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Abstract
We study the conformable fractional (CF) Dirac system with separated boundary
conditions on an arbitrary time scale T. Then we extend some basic spectral
properties of the classical Dirac system to the CF case. Eventually, some asymptotic
estimates for the eigenfunction of the CF Dirac eigenvalue problem are obtained
on T. So, we provide a constructive procedure for the solution of this problem. These
results are important steps to consolidate the link between fractional calculus and
time scale calculus in spectral theory.

MSC: 34N05; 26A33; 35Q41

Keywords: time scale; conformable fractional derivative; Dirac system

1 Introduction
Fractional calculus means differentiation and integration of a noninteger order. The idea
of fractional calculus was introduced by Leibniz and L’Hopital in . However, the study
of noninteger order derivatives did not appear in the literature until , when Lacroix
[] presented a definition of the fractional derivative based on the usual expression for
the nth derivative of the power function. Within years the fractional calculus became a
very attractive topic for mathematicians. Fractional calculus has many applications in sci-
ence and engineering such as memory of a variety of materials, signal identification, tem-
perature field problems in oil strata, diffusion problems, etc. (see [–]). Many different
forms of fractional differential operators like the Grunwald-Letnikow, Riemann-Liouville,
Hadamard, Caputo, Riesz and conformable ones have been presented (see [–]). Re-
cently, researchers have started to deal with the discrete versions of fractional calculus
benefitting from the theory of time scale (see [–]). For example, Benkhettou et al. []
introduced the concept of the CF derivative of order α on T. They explained all properties
of the CF derivative on T. The CF derivative of a function defined on T reduces to the
Hilger derivative when α = . Before expressing the CF derivative of order α ∈ (, ] on T,
we should give a historical development of time scale calculus.

Time scale calculus was first considered by Hilger [] in  in his doctoral dissertation
under the supervision of Aulbach [, ] to unify difference and differential equations.
However, similar ideas had been used before and go back at least to the introduction of the
Riemann-Stieltjes integral which unifies sums and integrals. More specifically,T is an arbi-
trary, non-empty, closed subset of R. Many results as regards differential equations carry
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over quite easily to related results for difference equations, while other results seem to be
totally different in nature. The time scale calculus can be applied to any fields in which
dynamic processes are described by discrete or continuous time models. So, it has various
applications involving non-continuous domains like modeling of certain bug populations,
chemical reactions, phytoremediation of metals, wound healing, and maximization prob-
lems in economics and traffic problems. In recent years, several authors have obtained
many important results in different topics on T (see [–]). Although there are many
studies in the literature on T, very little work has been done as regards BVPs (see [–
]). The work of combining fractional calculus and time scale calculus in spectral theory
is much less extensive. To fill this gap, we consider below the CF Dirac eigenvalue problem
on an arbitrary time scale.

Let us consider the CF Dirac eigenvalue problem

Lαy(t) = BTα

(
y(t)

)
+ Q(t)yσ (t) = λyσ (t),  < α ≤ , t ∈ [

ρ(a), b
]

= J∩T, (.)

with separated boundary conditions

ηy
(
ρ(a)

)
+ βy

(
ρ(a)

)
= , (.)

γ y(b) + δy(b) = , (.)

where

B =

(
 

– 

)

, Q(t) =

(
q(t) 

 r(t)

)

,

and λ >  is a spectral parameter, yσ = y(σ ). Throughout this study, we assume that q, r ∈
Lα

J are real-valued, continuous functions where

Lα
J =

{
f :

∫ b

ρ(a)
f (t)
αt < ∞

}
.

Here, Tα(y(t)) indicates the CF derivative of the function y order α and (γ  + δ) ×
(η + β) �= . Moreover, y(t,λ) = (y(t,λ), y(t,λ))T ∈ C(J,R) denotes the eigenfunction of
problem (.)-(.) where C(J,R) is the space of all continuous functions on J and T de-
notes the transpose. We want to look at to the classical spectral theory of Dirac system
from a different perspective. Here, spectral properties and results on the solution of prob-
lem (.)-(.) will be discussed for the first time with this study. By setting α =  in (.)-
(.), the problem reduces to the classical Dirac eigenvalue problem which includes the
Hilger derivative []. In the case of T = R and α =  in (.)-(.), we get the following
classical Dirac system:

y′
 =

(
λ – q(t)

)
y,

y′
 =

(
–λ + r(t)

)
y.

(.)

Equation (.) is known as the first canonic form of the Dirac system. The Dirac operator
is the relativistic Schrödinger operator in quantum physics. It is a modern presentation
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of the relativistic quantum mechanics of electrons intended to make new mathematical
results accessible to a wider audience. It treats in some depth the relativistic invariance of
a quantum theory, self-adjointness and spectral theory, qualitative features of relativistic
bound and scattering states, and the external field problem in quantum electrodynamics,
without neglecting the interpretational difficulties and limitations of the theory. There are
several studies about the classical Dirac system from many perspectives in the literature
(see [–]).

Let us give a brief description of the structure of our study. In Section , we express
some fundamental notations and definitions as regards CF calculus on T. In Section , we
prove some basic theorems for the CF Dirac system on T. Using some methods, we get
asymptotic estimates of the eigenfunction for the problem (.)-(.) in Section . Some
conclusions are presented in Section .

2 Methods
In this section, we want to recall notations, lemmas and theorems for CF calculus on T. To
give basic results for the problem (.)-(.), we should express some fundamental notions
as regards time scale calculus. The next definitions are crucial for this theory. Forward and
backward jump operators at t ∈ T, for t < supT, are defined as

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t},

where infφ = supT, supφ = infT and φ indicates the empty set. Therewithal, t is left-dense,
left-scattered, right-dense and right-scattered provided that ρ(t) = t, ρ(t) < t, σ (t) = t,
σ (t) > t, respectively. The distance from an arbitrary element t ∈ T to the closest el-
ement on the right is called the graininess of T and is determined by μ(t) = σ (t) – t,
μ : T → [,∞). A closed interval on T is denoted by [a, b]T = {t ∈ T : a ≤ t ≤ b}, where
a and b are fixed points of T with a < b. We also need to explain T

κ along with the set T
to express the Hilger derivative of a function. If T has a left-scattered maximum m, then
T

κ = T – {m}. Otherwise, Tκ = T. For a function h defined on T, h
 is called the Hilger
derivative of h. h
 is equal to the usual derivative h′ if T = R and it is equal to the usual
forward difference 
h if T = Z. For more definitions and notations related to time scale
calculus, we refer the reader to [].

In , Benkhettou et al. [] defined the CF derivative of order α and its properties
on T to generalize the Hilger derivative. Let h : T →R, t ∈ T

κ and α ∈ (, ]. For t > , one
can define Tα(h)(t) to be the number provided it exists with the property that, given any
ε > , there is a δ-neighborhood Vt ⊂ T of t such that

∣
∣[h

(
σ (t)

)
– h(s)

]
tα– – Tα(h)(t)

[
σ (t) – s

]∣∣ ≤ ε
∣
∣σ (t) – s

∣
∣, (.)

for all s ∈ Vt . Tα(h)(t) is the CF derivative of h, order α at t. If α =  in (.), it reduces to
the Hilger derivative on T []. Benkhettou et al. [] introduced the main properties of
the CF derivative of order α by the following lemmas.

Lemma . ([]) Let α ∈ (, ], t ∈ T
κ and h : T →R be a function. The following features

hold:



Gulsen et al. Journal of Inequalities and Applications  (2017) 2017:161 Page 4 of 10

(i) If h is CF differentiable of order α at t > , then h is continuous at t.
(ii) If h is continuous at t which is right-scattered, then h is CF differentiable of order α

at t with

Tα(h)(t) =
h(σ (t)) – h(t)

μ(t)
t–α .

(iii) If t is right-dense, then h is CF differentiable of order α at t if and only if
lims→t

h(t)–h(s)
t–s t–α exists as a finite number. In this instance

Tα(h)(t) = lim
s→t

h(t) – h(s)
t – s

t–α .

(iv) If h is CF differentiable of order a at t, then h(σ (t)) = h(t) + μ(t)t–αTα(h)(t).

Lemma . ([]) Let h, g : T → R be CF differentiable functions of order α at t ∈ T
κ .

Then
(i) Tα(h + g)(t) = Tα(h)(t) + Tα(g)(t).

(ii) Tα(λh)(t) = λTα(h)(t), λ ∈R.
(iii) Tα(hg)(t) = Tα(h)(t)g(t) + (h ◦ σ )(t)Tα(g)(t) = Tα(h)(t)(g ◦ σ )(t) + h(t)Tα(g)(t).

(iv) Tα( h
g )(t) =

Tα(h)(t)g(t) – h(t)Tα(g)(t)
g(t)(g ◦ σ )(t)

, where g(t)(g ◦ σ )(t) �= .

Now, let us recall the definition of the α-CF integral. Let h : T→R be a regulated func-
tion []. Then the α-CF integral of h is defined by []

∫
h(t)
αt =

∫
h(t)tα–
t. (.)

The α-CF integral of h reduces to the classical CF integral which is given by Khalil et al.
for T = R and α =  []. Furthermore, we get the definition of the indefinite integral on T

for α =  [].
If the indefinite α-CF integral of h order α is denoted by

Hα(t) =
∫

h(t)
αt,

then the Cauchy α-CF integral of h is defined by []

∫ b

a
h(t)
αt = Hα(b) – Hα(a),

for all a, b ∈ T.

3 Some spectral properties of CF Dirac system on time scales
In this section, we give some important results for the CF Dirac system on T. It is well
known that (.)-(.) has only real eigenvalues and its eigenfunctions are orthogonal when
T = R and α =  []. The following results will generalize this basic consequences to the
CF case for the problem (.)-(.). Let us firstly give a lemma to be used in the proofs of
the main theorems.
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Lemma . Let h, g : T→R be continuous functions, a, b ∈ T and α ∈ (, ]. Then
(i)

∫ b
a Tα(h)(t)g(t)
αt = h(b)g(b) – h(a)g(a) –

∫ b
a hσ (t)Tα(g)(t)
αt.

(ii)
∫ b

a h(t)Tα(g)(t)
αt = h(b)g(b) – h(a)g(a) –
∫ b

a Tα(h)(t)gσ (t)
αt.

Proof The proof can easily be obtained by using a similar procedure to []. �

Theorem . The CF Dirac operator Lα is selfadjoint on Lα
J.

Proof Let x(t) = (x(t), x(t))T and y(t) = (y(t), y(t))T be solutions of CF Dirac eigenvalue
problem (.)-(.). Then

Lαx(t) = BTα

(
x(t)

)
+ Q(t)xσ (t) = λxσ (t),

Lαy(t) = BTα

(
y(t)

)
+ Q(t)yσ (t) = λyσ (t).

By considering the definition of the inner product on Lα
J and the boundary conditions,

we get

〈Lαx, y〉 =
∫ b

ρ(a)

(
Lαx(t)

)Ty(t)
αt

=
∫ b

ρ(a)

((
Tα

(
x(t)

)
+ q(t)xσ

 (t)
)
y(t) +

(
–Tα

(
x(t)

)
+ r(t)xσ

 (t)
)
y(t)

)

αt

=
∫ b

ρ(a)
Tα

(
x(t)

)
y(t)
αt –

∫ b

ρ(a)
Tα

(
x(t)

)
y(t)
αt

+
∫ b

ρ(a)

(
q(t)xσ

 (t)y(t) + r(t)xσ
 (t)y(t)

)

αt

= x(t)y(t)|bρ(a) – x(t)y(t)|bρ(a) –
∫ b

ρ(a)
x(t)Tα

(
y(t)

)

αt

+
∫ b

ρ(a)
x(t)Tα

(
y(t)

)

αt +

∫ b

ρ(a)

(
q(t)xσ

 (t)y(t) + r(t)xσ
 (t)y(t)

)

αt

=
∫ b

ρ(a)

((
Tα

(
y(t)

)
+ q(t)yσ

 (t)
)
x(t) +

(
–Tα

(
y(t)

)
+ r(t)yσ

 (t)
)
x(t)

)

αt

=
∫ b

ρ(a)
xT(t)Lαy(t)
αt

= 〈x, Lαy〉,

where t ∈ J is right-dense. This completes the proof. �

Theorem . All eigenvalues of the problem (.)-(.) are real.

Proof Let λ be a complex eigenvalue and y(t,λ) = (y(t), y(t))T be an eigenfunction cor-
responding to the eigenvalue λ of the problem (.)-(.). Since q and r are real-valued
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functions and η, β , γ and δ are also real, we obtain

Tα

(
y(t)ȳσ

 (t) – ȳ(t)yσ
 (t)

)
= Tα

(
y(t)

)
ȳσ

 (t) + yσ
 (t)Tα

(
yσ

 (t)
)

– Tα

(
ȳ(t)

)
yσ

 (t) – ȳσ
 (t)Tα

(
yσ

 (t)
)

=
(
–λ + r(t)

)
yσ

 (t)ȳσ
 (t) +

(
λ̄ – q(t)

)
ȳσ

 (t)yσ
 (t)

–
(
–λ̄ + r(t)

)
ȳσ

 (t)yσ
 (t) –

(
λ – q(t)

)
yσ

 (t)ȳσ
 (t)

= (λ̄ – λ)
(
yσ

 (t)ȳσ
 (t) + yσ

 (t)ȳσ
 (t)

)

= (λ̄ – λ)
(∣∣yσ

 (t)
∣∣ +

∣∣yσ
 (t)

∣∣).

If we take the α-CF integral of the last equality from ρ(a) to b with respect to t, we have

(λ̄ – λ)
∫ b

ρ(a)

(∣∣yσ
 (t)

∣∣ +
∣∣yσ

 (t)
∣∣)


αt =
(
y(t)ȳσ

 (t) – ȳ(t)yσ
 (t)

)∣∣b
ρ(a) = .

Since λ �= λ̄, we get yσ
 (t) = yσ

 (t) ≡ . This is a contradiction. Hence, the eigenvalues of the
problem (.)-(.) are real. �

Theorem . Let x = (x, x)T, y = (y, y)T ∈ Cα(J,R) be the eigenfunctions of the problem
(.)-(.). Then we have

(a) (Lαx)Tyσ – (Lαyσ )Txσ = Tα(W (x, y)) on J∩T.
(b) 〈Lαx, yσ 〉 – 〈Lαyσ , xσ 〉 = W (x, y)|bρ(a), where W (x, y) = xyσ

 – xyσ
 .

Proof Here Cα(J,R) denotes the space of all functions whose CF derivatives of order α are
continuous.

(a) The definition of W and the product rule for a CF derivative of order α yield

(Lαx)Tyσ –
(
Lαyσ

)Txσ =
(
Tα

(
x(t)

)
+ q(t)xσ

 (t)
)
yσ

 (t) –
(
Tα

(
x(t)

)
– r(t)xσ

 (t)
)
yσ

 (t)

–
(
Tα

(
yσ

 (t)
)

+ q(t)yσ
 (t)

)
xσ

 (t) +
(
Tα

(
yσ

 (t)
)

– r(t)yσ
 (t)

)
xσ

 (t)

= Tα

(
x(t)

)
yσ

 (t) – Tα

(
x(t)

)
yσ

 (t) – Tα

(
yσ

 (t)
)
xσ

 (t)

+ Tα

(
yσ

 (t)
)
xσ

 (t)

= Tα

(
x(t)yσ

 (t) – x(t)yσ
 (t)

)

= Tα

(
W (x, y)

)
.

(b) By using the inner product on Lα
J, we get

〈
Lαx, yσ

〉
–

〈
Lαyσ , xσ

〉
=

∫ b

ρ(a)

(
(Lαx)Tyσ –

(
Lαyσ

)Txσ
)

αt

=
∫ b

ρ(a)
Tα

(
W (x, y)

)

αt

= W (x, y)|bρ(a).

Hence, the proof is completed. �
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Theorem . The eigenfunctions x(t,λ) = (x(t,λ), x(t,λ))T and y(t,λ) =
(y(t,λ), y(t,λ))T of the problem (.)-(.) corresponding to distinct eigenvalues
λ and λ are orthogonal on Lα

J, i.e.

∫ b

ρ(a)
xT(t,λ)y(t,λ)
αt = .

Proof Since x(t,λ) and y(t,λ) are solutions of the CF Dirac eigenvalue problem (.)-(.),
we obtain

Tα

(
x(t,λ)y(t,λ) – x(t,λ)y(t,λ)

)

= Tα

(
x(t,λ)

)
y(t,λ) + xσ

 (t,λ)Tα

(
y(t,λ)

)

– Tα

(
x(t,λ)

)
y(t,λ) – xσ

 (t,λ)Tα

(
y(t,λ)

)

=
(
λ – q(t)

)
xσ

 (t,λ)y(t,λ) +
(
–λ + r(t)

)
yσ

 (t,λ)xσ
 (t,λ)

–
(
–λ + r(t)

)
xσ

 (t,λ)y(t,λ) –
(
λ – q(t)

)
yσ

 (t,λ)xσ
 (t,λ)

= (λ – λ)
[
xσ

 (t,λ)yσ
 (t,λ) + xσ

 (t,λ)yσ
 (t,λ)

]
,

where t is right-dense. By taking the α-CF integral of the last equality from ρ(a) to b with
respect to t, we get

(λ – λ)
∫ b

ρ(a)

[
xσ

 (t,λ)yσ
 (t,λ) + xσ

 (t,λ)yσ
 (t,λ)

]

αt

=
[
x(t,λ)y(t,λ) – x(t,λ)y(t,λ)

]∣∣b
ρ(a)

= ,

or

(λ – λ)
∫ b

ρ(a)
xT(t,λ)y(t,λ)
αt = .

Since λ �= λ, it shows that x(t,λ) and y(t,λ) are always orthogonal. �

4 Asymptotic estimates of eigenfunctions for CF Dirac system on time scales
In this section, we get the asymptotic estimates of the eigenfunction of the problem (.)-
(.) on T.

Theorem . The eigenfunction y(t,λ) = (y(t,λ), y(t,λ))T is a solution of the problem
(.)-(.) if and only if the component functions y(t,λ) and y(t,λ) satisfy the equations

y(t,λ) = β +
ηλ(tα – (ρ(a))α)

α

– η

∫ t

ρ(a)
r(s)
αs – λ

∫ t

ρ(a)

∫ σ (s)

ρ(a)

(
λ – q(u)

)
yσ

 (u,λ)
αu
αs

+
∫ t

ρ(a)
r(s)

(∫ σ (s)

ρ(a)

(
λ – q(u)

)
yσ

 (u,λ)
αu
)


αs
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and

y(t,λ) = –η +
βλ(tα – (ρ(a))α)

α

– β

∫ t

ρ(a)
q(s)
αs + λ

∫ t

ρ(a)

∫ σ (s)

ρ(a)

(
–λ + r(u)

)
yσ

 (u,λ)
αu
αs

–
∫ t

ρ(a)
q(s)

(∫ σ (s)

ρ(a)

(
–λ + r(u)

)
yσ

 (u,λ)
αu
)


αs,

respectively.

Proof Let y(t,λ) be a solution of the problem (.)-(.). Then the system of equations (.)
is equivalent to the system

Tα

(
y(t,λ)

)
+ q(t)yσ

 (t,λ) = λyσ
 (t,λ),

–Tα

(
y(t,λ)

)
+ r(t)yσ

 (t,λ) = λyσ
 (t,λ).

From this, we get

y(t,λ) = –η +
∫ t

ρ(a)

(
λ – q(s)

)
yσ

 (s,λ)
αs

and

y(t,λ) = β +
∫ t

ρ(a)

(
–λ + r(s)

)
yσ

 (s,λ)
αs.

By using the notions of yσ
 (t,λ) and yσ

 (t,λ) in the above equations, respectively, we obtain

y(t,λ) = –η +
∫ t

ρ(a)

(
λ – q(s)

)
(

β +
∫ σ (s)

ρ(a)

(
–λ + r(u)

)
yσ

 (u,λ)
αu
)


αs

= –η + β

∫ t

ρ(a)

(
λ – q(s)

)

αs

+
∫ t

ρ(a)

(
λ – q(s)

)
(∫ σ (s)

ρ(a)

(
–λ + r(u)

)
yσ

 (u,λ)
αu
)


αs

= –η +
βλ(tα – (ρ(a))α)

α

– β

∫ t

ρ(a)
q(s)
αs + λ

∫ t

ρ(a)

∫ σ (s)

ρ(a)

(
–λ + r(u)

)
yσ

 (u,λ)
αu
αs

–
∫ t

ρ(a)
q(s)

(∫ σ (s)

ρ(a)

(
–λ + r(u)

)
yσ

 (u,λ)
αu
)


αs,
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y(t,λ) = β +
∫ t

ρ(a)

(
–λ + r(s)

)
(

–η +
∫ σ (s)

ρ(a)

(
λ – q(u)

)
yσ

 (u,λ)
αu
)


αs

= β – η

∫ t

ρ(a)

(
–λ + r(s)

)

αs

+
∫ t

ρ(a)

(
–λ + r(s)

)
(∫ σ (s)

ρ(a)

(
λ – q(u)

)
yσ

 (u,λ)
αu
)


αs

= β +
ηλ(tα – (ρ(a))α)

α

– η

∫ t

ρ(a)
r(s)
αs – λ

∫ t

ρ(a)

∫ σ (s)

ρ(a)

(
λ – q(u)

)
yσ

 (u,λ)
αu
αs

+
∫ t

ρ(a)
r(s)

(∫ σ (s)

ρ(a)

(
λ – q(u)

)
yσ

 (u,λ)
αu
)


αs.

It completes the proof. �

5 Conclusions
Fractional type eigenvalue problems have attracted the attention of many authors. Because
of this, we consider a CF Dirac equation system with boundary conditions on T to obtain
some spectral properties. Finally, we get asymptotic estimates of the eigenfunction for the
problem (.)-(.). We know that these results are important steps for fractional spectral
theory on time scales. As the work in this area progresses, we believe that many specific
results will be obtained as regards this topic. For this purpose, this study will be very useful.
As further work, we think the ideas can be extended to obtain asymptotic estimates of the
eigenvalues for eigenvalue problems. After this stage, we can define inverse problem on
time scales. Thus, further important results will be achieved.
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