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Abstract
In this paper, we present new upper and lower bounds for the spectral norms of the

r-circulant matrices Q = Cr(( ba )
ξ (1)
2 q0, ( ba )

ξ (2)
2 q1, ( ba )

ξ (3)
2 q2, . . . , ( ba )

ξ (n)
2 qn–1) and

L = Cr(( ba )
ξ (0)
2 l0, ( ba )

ξ (1)
2 l1, ( ba )

ξ (2)
2 l2, . . . , ( ba )

ξ (n–1)
2 ln–1) whose entries are the biperiodic

Fibonacci and biperiodic Lucas numbers, respectively. Finally, we obtain lower and
upper bounds for the spectral norms of Kronecker and Hadamard products of Q and L
matrices.

Keywords: biperiodic Fibonacci number; biperiodic Lucas number; r-circulant
matrix; norm

1 Introduction
For n ∈ N, the Fibonacci and Lucas numbers are defined by Fn+ = Fn+ + Fn and Ln+ =
Ln+ + Ln with the initial conditions F = , F =  and L = , L = , respectively. In recent
years, there are several applications and generalizations of Fibonacci and Lucas numbers
[–]. For example, Falcon and Plaza introduced the k-Fibonacci sequence by studying
the recursive application of two geometrical transformations used in the well-known -
triangle longest-edge (TLE) partition []. Edson and Yayenie [] presented a new gener-
alization of the Fibonacci sequence: for n ∈N,

q = , q = , qn+ =

⎧
⎨

⎩

aqn+ + qn if n is even,

bqn+ + qn if n is odd.
()

They also obtained an extended Binet formula for this sequence:

qn =
(

a–ξ (n)

ab� n
 �

)
αn – βn

α – β
, n ∈N. ()

Afterward, Bilgici [] defined generalized the Lucas sequence by the following recurrence
relation: for n ∈ N,

l = , l = a, ln+ =

⎧
⎨

⎩

bln+ + ln if n is even,

aln+ + ln if n is odd
()
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and The Binet formula for this sequence is

ln =
(

aξ (n)

ab� n+
 �

)
(
αn + βn), n ∈ N. ()

In Eqs. () and (), α = ab+
√

ab+ab
 and β = ab–

√
ab+ab

 are the roots of the characteristic
equation of x – abx – ab = , and ξ (n) = n – � n

 �.
In recent years, there have been several studies on the norms, determinants, and

inverses of circulant and r-circulant matrices whose entries are special integer se-
quences [–]. For example, Shen and Cen [] found upper and lower bounds for
the spectral norms of r-circulant matrices in the forms A = Cr(F, F, F, . . . , Fn–) and
B = Cr(L, L, L, . . . , Ln–). They also obtained some bounds for the spectral norms of Kro-
necker and Hadamard products of A and B. Afterward, Shen and Cen [] gave the upper
and lower bounds for the spectral norms of the matrices A = Cr(Fk,, Fk,, Fk,, . . . , Fk,n–)
and B = Cr(Lk,, Lk,, Lk,, . . . , Lk,n–). They also presented some bounds for the spec-
tral norms of Hadamard and Kronecker products of these matrices. Bahşi [] stud-
ied the norms of r-circulant matrices Hr = Circr(H (k)

 , H (k)
 , H (k)

 , . . . , H (k)
n–) and Ĥr =

Circr(H ()
k , H ()

k , H ()
k , . . . , H (n–)

k ), where H (k)
n denotes the nth hyperharmonic number of

order r.
Inspired by these studies, in this paper, we compute spectral norms of r-circulant matri-

ces whose entries are the biperiodic Fibonacci and biperiodic Lucas numbers. This study
consists of three sections. The first one is the introduction. In the second section, we give
some new theorems, corollaries, and some important results. We give a concise conclu-
sion in the last section.

Definition . For any given c, c, c, . . . , cn– ∈ C, the r-circulant matrix Cr = (cij)n×n is
defined by

Cr =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c c c . . . cn– cn–

rcn– c c . . . cn– cn–

rcn– rcn– c . . . cn– cn–
...

...
...

. . .
...

...
rc rc rc . . . c c

rc rc rc . . . rcn– c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. ()

It is clear that, for r = , Cr turns into a classical circulant matrix. Let us take any A = [aij] ∈
Mn,n(C). The Frobenius norm of the matrix A is defined by

‖A‖F =

[ m∑

i=

n∑

j=

|aij|
] 



.

Also, the spectral norm of the matrix A is given by

‖A‖ =
√

max
≤i≤n

λi
(
AHA

)
,
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where λi(AHA) are the eigenvalues of AHA such that AH is the conjugate transpose of A.
Then, the well-known inequality [] is given by

√
n

‖A‖F ≤ ‖A‖ ≤ ‖A‖F . ()

Lemma . ([]) For any matrices A, B ∈ Mm,n(C), we have

‖A ◦ B‖ ≤ ‖A‖‖B‖,

where A ◦ B is the Hadamard product of A and B.

Lemma . ([]) For any matrices A ∈ Mm,n(C) and B ∈ Mp,q(C), we have

‖A ⊗ B‖ = ‖A‖‖B‖, ()

where A ⊗ B is the Kronecker product of A and B.

Lemma . ([]) For any matrices A = [aij] ∈ Mn,n(C) and B = [bij] ∈ Mn,n(C), we have

‖A ◦ B‖ ≤ r(A)c(B),

where A ◦ B is the Hadamard product, r(A) = max≤i≤n

√∑n
j= |aij|, and c(B) =

max≤j≤n

√∑n
i= |bij|.

Theorem . ([]) For any positive integer n, we have

n∑

k=

(
b
a

)ξ (k+)

q
k =

(

a

)

qnqn+. ()

2 Main results
In this section, we first give the sum of squares of biperiodic Lucas numbers.

Theorem . For any positive integer m, we have

m∑

k=

(
b
a

)ξ (k)

l
k =

(

a

)

lm+lm – . ()

Proof Using the Binet formula of the biperiodic Lucas numbers, we have

⎧
⎨

⎩

l
k = ( α

ab )k + ( β

ab )k + (–)k if k is even,

l
k = ( a

b )[( α

ab )k + ( β

ab )k + (–)k] if k is odd.

Therefore, for any k ≥ ,

(
b
a

)ξ (k)

l
k =

(
α

ab

)k

+
(

β

ab

)k

+ (–)k .
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Using the properties ab(α + ) = α and ab(β + ) = β, we get

m∑

k=

(
b
a

)ξ (k)

l
k =

m∑

k=

(
α

ab

)k

+
m∑

k=

(
β

ab

)k

+
m∑

k=

(–)k

=
( α

ab )m+ – ( α

ab )

( α
ab ) – 

+
( β

ab )m+ – ( β

ab )

( β

ab ) – 
+ (–)m – 

=


(ab)m+

[
αm+ + βm+ – (–)m]

– .

Observe that

(

a

)

lmlm+ =


(ab)m+

[
αm+ + βm+ – (–)m]

.

Therefore,

m∑

k=

(
b
a

)ξ (k)

l
k =

(

a

)

lm+lm – . �

Theorem . Let Q = Cr(( b
a )

ξ ()
 q, ( b

a )
ξ ()

 q, ( b
a )

ξ ()
 q, . . . , ( b

a )
ξ (n)

 qn–) be an r-circulant
matrix. Then, for r ∈ C, we have:

if |r| ≥ , then

√
qnqn–

a
≤ ‖Q‖ ≤ |r|qnqn–

a
;

if |r| < , then

|r|
√

qnqn–

a
≤ ‖Q‖ ≤

√

(n – )
qnqn–

a
.

Proof The matrix Q is of the form

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( b
a )

ξ ()
 q ( b

a )
ξ ()

 q ( b
a )

ξ ()
 q . . . ( b

a )
ξ (n)

 qn–

r( b
a )

ξ (n)
 qn– ( b

a )
ξ ()

 q ( b
a )

ξ ()
 q . . . ( b

a )
ξ (n–)

 qn–

r( b
a )

ξ (n–)
 qn– r( b

a )
ξ (n)

 qn– ( b
a )

ξ ()
 q . . . ( b

a )
ξ (n–)

 qn–
...

...
...

. . .
...

r( b
a )

ξ ()
 q r( b

a )
ξ ()

 q r( b
a )

ξ ()
 q . . . ( b

a )
ξ ()

 q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. ()

Then we have

‖Q‖
F =

n–∑

k=

(n – k)
(

b
a

)ξ (k+)

q
k +

n–∑

k=

k|r|
(

b
a

)ξ (k+)

q
k .
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Hence, for |r| ≥ , using Eq. (), we obtain

‖Q‖
F ≥

n–∑

k=

(n – k)
(

b
a

)ξ (k+)

q
k +

n–∑

k=

k
(

b
a

)ξ (k+)

q
k

= n
n–∑

k=

(
b
a

)ξ (k+)

q
k

= n
(

qnqn–

a

)

,

that is,

√
n

‖Q‖F ≥
√

qnqn–

a
.

From () we have

‖Q‖ ≥
√

qnqn–

a
.

Now, for |r| ≥ , we give an bound for the spectral norm of the matrix Q. Let the matrices
B and C be

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r( b
a )

ξ ()
 q   . . . 

r( b
a )

ξ (n)
 qn– r( b

a )
ξ ()

 q  . . . 
r( b

a )
ξ (n–)

 qn– r( b
a )

ξ (n)
 qn– r( b

a )
ξ ()

 q . . . 
...

...
...

. . .
...

r( b
a )

ξ ()
 q r( b

a )
ξ ()

 q r( b
a )

ξ ()
 q . . . r( b

a )
ξ ()

 q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

()

and

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( b
a )

ξ ()
 q ( b

a )
ξ ()

 q ( b
a )

ξ ()
 q . . . ( b

a )
ξ (n)

 qn–

 ( b
a )

ξ ()
 q ( b

a )
ξ ()

 q . . . ( b
a )

ξ (n–)
 qn–

  ( b
a )

ξ ()
 q . . . ( b

a )
ξ (n–)

 qn–
...

...
...

. . .
...

   . . . ( b
a )

ξ ()
 q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ()

so that Q = B ◦ C. Then we obtain

r(B) = max
≤i≤n

√
√
√
√

n∑

j=

|bij| =

√
√
√
√|r|

n–∑

k=

(
b
a

)ξ (k+)

q
k = |r|

√
qnqn–

a
,

c(C) = max
≤j≤n

√
√
√
√

n∑

i=

|cij| =

√
√
√
√

n–∑

k=

(
b
a

)ξ (k+)

q
k =

√
qnqn–

a
.

By Lemma . we have

‖Q‖ ≤ r(B)c(C) = |r|qnqn–

a
.
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Thus,

√
qnqn–

a
≤ ‖Q‖ ≤ |r|qnqn–

a
.

On the other hand, for |r| < , we have

‖Q‖
F ≥

n–∑

k=

(n – k)|r|
(

b
a

)ξ (k+)

q
k +

n–∑

k=

k|r|
(

b
a

)ξ (k+)

q
k

= n|r|
n–∑

k=

(
b
a

)ξ (k+)

q
k

= n|r|
(

qnqn–

a

)

,

that is,

√
n

‖Q‖F ≥ |r|
√

qnqn–

a
.

Thus, we obtain

‖Q‖ ≥ |r|
√

qnqn–

a
.

Now, for |r| < , we give an upper bound for the spectral norm of the matrix Q. Let the
matrices D and E be

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( b
a )

ξ ()
 q   . . . 
r ( b

a )
ξ ()

 q  . . . 
r r ( b

a )
ξ ()

 q . . . 
...

...
...

. . .
...

r r r . . . ( b
a )

ξ ()
 q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

()

and

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( b
a )

ξ ()
 q ( b

a )
ξ ()

 q ( b
a )

ξ ()
 q . . . ( b

a )
ξ (n)

 qn–

( b
a )

ξ (n)
 qn– ( b

a )
ξ ()

 q ( b
a )

ξ ()
 q . . . ( b

a )
ξ (n–)

 qn–

( b
a )

ξ (n–)
 qn– ( b

a )
ξ (n)

 qn– ( b
a )

ξ ()
 q . . . ( b

a )
ξ (n–)

 qn–
...

...
...

. . .
...

( b
a )

ξ ()
 q ( b

a )
ξ ()

 q ( b
a )

ξ ()
 q . . . ( b

a )
ξ ()

 q

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ()
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so that Q = D ◦ E. Then we obtain

r(D) = max
≤i≤n

√
√
√
√

n∑

j=

|dij| =

√
√
√
√

(
b
a

) ξ ()


q
 + (n – ) =

√
n – ,

c(E) = max
≤j≤n

√
√
√
√

n∑

i=

|eij| =

√
√
√
√

n–∑

k=

(
b
a

)ξ (k+)

q
k =

√
qnqn–

a
.

By Lemma . we have

‖Q‖ ≤ r(D)c(E) =
√

(n – )
qnqn–

a
.

Thus,

|r|
√

qnqn–

a
≤ ‖Q‖ ≤

√

(n – )
qnqn–

a
. �

Theorem . Let L = Cr(( b
a )

ξ ()
 l, ( b

a )
ξ ()

 l, ( b
a )

ξ ()
 l, . . . , ( b

a )
ξ (n–)

 ln–) be an r-circulant ma-
trix. Then, for r ∈C, we have:

if |r| ≥ , then

√
lnln–

a
+  ≤ ‖L‖ ≤ |r|

(
lnln–

a
+ 

)

;

if |r| < , then

|r|
√

lnln–

a
+  ≤ ‖L‖ ≤

√

n
(

lnln–

a
+ 

)

.

Proof The matrix L is of the form

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( b
a )

ξ ()
 l ( b

a )
ξ ()

 l ( b
a )

ξ ()
 l . . . ( b

a )
ξ (n–)

 ln–

r( b
a )

ξ (n–)
 ln– ( b

a )
ξ ()

 l ( b
a )

ξ ()
 l . . . ( b

a )
ξ (n–)

 ln–

r( b
a )

ξ (n–)
 ln– r( b

a )
ξ (n–)

 ln– ( b
a )

ξ ()
 l . . . ( b

a )
ξ (n–)

 ln–
...

...
...

. . .
...

r( b
a )

ξ ()
 l r( b

a )
ξ ()

 l r( b
a )

ξ ()
 l . . . ( b

a )
ξ ()

 l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. ()

Then we have

‖L‖
F =

n–∑

k=

(n – k)
(

b
a

)ξ (k)

l
k +

n–∑

k=

k|r|
(

b
a

)ξ (k)

l
k .
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Hence, for |r| ≥ , using Eq. (), we obtain

‖L‖
F ≥

n–∑

k=

(n – k)
(

b
a

)ξ (k)

l
k +

n–∑

k=

k
(

b
a

)ξ (k)

l
k

= n
n–∑

k=

(
b
a

)ξ (k)

l
k

= n
(

lnln–

a
+ 

)

,

that is,

√
n

‖L‖F ≥
√

lnln–

a
+ .

From () we have

‖L‖ ≥
√

lnln–

a
+ .

Now, for |r| ≥ , we give an upper bound for the spectral norm of the matrix L. Let the
matrices F and H be

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r( b
a )

ξ ()
 l   . . . 

r( b
a )

ξ (n–)
 ln– r( b

a )
ξ ()

 l  . . . 
r( b

a )
ξ (n–)

 ln– r( b
a )

ξ (n–)
 ln– r( b

a )
ξ ()

 l . . . 
...

...
...

. . .
...

r( b
a )

ξ ()
 l r( b

a )
ξ ()

 l r( b
a )

ξ ()
 l . . . r( b

a )
ξ ()

 l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

()

and

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( b
a )

ξ ()
 l ( b

a )
ξ ()

 l ( b
a )

ξ ()
 l . . . ( b

a )
ξ (n–)

 ln–

 ( b
a )

ξ ()
 l ( b

a )
ξ ()

 l . . . ( b
a )

ξ (n–)
 ln–

  ( b
a )

ξ ()
 l . . . ( b

a )
ξ (n–)

 ln–
...

...
...

. . .
...

   . . . ( b
a )

ξ ()
 l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ()

so that L = F ◦ H . Then we obtain

r(F) = max
≤i≤n

√
√
√
√

n∑

j=

|fij| =

√
√
√
√|r|

n–∑

k=

(
b
a

)ξ (k)

l
k = |r|

√
lnln–

a
+ ,

c(H) = max
≤j≤n

√
√
√
√

n∑

i=

|hij| =

√
√
√
√

n–∑

k=

(
b
a

)ξ (k)

l
k =

√
lnln–

a
+ .
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By Lemma . we have

‖L‖ ≤ r(F)c(H) = |r|
(

lnln–

a
+ 

)

.

Thus,

√
lnln–

a
+  ≤ ‖L‖ ≤ |r|

(
lnln–

a
+ 

)

.

On the other hand, for |r| < , we have

‖L‖
F ≥

n–∑

k=

(n – k)|r|
(

b
a

)ξ (k)

l
k +

n–∑

k=

k|r|
(

b
a

)ξ (k)

l
k

= n|r|
n–∑

k=

(
b
a

)ξ (k)

l
k

= n|r|
(

lnln–

a
+ 

)

,

that is,

√
n

‖L‖F ≥ |r|
√

lnln–

a
+ .

Thus, we obtain

‖L‖ ≥ |r|
√

lnln–

a
+ .

Now, for |r| < , we give an upper bound for the spectral norm of the matrix L. Let the
matrices G and K be

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

   . . . 
r   . . . 
r r  . . . 
...

...
...

. . .
...

r r r . . . 

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

()

and

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( b
a )

ξ ()
 l ( b

a )
ξ ()

 l ( b
a )

ξ ()
 l . . . ( b

a )
ξ (n–)

 ln–

( b
a )

ξ (n–)
 ln– ( b

a )
ξ ()

 l ( b
a )

ξ ()
 l . . . ( b

a )
ξ (n–)

 ln–

( b
a )

ξ (n–)
 ln– ( b

a )
ξ (n–)

 ln– ( b
a )

ξ ()
 l . . . ( b

a )
ξ (n–)

 ln–
...

...
...

. . .
...

( b
a )

ξ ()
 l ( b

a )
ξ ()

 l ( b
a )

ξ ()
 l . . . ( b

a )
ξ ()

 l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ()
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so that L = G ◦ K . Then we obtain

r(G) = max
≤i≤n

√
√
√
√

n∑

j=

|gij| =
√

n,

c(K) = max
≤j≤n

√
√
√
√

n∑

i=

|kij| =

√
√
√
√

n–∑

k=

(
b
a

)ξ (k)

l
k =

√
lnln–

a
+ .

By Lemma . we have

‖L‖ ≤ r(G)c(K) =

√

n
(

lnln–

a
+ 

)

.

Thus,

|r|
√

lnln–

a
+  ≤ ‖L‖ ≤

√

n
(

lnln–

a
+ 

)

. �

Corollary . Let Q = Cr(( b
a )

ξ ()
 q, ( b

a )
ξ ()

 q, ( b
a )

ξ ()
 q, . . . , ( b

a )
ξ (n)

 qn–) and L =
Cr(( b

a )
ξ ()

 l, ( b
a )

ξ ()
 l, ( b

a )
ξ ()

 l, . . . , ( b
a )

ξ (n–)
 ln–) be r-circulant matrices, where r ∈C.

(i) If |r| ≥ , then

‖Q ◦ L‖ ≤ |r| qnqn–

a

(
lnln–

a
+ 

)

.

(ii) If |r| < , then

‖Q ◦ L‖ ≤
√

n(n – )
qnqn–

a

(
lnln–

a
+ 

)

.

Proof Since ‖Q ◦ L‖ ≤ ‖Q‖‖L‖, the proof is trivial by Theorems . and .. �

Corollary . Let Q = Cr(( b
a )

ξ ()
 q, ( b

a )
ξ ()

 q, ( b
a )

ξ ()
 q, . . . , ( b

a )
ξ (n)

 qn–) and L =
Cr(( b

a )
ξ ()

 l, ( b
a )

ξ ()
 l, ( b

a )
ξ ()

 l, . . . , ( b
a )

ξ (n–)
 ln–) be r-circulant matrices, where r ∈C.

(i) If |r| ≥ , then

‖Q ⊗ L‖ ≥
√

qnqn–

a

(
lnln–

a
+ 

)

and

‖Q ⊗ L‖ ≤ |r| qnqn–

a

(
lnln–

a
+ 

)

l.

(ii) If |r| < , then

‖Q ⊗ L‖ ≥ |r|
√

qnqn–

a

(
lnln–

a
+ 

)
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and

‖Q ⊗ L‖ ≤
√

n(n – )
qnqn–

a

(
lnln–

a
+ 

)

.

Proof Since ‖Q ⊗ L‖ = ‖Q‖‖L‖, the proof is trivial by Theorems . and .. �

3 Conclusion
In this paper, we obtain new upper and lower bounds for the spectral norms of the r-
circulant matrices Q and L whose entries are the biperiodic Fibonacci and biperiodic Lucas
numbers. This study can be reduced to various studies for the specific values of a and b in
the literature. For example, if a = b = r = , a = b = , and a = b = k in Q and L, our results
reduce to the studies [, ], and [], respectively. Since this study is a generalization
of these studies, it contributes to the literature by providing essential information on the
spectral norms of r-circulant matrices.
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