# Probabilistic linear widths of Sobolev space with Jacobi weights on $[-1,1]$ 

## Xuebo Zhai* © and Xiuyan Hu

"Correspondence:
zhaixuebo@163.com School of Mathematical and Statistics, Zaozhuang University, Zaozhuang, 277160, China

```
Abstract
Optimal asymptotic orders of the probabilistic linear \((n, \delta)\)-widths of \(\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, ~ v, L_{q, \alpha, \beta}\right)\) of the weighted Sobolev space \(W_{2, \alpha, \beta}^{r}\) equipped with a Gaussian measure \(\nu\) are established, where \(L_{q, \alpha, \beta}, 1 \leq q \leq \infty\), denotes the \(L_{q}\) space on \([-1,1]\) with respect to the measure \((1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1 / 2\).
```

MSC: 41A46; 41A25; 28C20; 42C15
Keywords: probabilistic linear widths; Jacobi weights; weighted Sobolev classes; Gaussian measure

## 1 Introduction

This paper mainly focuses on the study of probabilistic linear ( $n, \delta$ )-widths of a Sobolev space with Jacobi weights on the interval $[-1,1]$. This problem has been investigated only recently. For calculation of probabilistic linear ( $n, \delta$ )-widths of the Sobolev spaces equipped with Gaussian measure, we refer to [1-5]. Let us recall some definitions.
Let $K$ be a bounded subset of a normed linear space $X$ with the norm $\|\cdot\|_{X}$. The linear $n$-width of the set $K$ in $X$ is defined by

$$
\lambda_{n}(K, X)=\inf _{L_{n}} \sup _{x \in K}\left\|x-L_{n} x\right\|_{X},
$$

where $L_{n}$ runs over all linear operators from $X$ to $X$ with rank at most $n$.
Let $W$ be equipped with a Borel field $\mathcal{B}$ which is the smallest $\sigma$-algebra containing all open subsets. Assume that $v$ is a probability measure defined on $\mathcal{B}$. Let $\delta \in[0,1)$. The probabilistic linear ( $n, \delta$ )-width is defined by

$$
\lambda_{n, \delta}(W, v, X)=\inf _{G_{\delta}} \lambda_{n}\left(W \backslash G_{\delta}, X\right),
$$

where $G_{\delta}$ runs through all possible $\nu$-measurable subsets of $W$ with measure $\nu\left(G_{\delta}\right) \leq \delta$. Compared with the classical case analysis (see [2] or [6]), the probabilistic case analysis, which reflects the intrinsic structure of the class, can be understood as the $v$-distribution of the approximation on all subsets of $W$ by $n$-dimensional subspaces and linear operators with rank $n$.

In his recent paper [7], Wang has obtained the asymptotic orders of probabilistic linear $(n, \delta)$-widths of the weighted Sobolev space on the ball with a Gaussian measure in a
weighted $L_{q}$ space. Motivated by Wang's work, this paper considers the probabilistic linear $(n, \delta)$-widths on the interval $[-1,1]$ with Jacobi weights and determines the asymptotic orders of the probabilistic linear ( $n, \delta$ )-widths. The difference between the work of Wang and ours lies in the different choices of the weighted points for the proofs of discretization theorems.

## 2 Main results

Consider the Jacobi weights

$$
w_{\alpha, \beta}(x):=(1-x)^{\alpha}(1+x)^{\beta}, \quad \alpha, \beta>-1 / 2 .
$$

Denote by $L_{p, \alpha, \beta} \equiv L_{p}\left(w_{\alpha, \beta}\right), 1 \leq p<\infty$, the space of measurable functions defined on $[-1,1]$ with the finite norm

$$
\|f\|_{p, \alpha, \beta}:=\left(\int_{-1}^{1}|f(x)|^{p} w_{\alpha, \beta}(x) d x\right)^{1 / p}, \quad 1 \leq p<\infty
$$

and for $p=\infty$ we assume that $L_{\infty, \alpha, \beta}$ is replaced by the space $C[-1,1]$ of continuous functions on $[-1,1]$ with the uniform norm. Let $\Pi_{n}$ be the space of all polynomials of degree at most $n$. Denote by $\mathbb{P}_{n}$ the space of all polynomials of degree $n$ which are orthogonal to polynomials of low degree in $L_{2}\left(w_{\alpha, \beta}\right)$. It is well known that the classical Jacobi polynomials $\left\{P_{n}^{(\alpha, \beta)}\right\}_{n=0}^{\infty}$ form an orthogonal basis for $L_{2, \alpha, \beta}:=L_{2}\left([-1,1], w_{\alpha, \beta}\right)$ and are normalized by $P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n}$ (see [8]). In particular,

$$
\int_{-1}^{1} P_{n}^{(\alpha, \beta)}(x) P_{n}^{(\alpha, \beta)}(y) w_{\alpha, \beta}(x) d x=\delta_{n, m} h_{n}(\alpha, \beta)
$$

where

$$
h_{n}(\alpha, \beta)=\frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(\beta+1)} \frac{\Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{(2 n+\alpha+\beta+1) \Gamma(n+1) \Gamma(n+\alpha+\beta+1)} \sim n^{-1}
$$

with constants of equivalence depending only on $\alpha$ and $\beta$. Then the normalized Jacobi polynomials $P_{n}(x)$, defined by

$$
P_{n}(x)=\left(h_{n}^{(\alpha, \beta)}\right)^{-1 / 2} P_{n}^{(\alpha, \beta)}(x), \quad n=0,1, \ldots,
$$

form an orthonormal basis for $L_{2, \alpha, \beta}$, where the inner product is defined by

$$
\langle f, g\rangle:=\int_{-1}^{1} f(x) \overline{g(x)} w_{\alpha, \beta}(x) d x
$$

Denote by $S_{n}$ the orthogonal projector of $L_{2}\left(w_{\alpha, \beta}\right)$ onto $\Pi_{n}$ in $L_{2}\left(w_{\alpha, \beta}\right)$, which is called the Fourier partial summation operator. Consequently, for any $f \in L_{2}\left(W_{\alpha, \beta}\right)$,

$$
\begin{equation*}
f=\sum_{l=0}^{\infty}\left\langle f, P_{l}\right\rangle P_{l}, \quad S_{n} f:=\sum_{l=0}^{n}\left\langle f, P_{l}\right\rangle P_{l} . \tag{2.1}
\end{equation*}
$$

It is well known that (see Proposition 1.4.15 in [9]) $P_{n}^{(\alpha, \beta)}$ is just the eigenfunction corresponding to the eigenvalues $-n(n+\alpha+\beta+1)$ of the second-order differential operator

$$
D_{\alpha, \beta}:=\left(1-x^{2}\right) D^{2}-(\alpha-\beta+(\alpha+\beta+2) x) D,
$$

which means that

$$
D_{\alpha, \beta} P_{n}^{(\alpha, \beta)}(x)=-n(n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}(x) .
$$

Given $r>0$, we define the fractional power $\left(-D_{\alpha, \beta}\right)^{r / 2}$ of the operator $-D_{\alpha, \beta}$ on $f$ by

$$
\left(-D_{\alpha, \beta}\right)^{r / 2}(f)=\sum_{k=0}^{\infty}(k(k+\alpha+\beta+1))^{r / 2}\left\langle f, P_{k}\right\rangle P_{k}
$$

in the sense of distribution. We call $f^{(r)}:=\left(-D_{\alpha, \beta}\right)^{r / 2}$ the $r$ th order derivative of the distribution $f$. It then follows that for $f \in L_{2, \alpha, \beta}, r \in R$, the Fourier series of the distribution $f^{(r)}$ is

$$
f^{(r)}=\sum_{k=1}^{\infty}(k(k+\alpha+\beta+1))^{r / 2}\left\langle f, P_{k}\right\rangle P_{k} .
$$

Using this operator, we define the weighted Sobolev class as follows: For $r>0$ and $1 \leq$ $p \leq \infty$,

$$
W_{p, \alpha, \beta}^{r}([-1,1]) \equiv W_{p, \alpha, \beta}^{r}:=\left\{f \in L_{p, \alpha, \beta}:\|f\|_{W_{p, \alpha, \beta}^{r}}:=\|f\|_{p, \alpha, \beta}+\left\|\left(-D_{\alpha, \beta}\right)^{\frac{r}{2}}(f)\right\|_{p, \alpha, \beta}<\infty\right\}
$$

while the weighted Sobolev class $B W_{p, \alpha, \beta}^{r}$ is defined to be the unit ball of $W_{p, \alpha, \beta}^{r}$. When $p=2$, the norm $\|\cdot\|_{W_{2, \alpha, \beta}^{r}}$ is equivalent to the norm $\|\cdot\|_{\bar{W}_{2, \alpha, \beta}^{r}}^{r}$, and we can rewrite $W_{2, \alpha, \beta}^{r}$ as

$$
\begin{aligned}
W_{2, \alpha, \beta}^{r} & =\bar{W}_{2, \alpha, \beta}^{r} \\
:= & \left\{f(x)=\sum_{l=0}^{\infty}\left\langle f, P_{n}\right\rangle P_{n}(x):\|f\|_{\widetilde{W}_{2, \alpha, \beta}^{r}}^{2}:=\left\langle f, P_{0}\right\rangle^{2}+\left\langle f^{(r)}, f^{(r)}\right\rangle\right. \\
& \left.=\left\langle f, P_{0}\right\rangle^{2}+\sum_{k=1}^{\infty}(k(k+\alpha+\beta+1))^{r}\left\langle f, P_{k}\right\rangle^{2}<\infty\right\}
\end{aligned}
$$

with the inner product

$$
\langle f, g\rangle_{r}:=\left\langle f, P_{0}\right\rangle\left\langle g, P_{0}\right\rangle+\left\langle f^{(r)}, g^{(r)}\right\rangle
$$

Obviously, $\bar{W}_{2, \alpha, \beta}^{r}$ is a Hilbert space. We equip $\bar{W}_{2, \alpha, \beta}^{r}=W_{2, \alpha, \beta}^{r}$ with a Gaussian measure $v$ whose mean is zero and whose correlation operator $C_{v}$ has eigenfunctions $P_{l}(x), l=$ $0,1,2, \ldots$, and eigenvalues

$$
\lambda_{0}=1, \quad \lambda_{l}=(l(l+\alpha+\beta+1))^{-s / 2}, \quad l=1,2, \ldots, s>1,
$$

that is,

$$
C_{v} P_{0}=P_{0}, \quad C_{v} P_{l}=\lambda_{l} P_{l}, \quad l=1,2, \ldots
$$

Then (see [10], pp.48-49),

$$
\left\langle C_{\nu} f, g\right\rangle_{r}=\int_{\bar{W}_{2, \alpha, \beta}^{r}}\langle f, h\rangle_{r}\langle g, h\rangle_{r} \nu(d h) .
$$

By Theorem 2.3.1 of [10] the Cameron-Martin space $H(v)$ of the Gaussian measure $v$ is $\bar{W}_{2, \alpha, \beta}^{r+s / 2}$, i.e.,

$$
H(v)=\bar{W}_{2, \alpha, \beta}^{r+s / 2} .
$$

See [10] and [11] for more information about the Gaussian measure on Banach spaces.
Throughout the paper, $A(n, \delta) \asymp B(n, \delta)$ means $A(n, \delta) \ll B(n, \delta)$ and $A(n, \delta) \gg B(n, \delta)$, $A(n, \delta) \ll B(n, \delta)$ means that there exists a positive constant $c$ independent of $n$ and $\delta$ such that $A(n, \delta) \leq c B(n, \delta)$. If $1 \leq q \leq \infty, r>(2+2 \min \{0, \max \{\alpha, \beta\}\})(1 / p-1 / q)_{+}$, the space $W_{p, \alpha, \beta}^{r}$ can be continuously embedded into the space $L_{q, \alpha, \beta}$ (see Lemma 2.3 in [12]).
Set $\rho=r+\frac{s}{2}$. The main result of this paper can be formulated as follows.

Theorem 2.1 Let $1 \leq q \leq \infty, \delta \in(0,1 / 2]$, and let $\rho>1 / 2+(2 \max \{\alpha, \beta\}+1)(1 / 2+1 / q)_{+}$. Then

$$
\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{q, \alpha, \beta}\right) \asymp \begin{cases}n^{1 / 2-\rho}\left(1+n^{-\min \{1 / 2,1 / q\}}\right)\left(\ln \left(\frac{1}{\delta}\right)\right)^{\frac{1}{2}}, & 1 \leq q<\infty,  \tag{2.2}\\ n^{1 / 2-\rho}\left(\ln \left(\frac{n}{\delta}\right)\right)^{\frac{1}{2}}, & q=\infty .\end{cases}
$$

For the proof of Theorem 2.1, the discretization technique is used (see [1, 4, 13, 14]). Since the known results of the probabilistic linear widths of the identity matrix on $\mathbb{R}^{m}$ are inappropriate here, the probabilistic linear widths of diagonal matrixes on $\mathbb{R}^{m}$ are adopted for the proof of the upper estimates.

## 3 Main lemmas

Let $\ell_{q}^{m}(1 \leq q \leq \infty)$ denote the space $\mathbb{R}^{m}$ equipped with the $\ell_{q}^{m}$-norm defined by

$$
\|x\|_{\ell_{q}^{m}}:= \begin{cases}\left(\sum_{i=1}^{m}\left|x_{i}\right|^{q}\right)^{\frac{1}{q}}, & 1 \leq q<\infty \\ \max _{1 \leq i \leq m}\left|x_{i}\right|, & q=\infty\end{cases}
$$

We identify $\mathbb{R}^{m}$ with the space $\ell_{2}^{m}$, denote by $\langle x, y\rangle$ the Euclidean inner product of $x, y \in \mathbb{R}^{m}$, and write $\|\cdot\|_{2}$ instead of $\|\cdot\|_{\ell_{2}^{m}}$.

Consider in $\mathbb{R}^{m}$ the standard Gaussian measure $\gamma_{m}$, which is given by

$$
\gamma_{m}(G)=(2 \pi)^{-m / 2} \int_{G} \exp ^{\frac{-\|x\|^{2}}{2}} d x,
$$

where $G$ is any Borel subset in $\mathbb{R}^{m}$. Let $1 \leq q \leq \infty, 1 \leq n<m$, and $\delta \in[0,1)$. The probabilistic linear $(n, \delta)$-width of a linear mapping $T: \mathbb{R}^{m} \rightarrow l_{q}^{m}$ is defined by

$$
\lambda_{n, \delta}\left(T: \mathbb{R}^{m} \rightarrow l_{q}^{m}, \gamma_{m}\right)=\inf _{G_{\delta}} \inf _{T_{n}} \sup _{\mathbb{R}^{m} \backslash G_{\delta}}\left\|T x-T_{n} x\right\|_{l_{q}^{m}}
$$

where $G_{\delta}$ runs over all possible Borel subsets of $\mathbb{R}^{m}$ with measure $\gamma_{m}\left(G_{\delta}\right) \leq \delta$, and $T_{n}$ runs over all linear operators from $\mathbb{R}^{m}$ to $l_{q}^{m}$ with rank at most $n$.

Throughout the paper, $D$ denotes the $m \times m$ real diagonal matrix $\operatorname{diag}\left(d_{1}, \ldots, d_{m}\right)$ with $d_{1} \geq d_{2} \geq \cdots \geq d_{m}>0, D_{n}$ denotes the $m \times m$ real diagonal matrix $\operatorname{diag}\left(d_{1}, \ldots, d_{n}, 0, \ldots, 0\right)$ with $1 \leq n \leq m$, and $I_{m}$ denotes the $m \times m$ identity matrix. Moreover, $\left\{e_{1}, \ldots, e_{m}\right\}$ denotes the standard orthonormal basis in $\mathbb{R}^{m}$ :

$$
e_{1}=(1,0, \ldots, 0), \quad \ldots, \quad e_{m}=(0, \ldots, 0,1)
$$

Now, we introduce several lemmas which will be used in the proof of Theorem 2.1.

## Lemma 3.1

(1) (See [1]) If $1 \leq q \leq 2, m \geq 2 n, \delta \in(0,1 / 2]$, then

$$
\begin{equation*}
\lambda_{n, \delta}\left(I_{m}: \mathbb{R}^{m} \rightarrow l_{q}^{m}, \gamma_{m}\right) \asymp m^{1 / q}+m^{1 / q-1 / 2} \sqrt{\ln (1 / \delta)} \tag{3.1}
\end{equation*}
$$

(2) (See [4]) If $2 \leq q<\infty, m \geq 2 n, \delta \in(0,1 / 2]$, then

$$
\begin{equation*}
\lambda_{n, \delta}\left(I_{m}: \mathbb{R}^{m} \rightarrow l_{q}^{m}, \gamma_{m}\right) \asymp m^{1 / q}+\sqrt{\ln (1 / \delta)} . \tag{3.2}
\end{equation*}
$$

(3) (See [5]) If $q=\infty, m \geq 2 n, \delta \in(0,1 / 2]$, then

$$
\begin{equation*}
\left.\lambda_{n, \delta}\left(I_{m}: \mathbb{R}^{m} \rightarrow l_{q}^{m}, \gamma_{m}\right) \asymp \sqrt{\ln ((m-n) / \delta}\right) \asymp \sqrt{\ln m+\ln (1 / \delta)} . \tag{3.3}
\end{equation*}
$$

Lemma 3.2 (See [7]) Assume that

$$
\sum_{i=1}^{m} d_{i}^{\beta} \leq C(m, \beta) \quad \text { for some } \beta>0
$$

Then, for $2 \leq q \leq \infty, m \geq 2 n, \delta \in(0,1 / 2]$, we have

$$
\lambda_{n, \delta}\left(D: \mathbb{R}^{m} \rightarrow l_{q}^{m}, \gamma_{m}\right) \ll\left(\frac{C(m, \beta)}{n+1}\right)^{\frac{1}{\beta}} \begin{cases}\left(m^{1 / q}+\sqrt{\ln (1 / \delta)},\right. & 2 \leq q<\infty  \tag{3.4}\\ \sqrt{\ln m+\ln (1 / \delta)}, & q=\infty\end{cases}
$$

Let $\xi_{j}=\cos \theta_{j}, 1 \leq j \leq 2 n$, denote the zeros of the Jacobi polynomial $P_{2 n}^{(\alpha, \beta)}(t)$, ordered so that

$$
0=: \theta_{0}<\theta_{1}<\cdots<\theta_{2 n}<\theta_{2 n+1}:=\pi .
$$

Let $\lambda_{2 n}(t)$ be the Christoffel function and $b_{j}=\lambda_{2 n}\left(\xi_{j}\right)$. Denote

$$
W\left(n ; \xi_{j}\right)=\left(1-x+n^{-2}\right)^{\alpha+\frac{1}{2}}\left(1-x+n^{-2}\right)^{\beta+\frac{1}{2}} .
$$

It is well known uniformly (see [15])

$$
\theta_{j+1}-\theta_{j} \asymp n^{-1}, \quad \theta_{j} \asymp j n^{-1} \quad(1 \leq j \leq 2 n)
$$

and also

$$
b_{j} \asymp n^{-1} w_{\alpha, \beta}\left(\xi_{j}\right)\left(1-\xi_{j}^{2}\right)^{1 / 2} \asymp n^{-1} W\left(n ; \xi_{j}\right),
$$

where the constants of equivalence depend only on $\alpha, \beta$ (see [16] or [17]).
The following lemma is well known as Gaussian quadrature formulae.

Lemma 3.3 (See [8]) For each $n \geq 1$, the quadrature

$$
\begin{equation*}
\int_{-1}^{1} f(x) w_{\alpha, \beta}(x) d x \asymp \sum_{j=1}^{2 n} b_{j} f\left(\xi_{j}\right) \tag{3.5}
\end{equation*}
$$

is exact for all polynomials of degree $4 n-1$. Moreover, for any $1 \leq p \leq \infty, f \in \Pi_{n}$, we have

$$
\begin{equation*}
\|f\|_{p, \alpha, \beta} \asymp\left(\sum_{j=1}^{2 n} b_{j}\left|f\left(\xi_{j}\right)\right|^{p}\right)^{1 / p} \tag{3.6}
\end{equation*}
$$

An equivalence like (3.6) is generally called a Marcinkiewicz-Zygmund type inequality.
Lemma 3.4 (See [12], Lemma 2.7) Let $\alpha, \beta>-1 / 2, \sigma \in\left(0, \frac{1}{2 \max \{\alpha, \beta\}+1}\right)$ and let $b_{j}, 1 \leq j \leq n$, be defined as in Lemma 3.3. Then

$$
\begin{equation*}
\sum_{j=1}^{n} b_{j}^{-\sigma} \ll n^{1+\sigma} . \tag{3.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
L_{n}(x, y):=\sum_{j=0}^{\infty} \eta\left(\frac{j}{n}\right) P_{j}(x) P_{j}(y), \quad x, y \in[-1,1] \tag{3.8}
\end{equation*}
$$

where $\eta \in C^{\infty}(R)$ is a nonnegative $C^{\infty}$-function on $[0, \infty)$ supported in [0,2] with the properties that $\eta(t)=1$ for $0 \leq t \leq 1$ and $\eta(t)>0$ for $t \in[0,2)$. For any $f \in L_{2, \alpha, \beta}$, we define

$$
\begin{equation*}
\delta_{1}(f)=S_{2}(f), \quad \delta_{k}(f)=S_{2^{k}}(f)-S_{2^{k-1}}(f) \quad \text { for } k=2,3 \ldots \tag{3.9}
\end{equation*}
$$

where $S_{n}$ is given in (2.1). Denote by

$$
\begin{equation*}
M_{k}(x, y)=\sum_{l=2^{k-1}+1}^{2^{k}} P_{l}(x) P_{l}(y) \tag{3.10}
\end{equation*}
$$

the reproducing kernel of the Hilbert space $L_{2, \alpha, \beta} \cap \bigoplus_{n=2^{k-1}+1}^{2^{k}} \mathbb{P}_{n}$. Then, for $x \in[0,1]$,

$$
\delta_{k}(f)(x)=\sum_{l=2^{k-1}+1}^{2^{k}} \int_{-1}^{1} f(x) P_{l}(x) P_{l}(y) w_{\alpha, \beta}(y) d x=\left\langle f, M_{k}(\cdot, x)\right\rangle .
$$

For $f \in \bigoplus_{n=2^{k-1}+1}^{2^{k}} \mathbb{P}_{n}$,

$$
f(x)=\delta_{k}(f)(x)=\left\langle f, M_{k}(\cdot, x)\right\rangle .
$$

By Lemma 3.3, there exists a sequence of positive numbers $w_{i}=b_{i} \asymp n^{-1} W_{\alpha, \beta}\left(n ; \xi_{i}\right), 1 \leq$ $i \leq 2^{k+1}$, for which the following quadrature formula holds for all $f \in \Pi_{2^{k+3}-1}$ :

$$
\begin{equation*}
\int_{-1}^{1} f(t) W_{\alpha, \beta}(t) d t=\sum_{i=1}^{2^{k+1}} w_{i} f\left(\xi_{i}\right) \tag{3.11}
\end{equation*}
$$

Moreover, for any $1 \leq p \leq \infty, f \in \Pi_{2^{k}}$, we have

$$
\|f\|_{p, \alpha, \beta} \asymp\left(\sum_{i=1}^{2^{k+1}} w_{i}\left|f\left(\xi_{i}\right)\right|^{p}\right)^{1 / p}=\left\|U_{n}(f)\right\|_{\ell_{p, w}^{k+1}},
$$

where $w=\left(w_{1}, \ldots, w_{2^{k+1}}\right), U_{k}: \Pi_{2^{k}} \longmapsto \mathbb{R}^{2^{k+1}}$ is defined by

$$
\begin{equation*}
U_{k}(f)=\left(f\left(\xi_{1}\right), \ldots, f\left(\xi_{2^{k+1}}\right)\right) \tag{3.12}
\end{equation*}
$$

and for $x \in \mathbb{R}^{2^{k+1}}$,

$$
\|x\|_{\ell_{p, w}^{2 k+1}}:= \begin{cases}\left(\sum_{i=1}^{2^{k+1}}\left|x_{i}\right|^{p} w_{i}\right)^{\frac{1}{p}}, & 1 \leq p<\infty \\ \max _{1 \leq i \leq 2^{k+1}}\left|x_{i}\right|, & p=\infty\end{cases}
$$

Let the operator $T_{k}: \mathbb{R}^{2^{k+1}} \longmapsto \Pi_{2^{k+1}}$ be defined by

$$
\begin{equation*}
T_{k} a(x):=\sum_{i=1}^{2^{k+1}} a_{i} w_{i} L_{2^{k+1}}\left(x, \xi_{i}\right) \tag{3.13}
\end{equation*}
$$

where $a:=\left(a_{1}, \ldots, a_{2^{k+1}}\right) \in \mathbb{R}^{2^{k+1}}$. It is shown in [12] that for $1 \leq q \leq \infty$,

$$
\begin{equation*}
\left\|T_{k} a\right\|_{q, \alpha, \beta} \ll\|v\|_{\ell_{q, w}^{2^{k+1}}} . \tag{3.14}
\end{equation*}
$$

For $f \in \Pi_{2^{k+1}}$, we have

$$
f(x)=\int_{-1}^{1} f(y) L_{2^{k+1}}(x, y) w_{\alpha, \beta}(x, y) d y=\sum_{i=1}^{2^{k+1}} w_{i} f\left(\xi_{i}\right) L_{2^{k+1}}\left(x, \xi_{i}\right)=T_{k} U_{k}(f)(x)
$$

In what follows, we use the letters $S_{k}, R_{k}$, $V_{k}$ to denote $u_{k} \times u_{k}$ real diagonal matrixes as follows:

$$
\begin{align*}
& S_{k}=\operatorname{diag}\left(w_{1}^{\frac{1}{2}}, \ldots, w_{2^{k+1}}^{\frac{1}{2}}\right), \\
& R_{k}=\operatorname{diag}\left(w_{1}^{\frac{1}{q}}, \ldots, w_{2^{k+1}}^{\frac{1}{q}}\right),  \tag{3.15}\\
& V_{k}=\operatorname{diag}\left(w_{1}^{-\frac{1}{2}+\frac{1}{q}}, \ldots, w_{2^{k+1}}^{-\frac{1}{2}+\frac{1}{q}}\right),
\end{align*}
$$

and use the letter $R_{k}^{-1}$ to represent the inverse matrix of $R_{k}$.

Lemma 3.5 For any $z=\left(z_{1}, \ldots, z_{2^{k+1}}\right) \in \mathbb{R}^{2^{k+1}}$, we have

$$
\begin{equation*}
\left\|\sum_{j=1}^{2^{k+1}} w_{j}^{\frac{1}{2}} z_{j} M_{k}\left(\cdot, \xi_{j}\right)\right\|_{2, \alpha, \beta} \ll\|z\|_{l_{2}^{k+1}} \tag{3.16}
\end{equation*}
$$

where $M_{k}(x, y)$ is given in (3.10), and $\left(\xi_{1}, \ldots, \xi_{2^{k+1}}\right)$ is defined as above.

Proof Denote by $K$ the set

$$
\left\{g \in \bigoplus_{j=2^{k-1}-1}^{2^{k}} \mathbb{P}_{j}:\|g\|_{2, \alpha, \beta} \leq 1\right\}
$$

Since

$$
\sum_{j=1}^{2^{k+1}} w_{j}^{1 / 2} z_{j} M_{k}\left(\cdot, \xi_{j}\right) \in L_{2, \alpha, \beta} \cap\left(\bigoplus_{j=2^{k-1}-1}^{2^{k}} \mathbb{P}_{j}\right)
$$

By the Riesz representation theorem and the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\left\|\sum_{j=1}^{2^{k+1}} w_{j}^{1 / 2} z_{j} M_{k}\left(\cdot, \xi_{j}\right)\right\|_{2, \alpha, \beta} & =\sup _{g \in K}\left|\left\langle\sum_{j=1}^{2^{k+1}} w_{j}^{1 / 2} z_{j} M_{k}\left(\cdot, \xi_{j}\right), g\right\rangle\right| \\
& =\sup _{g \in K}\left|\sum_{j=1}^{2^{k+1}} w_{j}^{1 / 2} z_{j} g\left(\xi_{j}\right)\right| \\
& \leq \sup _{g \in K}\left(\sum_{j=1}^{2^{k+1}}\left|z_{j}\right|^{2}\right)^{1 / 2}\left(\sum_{j=1}^{2^{k+1}} w_{j}\left|g\left(\xi_{j}\right)\right|^{2}\right)^{1 / 2} \\
& \ll \sup _{g \in K}\left(\sum_{j=1}^{2^{k+1}}\left|z_{j}\right|^{2}\right)^{1 / 2}\|g\|_{2, \alpha, \beta} \\
& \leq\|z\|_{l_{2}^{k+1}}
\end{aligned}
$$

## 4 Proofs of main results

Before Theorem 2.1 is proved, we establish the discretization theorems which give the reduction of the calculation of the probabilistic widths.

Theorem 4.1 Let $1 \leq q \leq \infty, \sigma \in(0,1)$, and let the sequences of numbers $\left\{n_{k}\right\}$ and $\left\{\sigma_{k}\right\}$ be such that $0 \leq n_{k} \leq 2^{k+1}=: m_{k}, \sum_{k=1}^{\infty} n_{k} \leq n, \sigma_{k} \in(0,1), \sum_{k=1}^{\infty} \sigma_{k} \leq \sigma$. Then

$$
\begin{equation*}
\lambda_{n, \sigma}\left(W_{2, \alpha, \beta}^{r}, v, L_{q, \alpha, \beta}\right) \leq \sum_{k=1}^{\infty} 2^{-k \rho} \lambda_{n_{k}, \sigma_{k}}\left(V_{k}: \mathbb{R}^{m_{k}} \rightarrow l_{q}^{m_{k}}, \gamma_{m_{k}}\right) . \tag{4.1}
\end{equation*}
$$

Proof For convenience, we write

$$
\lambda_{n_{k}, \sigma_{k}}:=\lambda_{n_{k}, \sigma_{k}}\left(V_{k}: \mathbb{R}^{m_{k}} \rightarrow l_{q}^{m_{k}}, \gamma_{m_{k}}\right),
$$

where $\gamma_{m_{k}}$ is the standard Gaussian measure in $\mathbb{R}^{m_{k}}$. Denote by $L_{k}$ a linear operator from $\mathbb{R}^{m_{k}}$ to $\mathbb{R}^{m_{k}}$ such that the rank of $L_{k}$ is at most $n_{k}$ and

$$
\gamma_{m_{k}}\left(\left\{y \in \mathbb{R}^{m_{k}} \mid\left\|V_{k} y-L_{k} y\right\|>2 \lambda_{n_{k}, \sigma_{k}}\right\}\right) \leq \sigma_{k} .
$$

Then, for any $f \in W_{2, \alpha, \beta}^{r}$, by (3.8)-(3.10), (3.14) and (3.15) we have

$$
\begin{align*}
\left\|\delta_{k}(f)-T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f)\right\|_{q, \alpha, \beta} & =\left\|T_{k} U_{k} \delta_{k}(f)-T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f)\right\|_{q, \alpha, \beta} \\
& \leq\left\|U_{k} \delta_{k}(f)-R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f)\right\|_{l_{q, w}^{m_{k}}} \\
& =\left\|V_{k} S_{k} U_{k} \delta_{k}(f)-L_{k} S_{k} U_{k} \delta_{k}(f)\right\|_{l_{q}^{m}} \tag{4.2}
\end{align*}
$$

Let $y=S_{k} U_{k} \delta_{k}(f)=\left(w_{1}^{\frac{1}{2}} \delta_{k}(f)\left(\xi_{1}\right), \ldots, w_{m_{k}}^{\frac{1}{2}} \delta_{k}(f)\left(\xi_{m_{k}}\right)\right) \in \mathbb{R}_{m_{k}}$, for $x \in[-1,-1]$,

$$
\delta_{k}(f)(x)=\left\langle f, M_{k}(\cdot, x)\right\rangle=\left\langle f^{(-r)}, M_{k}^{(-r, 0)}(\cdot, x)\right\rangle_{r}=\left\langle f, M_{k}^{(-2 r, 0)}(\cdot, x)\right\rangle_{r},
$$

where $M_{k}^{\left(r_{1}, 0\right)}(x, y)$ is the $r_{1}$-order partial derivative of $M_{k}(x, y)$ with respect to the variable $x, r_{1} \in \mathbb{R}$. Since the random vector $f$ in $W_{2, \alpha, \beta}^{r}$ is a centered Gaussian random vector with a covariance operator $C_{v}$, the vector

$$
\left.y=S_{k} U_{k} \delta_{k}(f)=\left(\left\langle f, w_{1}^{\frac{1}{2}} M_{k}^{(-2 r, 0)}\left(\cdot, \xi_{1}\right)\right\rangle_{r}, \ldots, w_{m_{k}}^{\frac{1}{2}} M_{k}^{(-2 r, 0)}\left(\cdot, \xi_{m_{k}}\right)\right\rangle_{r}\right)
$$

in $\mathbb{R}^{m_{k}}$ is a random vector with a centered Gaussian distribution $\gamma$ in $\mathbb{R}^{m_{k}}$, and its covariance matrix $C_{\gamma}$ is given by

$$
C_{\gamma}=\left(\left\langle C_{v}\left(w_{i}^{\frac{1}{2}} M_{k}^{(-2 r, 0)}\left(\cdot, \xi_{i}\right)\right), w_{j}^{\frac{1}{2}} M_{k}^{(-2 r, 0)}\left(\cdot, \xi_{j}\right)\right\rangle_{r}\right)_{i, j=1}^{m_{k}} .
$$

Since for any $z=\left(z_{1}, \ldots, z_{m_{k}}\right) \in \mathbb{R}^{m_{k}}$,

$$
\sum_{j=1}^{m_{k}} w_{j}^{\frac{1}{2}} z_{j} M_{k}\left(\cdot, \xi_{j}\right) \in \bigoplus_{j=2^{k-1}+1}^{2^{k}} \mathbb{P}_{j}
$$

and

$$
\begin{aligned}
\left\langle C_{v}\left(w_{i}^{\frac{1}{2}} M_{k}^{(-2 r, 0)}\left(\cdot, \xi_{i}\right)\right), w_{j}^{\frac{1}{2}} M_{k}^{(-2 r, 0)}\left(\cdot, \xi_{j}\right)\right\rangle_{r} & =\left\langle w_{i}^{\frac{1}{2}} M_{k}^{(-2 r-s, 0)}\left(\cdot, \xi_{i}\right), w_{j}^{\frac{1}{2}} M_{k}^{(-2 r, 0)}\left(\cdot, \xi_{j}\right)\right\rangle_{r} \\
& =\left\langle w_{i}^{\frac{1}{2}} M_{k}^{(-\rho, 0)}\left(\cdot, \xi_{i}\right), w_{j}^{\frac{1}{2}} M_{k}^{(-\rho, 0)}\left(\cdot, \xi_{j}\right)\right\rangle,
\end{aligned}
$$

by Lemma 3.5 we get

$$
\begin{aligned}
\int_{\mathbb{R}^{m_{k}}}(y, z)^{2} \gamma(d y) & =z C_{\gamma} z^{T}=\sum_{i, j=1}^{m_{k}} z_{i} z_{j}\left\langle w_{i}^{\frac{1}{2}} M_{k}^{(-\rho, 0)}\left(\cdot, \xi_{i}\right), w_{j}^{\frac{1}{2}} M_{k}^{(-\rho, 0)}\left(\cdot, \xi_{j}\right)\right\rangle \\
& =\left\langle\sum_{j=1}^{m_{k}} w_{j}^{\frac{1}{2}} z_{j} M_{k}^{(-\rho, 0)}\left(\cdot, \xi_{j}\right), \sum_{j=1}^{m_{k}} w_{j}^{\frac{1}{2}} z_{j} M_{k}^{(-\rho, 0)}\left(\cdot, \xi_{j}\right)\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& =\left\|\sum_{j=1}^{m_{k}} w_{j}^{\frac{1}{2}} z_{j} M_{k}^{(-\rho, 0)}\left(\cdot, \xi_{j}\right)\right\|_{2}^{2} \asymp 2^{-2 k \rho}\left\|\sum_{j=1}^{m_{k}} w_{j}^{\frac{1}{2}} z_{j} M_{k}\left(\cdot, \xi_{j}\right)\right\|_{2}^{2} \\
& \ll 2^{-2 k \rho}\|z\|_{l_{2}^{m_{k}}}=2^{-2 k \rho} \int_{\mathbb{R}^{m_{k}}}(y, z)^{2} \gamma_{m_{k}}(d y) . \tag{4.3}
\end{align*}
$$

Now we consider the subset of $W_{2, \alpha, \beta}^{r}$

$$
G_{k}:=\left\{f \in W_{2, \alpha, \beta}^{r} \mid\left\|\delta_{k}(f)-T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f)\right\|_{l_{q}^{m}}>2 c_{1} c_{2} 2^{-k \rho} \lambda_{n_{k}, \sigma_{k}}\right\}
$$

where $c_{1}, c_{2}$ are the positive constants given in (4.2), (4.3). Then by (4.2) we get

$$
\begin{aligned}
v\left(G_{k}\right) & \leq v\left(\left\{f \in W_{2, \alpha, \beta}^{r} \mid\left\|V_{k} S_{k} U_{k} \delta_{k}(f)-L_{k} S_{k} U_{k} \delta_{k}(f)\right\|_{l_{q}^{m}}>2 c_{2} 2^{-k \rho} \lambda_{n_{k}, \sigma_{k}}\right\}\right) \\
& =\gamma\left(\left\{y \in \mathbb{R}^{m_{k}} \mid\left\|V_{k} y-L_{k} y\right\|_{l_{q}^{m}}>2 c_{2} 2^{-k \rho} \lambda_{n_{k}, \sigma_{k}}\right\}\right)
\end{aligned}
$$

Note that for any $t>0$, the set $\left\{y \in \mathbb{R}^{m_{k}}:\left\|V_{k} y-L_{k} y\right\|_{l_{q}}{ }^{m_{k}} \leq t\right\}$ is convex symmetric. It then follows by Theorem 1.8.9 in [10] and (4.3), we have

$$
\begin{aligned}
\nu\left(G_{k}\right) & \leq \gamma\left(\left\{y \in \mathbb{R}^{m_{k}}:\left\|V_{k} y-L_{k} y\right\|_{l_{q}^{m_{k}}}>2 c_{2} 2^{-k \rho} \lambda_{n_{k}, \sigma_{k}}\right\}\right) \\
& \leq \lambda\left(\left\{y \in \mathbb{R}^{m_{k}}:\left\|V_{k} y-L_{k} y\right\|_{l_{q}^{m_{k}}}>2 c_{2} 2^{-k \rho} \lambda_{n_{k}, \sigma_{k}}\right\}\right) \\
& \leq \gamma_{m_{k}}\left(\left\{y \in \mathbb{R}^{m_{k}}:\left\|V_{k} y-L_{k} y\right\|_{l_{q}^{m_{k}}}>2 \lambda_{n_{k}, \sigma_{k}}\right\}\right) \leq \sigma_{k},
\end{aligned}
$$

where $\lambda$ is a centered Gaussian measure in $\mathbb{R}^{m_{k}}$ with covariance matrix $c_{2}^{2} 2^{-2 k \rho} I_{m_{k}}$. Consider $G=\bigcup_{k=1}^{\infty} G_{k}$ and the linear operator $\widetilde{T}_{n}$ on $W_{2, \alpha, \beta}^{r}$ which is given by

$$
\widetilde{T}_{n} f=\sum_{k=1}^{\infty} T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f)
$$

Then

$$
\nu(G)=v\left(\bigcup_{k=1}^{\infty} G_{k}\right) \leq \sum_{k=1}^{\infty} v\left(G_{k}\right) \leq \sum_{k=1}^{\infty} v\left(\sigma_{k}\right) \leq \sigma
$$

and

$$
\begin{aligned}
\operatorname{rank} \widetilde{T}_{n} & \leq \sum_{k=1}^{\infty} \operatorname{rank}\left(T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}\right) \\
& \leq \sum_{k=1}^{\infty} n_{k} \leq n
\end{aligned}
$$

Thus, according to the definitions of $G, \widetilde{T}_{n}$, and $L_{k}$, we obtain

$$
\begin{aligned}
\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, \nu, L_{q, \alpha, \beta}\right) & =\sup _{f \in W_{2, \alpha, \beta}^{r} \backslash G}\left\|f-\widetilde{T}_{n} f\right\|_{q, \alpha, \beta} \\
& \leq \sup _{f \in W_{2, \alpha, \beta}^{r} \backslash G} \sum_{k=1}^{\infty}\left\|\delta_{k}(f)-T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f)\right\|_{q, \alpha, \beta}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{k=1}^{\infty} \sup _{f \in W_{2, \alpha, \beta}^{r} \backslash G}\left\|\delta_{k}(f)-T_{k} R_{k}^{-1} L_{k} S_{k} U_{k} \delta_{k}(f)\right\|_{q, \alpha, \beta} \\
& \ll \sum_{k=1}^{\infty} 2^{-k \rho} \lambda_{n_{k}, \sigma_{k}}
\end{aligned}
$$

which completes the proof of Theorem 4.1.

Now we turn to the lower estimates. Assume that $m \geq 6$ and $b_{1} m \leq n \leq 2 b_{1} m$ with $b_{1}>0$ being independent of $n$ and $m$. Set $\left\{x_{j}\right\}_{j=1}^{N} \subset\{x \in[-1,1]:|x| \leq 2 / 3\}$ and $x_{j+1}-x_{j}=3 / m$, $j=1, \ldots, N-1$. Then $M \asymp N$ and

$$
\left\{x \in[-1,1]:\left|x-x_{j}\right| \leq 1 / m\right\} \cap\left\{x \in[-1,1]:\left|x-x_{i}\right| \leq 1 / m\right\}=\emptyset, \quad \text { if } i \neq j .
$$

We may take $b_{1}>0$ sufficiently large so that $N \geq 2 n$. Let $\varphi^{1}$ be a $C^{\infty}$-function on $\mathbb{R}$ supported in $[-1,1]$, and be equal to 1 on $[-2 / 3,2 / 3]$. Let $\varphi^{2}$ be a nonnegative $C^{\infty}$-function on $\mathbb{R}$ supported in $[-1 / 2,1 / 2]$, and be equal to 1 on $[-1 / 4,1 / 4]$. Define

$$
\varphi_{i}(x)=\varphi^{1}\left(m\left(x-x_{i}\right)\right)-c_{i} \varphi^{2}\left(m\left(x-x_{i}\right)\right)
$$

for some $c_{i}$ such that $\int_{-1}^{1} \varphi_{i}(x) W_{\alpha, \beta}(x) d x=0, i=1, \ldots, N$. Set

$$
A_{N}:=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}=\left\{F_{a}(x)=\sum_{j=1}^{N} a_{j} \varphi_{j}(x): a=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N}\right\}
$$

Clearly,

$$
\begin{aligned}
& \varphi_{j} \in W_{2, \alpha, \beta}^{2}, \quad \operatorname{supp} \varphi_{j} \subset\left\{x \in[-1,1]:\left|x-x_{j}\right| \leq 1 / m\right\} \subset\{x \in[-1,1]:|x| \leq 5 / 6\}, \\
& \left\|\varphi_{j}\right\|_{q, \alpha, \beta} \\
& \asymp\left(\int_{-2 / 3}^{2 / 3}\left|\varphi_{j}(x)\right|^{q} d x\right)^{1 / q}=\left(\int_{-2 / 3}^{2 / 3}\left|\varphi^{1}\left(m\left(x-x_{j}\right)\right)-c_{j} \varphi^{2}\left(m\left(x-x_{j}\right)\right)\right|^{q} d x\right)^{1 / q} \\
& \\
& \asymp m^{-1 / q}, \quad 1 \leq q \leq \infty, j=1, \ldots, N,
\end{aligned}
$$

and

$$
\operatorname{supp} \varphi_{j} \cap \operatorname{supp} \varphi_{i}=\emptyset \quad(i \neq j) .
$$

It follows that for $F_{a} \in A_{n}, a=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$, we have

$$
\begin{equation*}
\left\|F_{a}\right\|_{q, \alpha, \beta} \asymp\left(m^{-1} \sum_{j=1}^{N}\left|a_{j}\right|^{q}\right)^{1 / q}=m^{-1 / q}\|a\|_{l_{q}^{N}} . \tag{4.4}
\end{equation*}
$$

For a nonnegative integer $v=0,1, \ldots$, and $F_{a} \in A_{N}, a=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$, it follows from the definition of $-D_{\alpha, \beta}$ that

$$
\operatorname{supp}\left(-D_{\alpha, \beta}\right)^{v}\left(\varphi_{j}\right) \subset\left\{x \in[-1,1]:\left|x-x_{j}\right| \leq 1 / m\right\}
$$

and

$$
\left\|\left(D_{\alpha, \beta}\right)^{\nu}\left(\varphi_{j}\right)\right\|_{q, \alpha, \beta} \leq m^{2 v-1 / q} .
$$

Hence, for $1 \leq q \leq \infty$ and $F_{a}=\sum_{j=1}^{N} a_{j} \varphi_{j} \in A_{N}$,

$$
\|\left(-\left(D_{\alpha, \beta}\right)^{\nu}\left(F_{a}\right)\left\|_{q, \alpha, \beta} \leq m^{2 v-1 / q}\right\| a \|_{L_{q}^{N}} .\right.
$$

It then follows by the Kolmogorov type inequality (see Theorem 8.1 in [18]) that

$$
\begin{align*}
\left\|F_{a}^{(\rho)}\right\|_{q, \alpha, \beta} & =\left\|\left(-D_{\alpha, \beta}\right)^{\rho / 2}\left(F_{a}\right)\right\|_{q, \alpha, \beta} \\
& \ll\left\|\left(-D_{\alpha, \beta}\right)^{1+[\rho]}\left(F_{a}\right)\right\|_{q, \alpha, \beta}^{\frac{\rho}{2+2 \rho \rho}}\left\|F_{a}\right\|_{q, \alpha, \beta}^{1-\frac{\rho}{2+2[\rho]}} \\
& \ll m^{\rho-1 / q}\|a\|_{i_{q}^{N}} \ll m^{\rho}\left\|F_{a}\right\|_{q, \alpha, \beta} . \tag{4.5}
\end{align*}
$$

For $f \in L_{1, \alpha, \beta}$ and $x \in[-1,1]$, we define

$$
P_{N}(f)(x)=\sum_{j=1}^{N} \frac{\varphi_{j}(x)}{\left\|\varphi_{j}\right\|_{2, \alpha, \beta}^{2}} \int_{-1}^{1} f(y) \varphi_{j}(y) W_{\alpha, \beta}(y) d y
$$

and

$$
Q_{N}(f)(x)=\sum_{j=1}^{N} \frac{\varphi_{j}(x)}{\left\|\varphi_{j}\right\|_{2, \alpha, \beta}^{2}} \int_{-1}^{1} f(y) \varphi_{j}^{(\rho)}(y) W_{\alpha, \beta}(y) d y .
$$

Clearly, the operator $P_{N}$ is the orthogonal projector from $L_{2, \alpha, \beta}$ to $A_{N}$, and if $f \in W_{2, \alpha, \beta}^{\rho}$, then $Q_{N}(f)(x)=P_{N}\left(f^{\rho}\right)(x)$. Also, using the method in [19], we can prove that $P_{N}$ is the bounded operator from $L_{q, \alpha, \beta}$ to $A_{N} \cap L_{q, \mu}$ for $1 \leq q \leq \infty$,

$$
\begin{equation*}
\left\|P_{N}(f)\right\|_{q, \alpha, \beta} \ll\|f\|_{q, \alpha, \beta} \tag{4.6}
\end{equation*}
$$

Since $Q_{N}(f) \in A_{N}$ for $f \in W_{2, \alpha, \beta}^{\rho}$, we have

$$
\begin{equation*}
\left.\left\|Q_{N}(f)^{(\rho)}\right\|_{2, \alpha, \beta} \ll m^{\rho} \| Q_{N}(f)\right)\left\|_{2, \alpha, \beta}=m^{\rho}\right\| P_{N}(f)^{(\rho)}\left\|_{2, \alpha, \beta} \ll m^{\rho}\right\| f^{(\rho)} \|_{2, \alpha, \beta} \tag{4.7}
\end{equation*}
$$

Theorem 4.2 Let $1 \leq q \leq \infty, \delta \in(0,1)$, and let $N$ be given above. Then

$$
\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{q, \alpha, \beta}\right) \gg n^{1 / 2-\rho-1 / q} \lambda_{n, \delta}\left(I_{N}: \mathbb{R}^{N} \rightarrow l_{q}^{N}, \gamma_{N}\right),
$$

where $N \asymp n, N \geq 2 n$ and $\gamma_{N}$ is the standard Gaussian measure in $\mathbb{R}^{N}$.

Proof Let $T_{n}$ be a bounded linear operator on $W_{2, \alpha, \beta}^{r}$ with $\operatorname{rank} T_{n} \leq n$ such that

$$
v\left(\left\{f \in W_{2, \alpha, \beta}^{r}:\left\|f-T_{n} f\right\|_{q, \alpha, \beta}>2 \lambda_{n, \delta}\right\}\right) \leq \delta,
$$

where $\lambda_{n, \delta}:=\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, \nu, L_{q, \alpha, \beta}\right)$. Note that if $A$ is a bounded linear operator from $W_{2, \alpha, \beta}^{r}$ to $W_{2, \alpha, \beta}^{r}$ and from $H(\nu)$ to $H(\nu)$, then the image measure $\lambda$ of $v$ under $A$ is also a centered Gaussian measure on $W_{2, \alpha, \beta}^{r}$ with covariance

$$
R_{\lambda}(f)(f)=\left\langle A^{*} C_{\nu} f, A^{*} C_{\nu} f\right\rangle_{H(v)}, \quad f \in W_{2, \alpha, \beta}^{r},
$$

where $C_{v}$ is the covariance of the measure $v, H(v)=W_{2, \alpha, \beta}^{\rho}$ is the Camera-Martin space of $\nu$, and $A^{*}$ is the adjoint of $A$ in $H(v)$ (see Theorem 3.5.1 of [10]). Furthermore, if the operator $A$ also satisfies

$$
\|A f\|_{H(v)} \leq\|f\|_{H(v)}
$$

then

$$
R_{\lambda}(f)(f)=\left\|A^{*} C_{\nu} f\right\|_{H(v)}^{2} \leq\left\|A^{*}\right\|^{2}\left\|C_{\nu} f\right\| \leq\left\langle C_{\nu} f, C_{\nu} f\right\rangle_{H(\nu)}=R_{\nu}(f)(f)
$$

By Theorem 3.3.6 in [10], we get that for any absolutely convex Borel set $E$ of $W_{2, \alpha, \beta}^{r}$ there holds the inequality

$$
\nu(E) \leq \lambda(E) .
$$

Applying (4.7) we assert that

$$
\left\|Q_{N}(f)\right\|_{H(\nu)}=\left\|\left(Q_{N}(f)\right)^{(\rho)}\right\|_{2, \alpha, \beta} \ll m^{\rho}\left\|f^{(\rho)}\right\|_{2, \alpha, \beta}=m^{\rho}\|f\|_{H(\nu)} .
$$

Then there exists a positive constant $c_{3}$ such that

$$
\left\|\frac{1}{c_{3} m^{\rho}} Q_{N}(f)\right\|_{H(v)} \leq\|f\|_{H(\nu)}
$$

Note that, for any $t>0$, the set $\left\{f \in W_{2, \alpha, \beta}^{r}:\left\|f-T_{n} f\right\|_{q, \alpha, \beta} \leq t\right\}$ is absolutely convex. It then follows that

$$
v\left(\left\{f \in W_{2, \alpha, \beta}^{r}:\left\|f-T_{n} f\right\|_{q, \alpha, \beta}<2 \lambda_{n, \delta}\right\}\right) \leq \lambda\left(\left\{f \in W_{2, \alpha, \beta}^{r}:\left\|f-T_{n} f\right\|_{q, \alpha, \beta}<2 \lambda_{n, \delta}\right\}\right),
$$

which leads to

$$
\begin{aligned}
& v\left(\left\{f \in W_{2, \alpha, \beta}^{r}:\left\|f-T_{n} f\right\|_{q, \alpha, \beta}>2 \lambda_{n, \delta}\right\}\right) \\
& \quad \geq v\left(\left\{f \in W_{2, \alpha, \beta}^{r}:\left\|Q_{N} f-T_{n} Q_{N} f\right\|_{q, \alpha, \beta}>2 c_{3} m^{\rho} \lambda_{n, \delta}\right\}\right)
\end{aligned}
$$

Let $L_{N}: \mathbb{R}^{N} \rightarrow A_{N}$ and $J_{N}: A_{N} \rightarrow \mathbb{R}^{N}$ be defined by

$$
L_{N}(a)(x)=\sum_{i=1}^{N} \frac{a_{i} \varphi_{i}(x)}{\left\|\varphi_{i}\right\|_{2, \alpha, \beta}}, \quad a=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N}
$$

and

$$
J_{N}\left(F_{a}\right)=\left(a_{1}\left\|\varphi_{1}\right\|_{2, \alpha, \beta}, \ldots, a_{N}\left\|\varphi_{N}\right\|_{2, \alpha, \beta}\right), \quad F_{a} \in A_{N}
$$

We see at once that $L_{N} J_{N}\left(F_{a}\right)=F_{a}$ for any $F_{a} \in A_{N}$. Set $y=\left(y_{1}, \ldots, y_{N}\right) \in \mathbb{R}^{N}$, where $y_{j}=$ $\frac{1}{\left\|\varphi_{j}\right\|_{2, \alpha, \beta}}\left\langle f, \varphi_{j}^{(\rho)}\right\rangle$. Then $y=J_{N} Q_{N}(f)$. Thus by (4.4) and $\left\|\varphi_{j}\right\|_{2, \alpha, \beta} \asymp m^{-\frac{1}{2}}$, we obtain

$$
\begin{equation*}
\left\|L_{N}(a)\right\|_{q, \alpha, \beta} \asymp m^{-\frac{1}{q}+\frac{1}{2}}\|a\|_{l_{q}^{N}} . \tag{4.8}
\end{equation*}
$$

Combining (4.6) with (4.8), we conclude that for any $f \in W_{2, \alpha, \beta}^{r}$,

$$
\begin{aligned}
\left\|Q_{N}(f)-T_{N} Q_{N}(f)\right\|_{q, \alpha, \beta} & \gg\left\|P_{N}\left(Q_{N}(f)\right)-P_{N} T_{n} Q_{N}(f) Q\right\|_{q, \alpha, \beta} \\
& =\left\|L_{N} J_{N} Q_{N}(f)-L_{N} J_{N} P_{N} T_{N} L_{N} J_{N} Q_{N}(f)\right\|_{q, \alpha, \beta} \\
& \gg m^{-\frac{1}{q}+\frac{1}{2}}\left\|J_{N} Q_{N}(f)-J_{N} P_{N} T_{n} L_{N} J_{N} Q_{N}(f)\right\|_{l_{q}^{N}} \\
& \gg m^{-\frac{1}{q}+\frac{1}{2}}\left\|y-J_{N} P_{N} T_{n} L_{N} y\right\|_{l_{q}^{N}} .
\end{aligned}
$$

Remark that $g_{k}=\frac{\varphi_{k}}{\left\|\varphi_{k}\right\|_{2, \alpha, \beta}}, k=1,2, \ldots, N$, is an orthonormal system in $L_{2, \alpha, \beta}$ and $g_{k} \in H(v)=$ $W_{2, \alpha, \beta}^{\rho}$. Then the random vector $\left(\left\langle f, g_{1}^{(\rho)}\right\rangle, \ldots,\left\langle f, g_{N}^{(\rho)}\right\rangle\right)=y$ in $\mathbb{R}^{N}$ on the measurable space $\left(W_{2, \alpha, \beta}^{r}, \nu\right)$ has the standard Gaussian distribution $r_{N}$ in $\mathbb{R}^{N}$. It then follows that

$$
\begin{aligned}
& v\left(\left\{f \in W_{2, \alpha, \beta}^{r}:\left\|Q_{N}(f)-T_{n} Q_{N}(f)\right\|_{q, \alpha, \beta}>2 c_{3} m^{\rho} \lambda_{n, \delta}\right\}\right) \\
& \\
& \quad \geq v\left(\left\{f \in W_{2, \alpha, \beta}^{r}:\left\|y-T_{J} N P_{N} T_{n} L_{N} y\right\|_{l_{q}^{N}}>c_{4} m^{\rho+\frac{1}{q}-\frac{1}{2}} \lambda_{n, \delta}\right\}\right) \\
& \quad=r_{N}\left(\left\{y \in \mathbb{R}^{N}:\left\|y-T_{J} N P_{N} T_{n} L_{N} y\right\|_{l_{q}^{N}}>c_{4} m^{\rho+\frac{1}{q}-\frac{1}{2}} \lambda_{n, \delta}\right\}\right) \\
& \\
& =: r_{N}(G),
\end{aligned}
$$

where $c_{4}$ is a positive constant. Clearly, $\operatorname{rank}\left(J_{N} P_{N} T_{n} L_{N}\right) \leq n$ and

$$
r_{N}(G) \leq v\left(\left\{f \in W_{2, \alpha, \beta}^{r}:\left\|f-T_{n} f\right\|_{q, \alpha, \beta}>2 \lambda_{n, \delta}\right\}\right) \leq \delta .
$$

Consequently,

$$
\begin{aligned}
\lambda_{n, \delta}\left(I_{N}: \mathbb{R}^{N} \rightarrow l_{q}^{N}, r_{N}\right) & =\inf _{G} \inf _{I_{N}} \sup _{x \in \mathbb{R}^{N} \backslash G}\left\|I_{N} x-T_{n} x\right\|_{l_{q}^{N}} \\
& \leq \sup _{y \in \mathbb{R}^{N} \backslash G}\left\|I_{N} y-J_{N} P_{N} T_{n} L_{N} y\right\|_{l_{q}^{N}} \\
& \ll m^{\rho+\frac{1}{q}-\frac{1}{2}} \lambda_{n, \delta},
\end{aligned}
$$

which implies

$$
\begin{aligned}
\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{q, \alpha, \beta}\right) & \ll m^{-\rho-\frac{1}{q}+\frac{1}{2}} \lambda_{n, \delta}\left(I_{N}: \mathbb{R}^{N} \rightarrow l_{q}^{N}, r_{N}\right) \\
& \asymp n^{-\rho-\frac{1}{q}+\frac{1}{2}} \lambda_{n, \delta}\left(I_{N}: \mathbb{R}^{N} \rightarrow l_{q}^{N}, r_{N}\right) .
\end{aligned}
$$

This completes the proof of Theorem 4.2.

Now, we are in a position to prove Theorem 2.1.

Proof For the lower estimates, using Theorem 4.2 and Lemma 3.1, we have for $1 \leq q \leq 2$

$$
\begin{aligned}
\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{q, \alpha, \beta}\right) & \gg n^{-\rho+1 / 2-1 / q} \lambda_{n, \delta}\left(I_{N}: \mathbb{R}^{N} \rightarrow l_{q}^{N}, \gamma_{N}\right) \\
& \asymp n^{-\rho+1 / 2-1 / q}\left(N^{1 / q}+N^{1 / q-1 / 2}\left(\ln \left(\frac{1}{\delta}\right)\right)^{1 / 2}\right) \\
& \asymp n^{1 / 2-\rho}\left(1+n^{-1 / 2}\left(\ln \left(\frac{1}{\delta}\right)\right)^{1 / 2}\right) .
\end{aligned}
$$

For $2 \leq q<\infty$, we have

$$
\begin{aligned}
\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{q, \alpha, \beta}\right) & \gg n^{-\rho+1 / 2-1 / q}\left(n^{1 / q}+\left(\ln \left(\frac{1}{\delta}\right)\right)^{1 / 2}\right) \\
& \asymp n^{1 / 2-\rho}\left(1+n^{-1 / q}\left(\ln \left(\frac{1}{\delta}\right)\right)^{1 / 2}\right) .
\end{aligned}
$$

And for $q=\infty$,

$$
\begin{aligned}
\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{q, \alpha, \beta}\right) & \gg n^{-\rho+1 / 2-1 / q}\left(\ln m+\ln \left(\frac{1}{\delta}\right)\right)^{1 / 2} \\
& =n^{1 / 2-\rho}\left(\ln \left(\frac{m}{\delta}\right)\right)^{1 / 2}
\end{aligned}
$$

It remains to prove the upper estimates. For $2 \leq q \leq \infty$ and any fixed natural number $n$, assume $C_{1} 2^{m} \leq n \leq C_{1}^{2} 2^{m}$ with $C_{1}>0$ to be specified later. We may take sufficiently small positive numbers $\varepsilon>0$ such that $\rho>\frac{1}{2}+(1+\varepsilon)(2 \max \{\alpha, \beta\}+1+\varepsilon)\left(\frac{1}{2}-\frac{1}{q}\right)$. Set

$$
n_{j}= \begin{cases}2^{j+1}, & \text { if } j \leq m \\ 2^{j+1} 2^{(1+\varepsilon)(m-j)-1}, & \text { if } j>m\end{cases}
$$

and

$$
\delta_{j}= \begin{cases}0, & \text { if } j \leq m \\ \delta 2^{m-j}, & \text { if } j>m\end{cases}
$$

Then

$$
\sum_{j \geq 0} n_{j} \ll \sum_{j \leq m} 2^{j}+\sum_{j>m} 2^{m(1+\varepsilon)-\varepsilon j} \ll 2^{m}
$$

and

$$
\sum_{j \geq 0} \delta_{j}=\delta \sum_{j \leq m} 2^{m-j} \leq \delta
$$

Thus, we can take $C_{1}$ sufficiently large so that

$$
\sum_{j=0}^{\infty} n_{j} \leq C_{1} 2^{m} \leq n
$$

It follows from Lemma 3.4 for $\tau \in\left(0, \frac{1}{(2 \max [\alpha, \beta\}+1)(1 / 2-1 / q)}\right), 2 \leq q \leq \infty$,

$$
\sum_{j=1}^{n} b_{j}^{-\tau(1 / 2-1 / q)} \ll 2^{k[1+\tau(1 / 2-1 / q)]}=2^{k+k \tau(1 / 2-1 / q)} .
$$

If $j \leq m$, then $n_{j}=2^{j+1}$, and thence $\lambda_{n_{j}, \delta_{j}}\left(V_{j}: \mathbb{R}^{\mathbb{R}^{j+1}} \rightarrow l_{q}^{2^{j+1}}, \gamma_{2^{j+1}}\right)=0$. If $j>m$, then taking $\frac{1}{\tau}=(2 \max \{\alpha, \beta\}+1+\varepsilon)(1 / 2-1 / q)$ and applying Lemma 3.2, Theorem 4.1, we obtain for $2 \leq q<\infty$,

$$
\begin{aligned}
& \lambda_{n_{j}, \delta_{j}}\left(V_{j}: \mathbb{R}^{j+1} \rightarrow l_{q}^{j+1}, \gamma_{j+1}\right) \\
& \quad \ll\left(\frac{C(m, \tau)}{n_{j}+1}\right)^{1 / \tau}\left(2^{(j+1) / q}+\sqrt{\ln \frac{1}{\delta}}\right) \\
& \quad \ll 2^{j(1 / 2-1 / q)} 2^{-(1+\varepsilon)(m-j)(2 \max \{\alpha, \beta\}+1+\varepsilon)\left(\frac{1}{2}-\frac{1}{q}\right)}\left(2^{\frac{j}{q}}+\sqrt{\ln \frac{1}{\delta}}\right),
\end{aligned}
$$

which yields

$$
\begin{align*}
& \lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{q, \alpha, \beta}\right) \\
& \quad \ll \sum_{j=m+1}^{\infty} 2^{-j \rho} 2^{j(1 / 2-1 / q)} 2^{-(1+\varepsilon)(m-j)(2 \max \{\alpha, \beta\}+1+\varepsilon)\left(\frac{1}{2}-\frac{1}{q}\right)} 2^{1 / 2-1 / q}\left(2^{\frac{j}{q}}+\sqrt{\ln \frac{1}{\delta}}\right) \\
& \quad \ll 2^{-m\left(\rho-\frac{1}{2}+\frac{1}{q}\right)}\left(2^{\frac{m}{q}}+\sqrt{\ln \frac{1}{\delta}}\right) \asymp n^{1 / 2-\rho}\left(1+n^{-1 / q} \sqrt{\ln \frac{1}{\delta}}\right) . \tag{4.9}
\end{align*}
$$

For $q=\infty$, by Lemma 3.2 we get

$$
\begin{aligned}
\lambda_{n_{j}, \delta_{j}}\left(V_{j}: \mathbb{R}^{2^{j+1}} \rightarrow l_{q}^{j^{j+1}}, \gamma_{j^{j+1}}\right) & \ll\left(\frac{C\left(2^{j+1}, \tau\right)}{n_{j}+1}\right)^{1 / \tau} \sqrt{\ln 2^{j+1}+\ln \frac{1}{\delta}} \\
& =2^{j / 2(1+\varepsilon)(m-j)(2 \max \{\alpha, \beta\}+1+\varepsilon) / 2} \sqrt{j+\ln \frac{1}{\delta}},
\end{aligned}
$$

then applying Theorem 4.1, we obtain

$$
\begin{align*}
\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{\infty, \alpha, \beta}\right) & \ll \sum_{j=m+1}^{\infty} 2^{-j \rho} 2^{j / 2-(1+\varepsilon)(m-j)(2 \max (\alpha, \beta)+1+\varepsilon) / 2} \sqrt{j+\ln \frac{1}{\delta}} \\
& \ll 2^{-m\left(\rho-\frac{1}{2}\right)} \sqrt{m+\ln \frac{1}{\delta}} \asymp n^{1 / 2-\rho} \sqrt{\ln \frac{n}{\delta}} . \tag{4.10}
\end{align*}
$$

To finish the proof of the upper estimates, we only need to show that, for $1 \leq q<2$,

$$
\lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{q, \alpha, \beta}\right) \ll \lambda_{n, \delta}\left(W_{2, \alpha, \beta}^{r}, v, L_{2, \alpha, \beta}\right) \ll n^{1 / 2-\rho}\left(1+n^{-1} \sqrt{\ln \frac{1}{\delta}}\right)^{1 / 2} .
$$

Theorem 2.1 is proved.

## 5 Conclusions

In this paper, optimal estimates of the probabilistic linear $(n, \delta)$-widths of the weighted Sobolev space $W_{2, \alpha, \beta}^{r}$ on $[-1,1]$ are established. This kind of estimates play an important role in the widths theory and have a wide range of applications in the approximation theory of functions, numerical solutions of differential and integral equations, and statistical estimates.

## Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project no. 11401520), by the Research Award Fund for Outstanding Young and Middle-aged Scientists of Shandong Province (BS2014SF019), by the National Natural Science Foundation of China (11271263), by the Beijing Natural Science Foundation (1132001), and BCMIIS.

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors contributed equally and significantly in writing this article. All the authors read and approved the final manuscript.

## Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 6 March 2017 Accepted: 11 October 2017 Published online: 23 October 2017

## References

1. Fang, G, Ye, P: Probabilistic and average linear widths of Sobolev space with Gaussian measure. J. Complex. 19, 73-84 (2003)
2. Fang, G, Ye, P: Probabilistic and average linear widths of Sobolev space with Gaussian measure in L $\infty$-norm. Constr Approx. 20, 159-172 (2004)
3. Maiorov, VE: Widths of spaces equipped with a Gaussian measure. Russ. Acad. Sci. Dokl. Math. 45(2), 305-309 (1993)
4. Maiorov, VE: Linear widths of function spaces equipped with the Gaussian measure. J. Approx. Theory 77(1), 74-88 (1994)
5. Maiorov, VE, Wasilkowski, GW: Probabilistic and average linear widths in $L \infty$-norm with respect to $r$-fold Wiener measure. J. Approx. Theory 84(1), 31-40 (1996)
6. Wang, H, Zhai, X: Approximation of functions on the sphere on a Sobolev space with a Gaussian measure in the probabilistic case setting. Int. J. Wavelets Multiresolut. Inf. Process. 12(5), 1461012 (2014)
7. Wang, H: Probabilistic and average widths of weighted Sobolev spaces on the ball equipped with a Gaussian measure (2016) https://arxiv.org/abs/1603.04578
8. Szegö, G: Orthogonal Polynomials, 4th edn., vol. 23. Amer. Math. Soc., Providence (1975)
9. Dunkl, CF, Xu, Y: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)
10. Bogachev, VI: Gaussian Measures. Mathematical Surveys and Monographs, vol. 62. Am. Math. Soc., Providence (1998)
11. Kuo, HH: Gaussian Measure in Banach Space. Lecture Notes in Mathematics, vol. 463. Springer, Berlin (1975)
12. Zhai, $\mathrm{X}, \mathrm{Hu}, \mathrm{X}$ : Approximation of functions on $[-1,1]$ with Jacobi weights in the worst and average case settings. Sci. Sin., Math. 44(2), 165-182 (2014) (in Chinese)
13. Maiorov, VE: Discretization of a problem about $n$-widths. Usp. Mat. Nauk 30, 179-180 (1976)
14. Maiorov, VE: Kolmogorov's ( $n, \delta$ )-widths of spaces of the smooth functions. Russ. Acad. Sci. Sb. Math. 79(2), 265-279 (1994)
15. Frenzen, CL, Wong, R: A uniform asymptotic expansion of the Jacobi polynomials with error bounds. Can. J. Math. 37, 979-1007 (1985)
16. Nevai, P: Orthogonal Polynomials. Memoirs of AMS, vol. 18 (1979)
17. Szabados, J, Vértesi, P: Interpolation of Functions. World Scientific, Singapore (1990)
18. Ditzan, Z: Fractional derivatives and best approximation. Acta Math. Hung. 81(4), 323-348 (1998)
19. Wang, H, Huang, H: Widths of weighted Sobolev classes on the ball. J. Approx. Theory 154(2), 126-139 (2008)
