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Abstract
A representation of (p,q)-Bernstein polynomials in terms of (p,q)-Jacobi polynomials is
obtained.
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1 Introduction
Classical univariate Bernstein polynomials were introduced by Bernstein in a constructive
proof for the Stone-Weierstrass approximation theorem [], and they are defined as []

bn
i (x) =

(
n
i

)
xi( – x)n–i, i = , , . . . , n.

They form a basis of polynomials and satisfy a number of important properties as non-
negativity (bn

i (x) ≥  for  ≤ x ≤ ), partition of unity (
∑n

i= bn
i (x) = ) or symmetry (bn

i (x) =
bn

n–i( – x)).
For a given real-valued defined and bounded function f on the interval [, ], the nth

Bernstein polynomial for f is

Bn(f )(x) =
n∑

k=

bn
k (x)f

(
k
n

)
.

Then, for each point x of continuity of f , we have Bn(f )(x) → f (x) as n → ∞. Moreover,
if f is continuous on [, ] then Bn(f ) converges uniformly to f as n → ∞. Also, for each
point x of differentiability of f , we have B′

n(f )(x) → f ′(x) as n → ∞ and if f is continuously
differentiable on [, ] then B′

n(f ) converges to f ′ uniformly as n → ∞.
Bernstein polynomials have been generalized in the framework of q-calculus. More pre-

cisely, Lupaş [] initiated the application of q-calculus in area of the approximation theory,
and introduced the q-Bernstein polynomials. Later on, Philips [] proposed and studied
other q-Bernstein polynomials. In both the classical case and in its q-analogs, expansions
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of Bernstein polynomials have been obtained in terms of appropriate orthogonal bases [,
].

Mursaleen et al. [] recently introduced first the concept of (p, q)-calculus in approx-
imation theory and studied the (p, q)-analog of Bernstein operators. The approximation
properties for these operators based on Korovkin’s theorem and some direct theorems
were considered []. Also, many well-known approximation operators have been intro-
duced using these techniques, such as Bleimann-Butzer-Hahn operators [] and Szász-
Mirakyan operators []. Very recently Milovanović et al. [] considered a (p, q)-analog
of the beta operators and using it proposed an integral modification of the generalized
Bernstein polynomials. (p, q)-analogs of classical orthogonal polynomials have been char-
acterized in [].

The main aim of this work is to obtain a representation of (p, q)-Bernstein polynomials
in terms of suitable (p, q)-orthogonal polynomials, where the connection coefficients are
proved to satisfy a three-term recurrence relation. For this purpose, we have divided the
work in two sections. First, we present the basic definitions and notations. Later, in Sec-
tion  we obtain the main results of this work relating (p, q)-Bernstein polynomials and
(p, q)-Jacobi orthogonal polynomials.

2 Basic definitions and notations
Next, we summarize the basic definitions and results which can be found in [–] and
the references therein.

The (p, q)-power is defined as

(
(a, b); (p, q)

)
k =

k–∏
j=

(
apj – bqj) with

(
(a, b); (p, q)

)
 = . ()

The (p, q)-hypergeometric series is defined as

r�s

(
(ap, aq), . . . , (arp, arq)
(bp, bq), . . . , (bsp, bsq)

∣∣∣(p, q); z

)

=
∞∑
j=

((ap, aq), . . . , (arp, arq); (p, q))j

((bp, bq), . . . , (bsp, bsq); (p, q))j

zj

((p, q); (p, q))j

(
(–)j(q/p)

j(j–)


)+s–r , ()

where

(
(ap, aq), . . . , (arp, arq); (p, q)

)
j =

r∏
s=

(
(asp, asq); (p, q)

)
j,

and r, s ∈ Z+ and ap, aq, . . . , arp, arq, bp, bq, . . . , bsp, bsq, z ∈C.
The (p, q)-difference operator is defined as (see e.g. [])

(Dp,qf )(x) =
Lpf (x) – Lqf (x)

(p – q)x
, x �= , ()

where the shift operator is defined by

Lah(x) = h(ax), ()

and (Dp,qf )() = f ′(), provided that f is differentiable at .
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The (p, q)-Bernstein polynomials are defined as

bn
i (x; p, q) = pn(–n)/

[
n
i

]
p,q

pi(i–)/xi((, x); (p, q)
)

n–i, ()

and can be expanded in the basis {xk}k≥ as

bn
i (x; p, q) =

n∑
k=i

(–)k–iq(k–i)(k–i–)/p

 ((i–)i+k(k–n+))

[
n
k

]
p,q

[
k
i

]
p,q

xk . ()

From the definition of (p, q)-Bernstein polynomials it is possible to derive the basic prop-
erties of (p, q)-Bernstein polynomials.

() Partition of unity

n∑
i=

bn
i (x; p, q) = .

() End-point properties

bn
i (; p, q) =

⎧⎨
⎩

, i = ,

, otherwise,
bn

i (; p, q) =

⎧⎨
⎩

, i = n,

, otherwise.

The (p, q)-Jacobi polynomials are defined by

Pn(x;α,β ; p, q) = �

(
(p–n, q–n), (pα+β+n+, qα+β+n+)

(pβ+, qβ+)

∣∣∣(p, q);
xq–α

p

)
, ()

and they satisfy the second order (p, q)-difference equation

qx(qx – p)
p

(
D

p,qy
)
(x) +

(
x(pα+β+q–α–β – q) – pβ+q–β + pq

p(p – q)

)
Lp

(
(Dp,qy)(x)

)

+ [n]p,q

(
qp–n– – pα+β–q–α–β–n

p – q

)
Lpqy(x) = . ()

The (p, q)-Jacobi polynomials satisfy the three-term recurrence relation

P(x;α,β ; p, q) = , P(x;α,β ; p, q) = x – B(α,β ; p, q),

Pn+(x;α,β ; p, q) =
(
x – Bn(α,β ; p, q)

)
Pn(x;α,β ; p, q) – Cn(α,β ; p, q)Pn–(x;α,β ; p, q),

where

Bn(α,β ; p, q) =
pn+qα+n+

(p – q)[α + β + n]p,q[α + β + n + ]p,q

× ((
pβ + qβ

)
qα+β+n+ – (p + q)

(
pα + qα

)
pβ+nqβ+n

+
(
pβ + qβ

)
pα+β+n+) ()
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and

Cn(α,β ; p, q) =
pβ+n+qα+β+n+[n]p,q[α + n]p,q[β + n]p,q[α + β + n]p,q

[α + β + n – ]p,q([α + β + n]p,q)[α + β + n + ]p,q
. ()

3 Representation of (p, q)-Bernstein polynomials in terms of (p, q)-Jacobi
polynomials

Lemma . The (p, q)-Bernstein polynomials satisfy the following first order (p, q)-
difference equation:

(px – )x
(
Dp,qbn

i
)
(x; p, q) +

(
–p–n[n]p,qx + p–i[i]p,q

)
bn

i (px; p, q) = . ()

Proof The result can be obtained by equating the coefficients in xj. �

If we introduce the first order (p, q)-difference operator

Li,n = (px – )xDp,q +
(
–p–n[n]p,qx + p–i[i]p,q

)
Lp, ()

then

Li,nbn
i (x; p, q) = .

Lemma . The (p, q)-Jacobi polynomials satisfy the following structure relation:

x(px – )Dp,q
(
Pn

(
px;α,β ; p, q

))
= [n]p,qp–n–Pn+

(
px;α,β ; p, q

)
+ �(n)Pn

(
px;α,β ; p, q

)
+ �(n)Pn–

(
px;α,β ; p, q

)
, ()

where

�(n) = –
[n]p,q(–(p + q)qα+n – pβ+n + pα+β+n+ + qα+β+n+)[α + β + n + ]p,q

(p – q)[α + β + n]p,q[α + β + n + ]p,q
,

�(n) =
qα+npβ+n+[n]p,q[α + n]p,q[β + n]p,q[α + β + n]p,q[α + β + n + ]p,q

[α + β + n – ]p,q([α + β + n]p,q)[α + β + n + ]p,q
.

Proof The result follows from () by equating the coefficients in xj. �

Theorem . The (p, q)-Bernstein polynomials defined in () have the following represen-
tation in terms of (p, q)-Jacobi polynomials defined in ():

bn
i (x; p, q) =

n∑
k=

Hk(i, n;α,β ; p, q)Pk
(
px;α,β ; p, q

)
, ()

where the connection coefficients Hk(i, n;α,β ; p, q) satisfy the following three-term recur-
rence relation:

Hk–(i, n;α,β ; p, q)�(k – , i, n;α,β ; p, q) + Hk(i, n;α,β ; p, q)�(k, i, n;α,β ; p, q)

+ Hk+(i, n;α,β ; p, q)�(k + , i, n;α,β ; p, q) = , ()
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valid for  ≤ k ≤ n –  with initial conditions

Hn+(i, n;α,β ; p, q) = , ()

Hn(i, n;α,β ; p, q) = (–)n+q– 
 (–n)np–n(n+)/+k(k+)/

[
n
i

]
p,q

, ()

and

⎧⎪⎪⎨
⎪⎪⎩

�(k, i, n;α,β ; p, q) = p–k–[k]p,q – p–n–[n]p,q,

�(k, i, n;α,β ; p, q) = p–i[i]p,q – p––n[n]p,qBk(α,β ; p, q) + �(k),

�(k, i, n;α,β ; p, q) = –p–n–[n]p,qCk(α,β ; p, q) + �(k).

()

Proof In order to obtain the result we shall apply the so-called Navima algorithm (see e.g.
[, ] and the references therein) for solving connection problems. If we apply the first
order linear operator Li,n defined in () to both sides of () we have

 =
n∑

k=

Hk(i, n;α,β ; p, q)Li,nPk
(
px;α,β ; p, q

)

=
n∑

k=

Hk(i, n;α,β ; p, q)
(
(px – )xDp,q

(
Pk

(
px;α,β ; p, q

))

+
(
–p–n[n]p,qx + p–i[i]p,q

)
Pk

(
px;α,β ; p, q

))
.

From the three-term recurrence relation for (p, q)-Jacobi polynomials it yields

(
–p–n[n]p,qx + p–i[i]p,q

)
Pk

(
px;α,β ; p, q

)
= –p–n–[n]p,qPk+

(
px;α,β ; p, q

)
+ p––n–i(–pn+[i]p,q + pi[n]p,qBk(α,β ; p, q)

)
Pk

(
px;α,β ; p, q

)
– p–n–[n]p,qCk(α,β ; p, q)Pk–

(
px;α,β ; p, q

)
.

Therefore, by using the structure relation for (p, q)-Jacobi polynomials () we have

(px – )xDp,q
(
Pk

(
px;α,β ; p, q

))
+

(
–p–n[n]p,qx + p–i[i]p,q

)
Pk

(
px;α,β ; p, q

)
= �(k, i, n;α,β ; p, q)Pk+

(
px;α,β ; p, q

)
+ �(k, i, n;α,β ; p, q)Pk

(
px;α,β ; p, q

)
+ �(k, i, n;α,β ; p, q)Pk–

(
px;α,β ; p, q

)
,

where �i(k, i, n;α,β ; p, q) are given in ().
As a consequence,

 =
n∑

k=

Hk(i, n;α,β ; p, q)
(
�(k, i, n;α,β ; p, q)Pk+

(
px;α,β ; p, q

)

+ �(k, i, n;α,β ; p, q)Pk
(
px;α,β ; p, q

)
+ �(k, i, n;α,β ; p, q)Pk–

(
px;α,β ; p, q

))
.
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By using the linear independence of {Pk(px;α,β ; p, q)} we obtain the three-term recur-
rence relation () for the connection coefficients Hk(i, n;α,β ; p, q), where the initial con-
ditions are obtained by equating the highest power in xk . �

4 Conclusions
In this work we have obtained a three-term recurrence relation for the coefficients in the
expansion of (p, q)-Bernstein polynomials in terms of (p, q)-Jacobi polynomials. For our
purposes some auxiliary results both for (p, q)-Bernstein polynomials and (p, q)-Jacobi
polynomials have been derived.
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