPN TnLN y‖lNq > cmρ+ 

q – 
 λn,δ

})

= rN
({

y ∈R
N : ‖y – TJ NPN TnLN y‖lNq > cmρ+ 

q – 
 λn,δ

})

=: rN (G),

where c is a positive constant. Clearly, rank(JN PN TnLN ) ≤ n and

rN (G) ≤ ν
({

f ∈ W r
,α,β : ‖f – Tnf ‖q,α,β > λn,δ

})≤ δ.

Consequently,

λn,δ
(
IN : RN → lN

q , rN
)

= inf
G

inf
IN

sup
x∈RN \G

‖IN x – Tnx‖lNq

≤ sup
y∈RN \G

‖IN y – JN PN TnLN y‖lNq

� mρ+ 
q – 

 λn,δ ,

which implies

λn,δ
(
W r

,α,β ,ν, Lq,α,β
)� m–ρ– 

q + 
 λn,δ

(
IN : RN → lN

q , rN
)


 n–ρ– 
q + 

 λn,δ
(
IN : RN → lN

q , rN
)
.

This completes the proof of Theorem .. �

Now, we are in a position to prove Theorem ..
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Proof For the lower estimates, using Theorem . and Lemma ., we have for  ≤ q ≤ 

λn,δ
(
W r

,α,β ,ν, Lq,α,β
)� n–ρ+/–/qλn,δ

(
IN : RN → lN

q ,γN
)


 n–ρ+/–/q
(

N /q + N /q–/
(

ln

(

δ

))/)


 n/–ρ

(
 + n–/

(
ln

(

δ

))/)
.

For  ≤ q < ∞, we have

λn,δ
(
W r

,α,β ,ν, Lq,α,β
)� n–ρ+/–/q

(
n/q +

(
ln

(

δ

))/)


 n/–ρ

(
 + n–/q

(
ln

(

δ

))/)
.

And for q = ∞,

λn,δ
(
W r

,α,β ,ν, Lq,α,β
)� n–ρ+/–/q

(
ln m + ln

(

δ

))/

= n/–ρ

(
ln

(
m
δ

))/

.

It remains to prove the upper estimates. For  ≤ q ≤ ∞ and any fixed natural number n,
assume Cm ≤ n ≤ C

 m with C >  to be specified later. We may take sufficiently small
positive numbers ε >  such that ρ > 

 + ( + ε)( max{α,β} +  + ε)( 
 – 

q ). Set

nj =

⎧⎨
⎩

j+, if j ≤ m,

j+(+ε)(m–j)–, if j > m,

and

δj =

⎧⎨
⎩

, if j ≤ m,

δm–j, if j > m.

Then

∑
j≥

nj �
∑
j≤m

j +
∑
j>m

m(+ε)–εj � m

and

∑
j≥

δj = δ
∑
j≤m

m–j ≤ δ.

Thus, we can take C sufficiently large so that

∞∑
j=

nj ≤ Cm ≤ n.
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It follows from Lemma . for τ ∈ (, 
( max{α,β}+)(/–/q) ),  ≤ q ≤ ∞,

n∑
j=

b–τ (/–/q)
j � k[+τ (/–/q)] = k+kτ (/–/q).

If j ≤ m, then nj = j+, and thence λnj ,δj (Vj : Rj+ → lj+
q ,γj+ ) = . If j > m, then taking


τ

= ( max{α,β} +  + ε)(/ – /q) and applying Lemma ., Theorem ., we obtain for
 ≤ q < ∞,

λnj ,δj

(
Vj : Rj+ → lj+

q ,γj+
)

�
(

C(m, τ )
nj + 

)/τ(
(j+)/q +

√
ln


δ

)

� j(/–/q)–(+ε)(m–j)( max{α,β}++ε)( 
 – 

q )
(


j
q +
√

ln

δ

)
,

which yields

λn,δ
(
W r

,α,β ,ν, Lq,α,β
)

�
∞∑

j=m+

–jρj(/–/q)–(+ε)(m–j)( max{α,β}++ε)( 
 – 

q )/–/q
(


j
q +
√

ln

δ

)

� –m(ρ– 
 + 

q )
(


m
q +
√

ln

δ

)

 n/–ρ

(
 + n–/q

√
ln


δ

)
. (.)

For q = ∞, by Lemma . we get

λnj ,δj

(
Vj : Rj+ → lj+

q ,γj+
)�

(
C(j+, τ )

nj + 

)/τ√
ln j+ + ln


δ

= j/–(+ε)(m–j)( max{α,β}++ε)/
√

j + ln

δ

,

then applying Theorem ., we obtain

λn,δ
(
W r

,α,β ,ν, L∞,α,β
)�

∞∑
j=m+

–jρj/–(+ε)(m–j)( max{α,β}++ε)/
√

j + ln

δ

� –m(ρ– 
 )
√

m + ln

δ


 n/–ρ

√
ln

n
δ

. (.)

To finish the proof of the upper estimates, we only need to show that, for  ≤ q < ,

λn,δ
(
W r

,α,β ,ν, Lq,α,β
)� λn,δ

(
W r

,α,β ,ν, L,α,β
)� n/–ρ

(
 + n–

√
ln


δ

)/

.

Theorem . is proved. �
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5 Conclusions
In this paper, optimal estimates of the probabilistic linear (n, δ)-widths of the weighted
Sobolev space W r

,α,β on [–, ] are established. This kind of estimates play an important
role in the widths theory and have a wide range of applications in the approximation the-
ory of functions, numerical solutions of differential and integral equations, and statistical
estimates.
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