
Luo et al. Journal of Inequalities and Applications  (2017) 2017:154 
DOI 10.1186/s13660-017-1426-8

R E S E A R C H Open Access

The viscosity iterative algorithms for the
implicit midpoint rule of nonexpansive
mappings in uniformly smooth Banach
spaces
Ping Luo1, Gang Cai1* and Yekini Shehu2

*Correspondence:
caigang-aaaa@163.com
1School of Mathematics Science,
Chongqing Normal University,
Chongqing, 401331, China
Full list of author information is
available at the end of the article

Abstract
The aim of this paper is to introduce a viscosity iterative algorithm for the implicit
midpoint rule of nonexpansive mappings in uniformly smooth spaces. Under some
appropriate conditions on the parameters, we prove some strong convergence
theorems. As applications, we apply our main results to solving fixed point problems
of strict pseudocontractive mappings, variational inequality problems in Banach
spaces and equilibrium problems in Hilbert spaces. Finally, we give some numerical
examples for supporting our main results.
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1 Introduction
Throughout this paper, we assume that E and E∗ is a real Banach space and the dual space
of E, respectively. Let T be a mapping from C into itself, where C is a subset of E. We
denoted by F(T) the set of fixed points of T . It is well known that the duality mapping
J : E → E∗ is defined by

J(x) =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖,

∥∥x∗∥∥ = ‖x‖}, ∀x ∈ E.

When J is single-valued, we denote it by j. We notice that if E is a Hilbert space, then J is
the identity mapping and if E is smooth, then J is single-valued.

Now we recall some basic concepts and facts appeared in []. A mapping f : C → C is
said to be a contraction, if there exists a constant α ∈ [, ) satisfying

∥∥f (x) – f (y)
∥∥ ≤ α‖x – y‖, ∀x, y ∈ C.

We use �C to denote the collection of all contractions from C into itself.
A mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)
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Let ρE : [,∞) → [,∞) be defined by

ρE(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x ∈ S(E),‖y‖ ≤ t

}
,

which is called the modulus of smoothness of E. We say that Banach space E is uniformly

smooth if
ρE(t)

t
→  as t → . It is well known that typical example of uniformly smooth

Banach spaces is Lp, here p > . Moreover, we say that Banach space E is q-uniformly
smooth, if there exists a fixed constant c >  such that ρE(t) ≤ ctq.

Recently, viscosity iterative algorithms for finding a common element of the set of fixed
points for nonlinear operators and the set of solutions of variational inequality problems
have been investigated by many authors; see [–] and the references therein. For example,
Xu [] introduced the explicit viscosity method for nonexpansive mappings:

xn+ = αnf (xn) + ( – αn)Txn, n ≥ , (.)

where {αn} is a sequence in (, ) and f ∈ �C . Under some suitable conditions on {αn}, he
proved that the sequence {xn} generated by (.) converges strongly to a fixed point q of
T in Hilbert spaces or uniformly smooth Banach spaces, which also solves the variational
inequality:

〈
(I – f )q, x – q

〉 ≥ , x ∈ F(T). (.)

On the other hand, the implicit midpoint rule is a powerful method for solving ordi-
nary differential equations; see [–] and the references therein. Recently, Xu et al. []
applied the viscosity technique to the implicit midpoint rule for a nonexpansive mapping.
Precisely, they considered the following viscosity implicit midpoint rule:

xn+ = αnf (xn) + ( – αn)T
(

xn + xn+



)
, n ≥ . (.)

They proved that the sequence generated by (.) converges strongly to a fixed point of T ,
which also solves the variational inequality (.) in Hilbert space. The following problems
arise:

Question . Can we extend and improve the main results of Xu et al. [] from Hilbert
space to general Banach space? For example we might consider a uniformly smooth Ba-
nach space.

Question . We note that the proof of step  in Theorem . of [] is very complicated.
Can we simplify it?

In this paper, we give the affirmative answers to the above two questions. More precisely,
we investigate the viscosity iterative algorithm (.) for the implicit midpoint rule of a
nonexpansive mapping in a real uniformly smooth space. Under some suitable conditions
on the parameters, we prove some strong convergence theorems. We also apply our main
results to solve fixed point problems for strict pseudocontractive mappings, variational
inequality problems in Banach spaces and equilibrium problems in Hilbert spaces.
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2 Preliminaries
The following lemmas are fundamental in the proof of our main results of this section.

Lemma . ([]) Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – αn)an + δn, n ≥ ,

where {αn} is a sequence in (, ) and {δn} is a sequence in R such that
(i)

∑∞
n= αn = ∞, and

(ii) either lim supn→∞
δn
αn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . ([]) Let E be a uniformly smooth Banach space, C be a closed convex subset of
E, T : C → C be a nonexpansive mapping with F(T) 
= ∅ and let f ∈ �C . Then the sequence
{xt} defined by xt = tf (xt) + ( – t)Txt converges strongly to a point in F(T). If we define
a mapping Q : �C → F(T) by Q(f ) := limt→ xt , ∀f ∈ �C . Then Q(f ) solves the following
variational inequality:

〈
(I – f )Q(f ), j

(
Q(f ) – p

)〉 ≤ , ∀f ∈ �C , p ∈ F(T).

Lemma . ([]) Let C be a nonempty closed convex subset of a real Banach space E which
has uniformly Gâteaux differentiable norm, and T : C → C be a nonexpansive mapping
with F(T) 
= ∅. Assume that {zt} strongly converges to a fixed point z of T as t → , where {zt}
is defined by zt = tf (zt)+(–t)Tzt . Suppose {xn} ⊂ C is bounded and limn→∞ ‖xn –Txn‖ = .
Then

lim sup
n→∞

〈
f (z) – z, j(xn+ – z)

〉 ≤ .

3 Main results
Theorem . Let C be a closed convex subset of a uniformly smooth Banach space E. Let
T : C → C be a nonexpansive mapping with F(T) 
= ∅, and f : C → C a contraction with
coefficient α ∈ [, ). Let {xn} be a sequence generated by the following viscosity implicit
midpoint rule:

xn+ = αnf (xn) + ( – αn)T
(

xn + xn+



)
, n ≥ , (.)

where {αn} is a sequence in (, ) such that:
(i) limn→∞ αn = ,

(ii)
∑∞

n= αn = ∞,
(iii) either

∑∞
n= |αn+ – αn| < ∞ or limn→∞ αn+

αn
= .

Then {xn} converges strongly to a fixed point q of T , which also solve the following varia-
tional inequality:

〈
(I – f )q, j(x – q)

〉 ≥ , x ∈ F(T). (.)
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Proof Using similar argument used in the proof of Theorem . of [], we can find that
the sequence {xn} is bounded and

‖xn+ – xn‖ → , ‖xn – Txn‖ → , as n → ∞. (.)

We omit the details. Let {xt} be a sequence defined by xt = tf (xt) + ( – t)Txt , then it follows
from Lemma . that {xt} converges strongly to a fixed point q of T , which solves the
variational inequality:

〈
(I – f )q, j(x – q)

〉 ≥ , x ∈ F(T).

By (.) and Lemma ., we have

lim sup
n→∞

〈
f (q) – q, j(xn+ – q)

〉 ≤ . (.)

Finally, we prove that xn → q as n → ∞. In fact, we observe

‖xn+ – q‖

=
∥∥∥∥( – αn)

(
T

(
xn + xn+



)
– q

)
+ αn

(
f (xn) – q

)
∥∥∥∥



= ( – αn)
〈
T

(
xn + xn+



)
– q, j(xn+ – q)

〉
+ αn

〈
f (xn) – q, j(xn+ – q)

〉

≤  – αn


(‖xn – q‖ + ‖xn+ – q‖)‖xn+ – q‖ + αnα‖xn – q‖‖xn+ – q‖

+ αn
〈
f (q) – q, j(xn+ – q)

〉

=
 – αn + αnα


‖xn – q‖‖xn+ – q‖ +

 – αn


‖xn+ – q‖ + αn

〈
f (q) – q, j(xn+ – q)

〉
,

which implies

 + αn


‖xn+ – q‖ ≤  – αn + αnα


(‖xn – q‖ + ‖xn+ – q‖) + αn

〈
f (q) – q, j(xn+ – q)

〉
.

Thus we obtain

 + αn – αnα


‖xn+ – q‖ ≤  – αn + αnα


‖xn – q‖ + αn

〈
f (q) – q, j(xn+ – q)

〉
.

This implies

‖xn+ – q‖

≤  – αn + αnα

 + αn – αnα
‖xn – q‖ +

αn

 + αn – αnα

〈
f (q) – q, j(xn+ – q)

〉

=
[

 –
αn( – α)

 + αn + αn( – α)

]
‖xn – q‖

+
αn( – α)

 + αn + αn( – α)
〈f (q) – q, j(xn+ – q)〉

 – α
. (.)
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We note

αn( – α)
 + αn + αn( – α)

>
( – α)
 – α

αn.

Apply Lemma . to (.), we have xn → q as n → ∞. This finishes the proof. �

It is well known that Hilbert space is uniformly smooth, then we obtain the main results
of [].

Corollary . Let C be a closed convex subset of a Hilbert space H , T : C → C a nonex-
pansive mapping with F(T) 
= ∅, and f : C → C a contraction with coefficient α ∈ [, ). Let
{xn} be generated by the following viscosity implicit midpoint rule:

xn+ = αnf (xn) + ( – αn)T
(

xn + xn+



)
, n ≥ ,

where {αn} is a sequence in (, ) satisfying:
(i) limn→∞ αn = ,

(ii)
∑∞

n= αn = ∞,
(iii) either

∑∞
n= |αn+ – αn| < ∞ or limn→∞ αn+

αn
= .

Then {xn} converges strongly to a fixed point q of T , which is also the unique solution of
the following variational inequality:

〈
(I – f )q, x – q

〉 ≥ , x ∈ F(T).

4 Applications
(I) Application to fixed point problems for strict pseudocontractive mappings.

We say that a mapping T : C → C is λ-strict pseudocontractive if there exists a fixed
constant λ ∈ (, ) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – λ
∥∥(I – T)x – (I – T)y

∥∥, (.)

for some j(x – y) ∈ J(x – y) and for every x, y ∈ C. A simple computation shows that (.) is
equivalent to the following inequality:

〈
(I – T)x – (I – T)y, j(x – y)

〉 ≥ λ
∥∥(I – T)x – (I – T)y

∥∥ (.)

for some j(x – y) ∈ J(x – y) and for every x, y ∈ C.
Now we give a relationship between strict pseudocontractive mapping and nonexpan-

sive mapping.

Lemma . ([]) Let C be a nonempty closed convex subset of a real -uniformly smooth
Banach space E and T : C → C be a λ-strict pseudocontractive mapping. For α ∈ (, ),
we define Tαx := ( – α)x + αTx. Then, as α ∈ (, λ

K ], where K is the -uniformly smooth
constant. Then Tα : C → C is nonexpansive such that F(Tα) = F(T).

Using Theorem . and Lemma ., we obtain the following results.
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Theorem . Let C be a closed convex subset of a uniformly smooth Banach space E. Let
T : C → C a λ-pseudocontractive mapping with F(T) 
= ∅, and f : C → C a contraction
with coefficient α ∈ [, ). Let {xn} be a sequence generated by the viscosity implicit midpoint
rule:

xn+ = αnf (xn) + ( – αn)Tδ

(
xn + xn+



)
, n ≥ , (.)

where Tδ is a mapping from C into itself defined by Tδx := ( – δ)x + δTx, x ∈ C, δ ∈ (, λ

K ].
Assume that {αn} is a sequence in (, ) such that:

(i) limn→∞ αn = ,
(ii)

∑∞
n= αn = ∞,

(iii) either
∑∞

n= |αn+ – αn| < ∞ or limn→∞ αn+
αn

= .
Then {xn} converges strongly to a fixed point q of T , which also solve the variational in-

equality:

〈
(I – f )q, j(x – q)

〉 ≥ , x ∈ F(T).

(II) Application to variational inequality problems in Banach spaces.
Let C be a nonempty closed convex subset of a Hilbert space H and let A : C → H be

a nonlinear mapping. It is well known that the classical variational inequality is to find x∗

such that

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ C. (.)

We denoted by VI(A, C) the set of solutions of (.).
Recently, Ceng et al. [] considered the problem of finding (x∗, y∗) ∈ C × C satisfying

⎧
⎨

⎩
〈λAy∗ + x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, x – y∗〉 ≥ , ∀x ∈ C,
(.)

which is called a general system of variational inequalities, where A, B : C → H are two
nonlinear mappings, λ >  and μ >  are two constants. Precisely, they introduced a re-
laxed extragradient method for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of variational inequality problem (.) in
a real Hilbert space.

Now we consider the problem of finding (x∗, y∗) ∈ C × C satisfying
⎧
⎨

⎩
〈λAy∗ + x∗ – y∗, j(x – x∗)〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, j(x – y∗)〉 ≥ , ∀x ∈ C.
(.)

Problem (.) is called the system of general variational inequalities in a real Banach
spaces. In particular, if E is a Hilbert space, then problem (.) becomes problem (.).
So our problem (.) contains (.) as a special case.

Recall that a mapping A : C → E is called accretive if there exists some j(x – y) ∈ J(x – y)
such that

〈
Ax – Ay, j(x – y)

〉 ≥ , ∀x, y ∈ C. (.)
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A mapping A : C → E is said to be α-inverse-strongly accretive if there exist some j(x –
y) ∈ J(x – y) and a fixed constant α >  such that

〈
Ax – Ay, j(x – y)

〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C. (.)

The following lemmas are very important for proving our main results.

Lemma . ([]) Let C be a nonempty closed convex subset of a real -uniformly smooth
Banach space E. Let QC be the sunny nonexpansive retraction from E onto C. Let the map-
pings A, B : C → E be α-inverse-strongly accretive and β-inverse-strongly accretive, respec-
tively. Let G : C → C be a mapping defined by

G(x) = QC
[
QC(x – μBx) – λAQC(x – μBx)

]
, ∀x ∈ C.

If  < λ ≤ α

K and  < μ ≤ β

K , then G : C → C is nonexpansive.

Lemma . ([]) Let C be a nonempty closed convex subset of a real -uniformly smooth
Banach space E. Let QC be the sunny nonexpansive retraction from E onto C. Let A, B :
C → E be two nonlinear mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem
(.) if and only if x∗ = QC(y∗ – λAy∗) where y∗ = QC(x∗ – μBx∗), that is, x∗ = Gx∗, where G
is defined by Lemma ..

Theorem . Let C be a closed convex subset of a real -uniformly smooth Banach space
E, let the mappings A, B : C → E be α-inverse-strongly accretive and β-inverse-strongly
accretive with F(G) 
= ∅, where G : C → C is a mapping defined by Lemma .. Let f :
C → C be a contraction with coefficient α ∈ [, ). Let {xn} be a sequence generated by the
viscosity implicit midpoint rule:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+ = αnf (xn) + ( – αn)yn,

yn = QC(un – λAun),

un = QC(zn – μBzn),

zn = xn+xn+
 ,

(.)

where  < λ ≤ α

K ,  < μ ≤ β

K . Suppose that {αn} is a sequence in (, ) satisfying:
(i) limn→∞ αn = ,

(ii)
∑∞

n= αn = ∞,
(iii) either

∑∞
n= |αn+ – αn| < ∞ or limn→∞ αn+

αn
= .

Then {xn} converges strongly to a fixed point q of G, which is also the unique solution of
the following variational inequality:

〈
(I – f )q, j(x – q)

〉 ≥ , x ∈ F(G).

Proof By Lemma ., we see that G is nonexpansive. So we obtain the desired results by
Theorem . immediately. �

(III) Application to equilibrium problems in Hilbert spaces.
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Let φ : C × C →R be a bifunction, where R is the set of real numbers. The equilibrium
problem for the function φ is to find a point x ∈ C satisfying

φ(x, y) ≥  for all y ∈ C. (.)

We denoted by EP(φ) the set of solutions of (.). This equilibrium problem contains
variational inequality problem, optimization problem and the fixed point problem as its
special cases (see Blum and Oettli [] for more information).

For solving the equilibrium problem, we need to assume that the bifunction φ satisfies
the following four conditions (see []):

(A) φ(x, x) =  for all x ∈ C;
(A) φ is monotone, that is, φ(x, y) + φ(y, x) ≤  for all x, y ∈ C;
(A) φ is upper-hemicontinuous, i.e., for any x, y, z ∈ C

lim sup
t→+

φ
(
tz + ( – t)x, y

) ≤ φ(x, y);

(A) φ(x, ·) is convex and weakly lower semicontinuous for each x ∈ C.
In order to prove our main results, we need the following lemmas.

Lemma . ([]) Let C be a nonempty closed convex subset of H and let φ be a bifunction
of C × C into R satisfying (A)-(A). Let r >  and x ∈ H . Then there exists z ∈ C such that

φ(z, y) +

r
〈y – z, z – x〉 ≥  for all y ∈ C.

Lemma . ([]) Assume that φ : C × C → R satisfies (A)-(A). For r >  and x ∈ H ,
define a mapping Tr : H → C as follows:

Tr(x) =
{

z ∈ C : φ(z, y) +

r
〈y – z, z – x〉 ≥  ∀y ∈ C

}

for all z ∈ H . Then the following hold:
() Tr is single-valued.
() Tr is firmly nonexpansive, i.e., for any x, y ∈ H , ‖Trx – Try‖ ≤ 〈Trx – Try, x – y〉.
This implies that ‖Trx – Try‖ ≤ ‖x – y‖, ∀x, y ∈ H , i.e., Tr is a nonexpansive mapping.
() F(Tr) = EP(φ), ∀r > .
() EP(φ) is a closed and convex set.

We say that a mapping T is attracting nonexpansive if it is nonexpansive and satisfies

‖Tx – p‖ < ‖x – p‖ for all x /∈ F(T) and p ∈ F(T).

The following lemma gives a relationship between a nonexpansive mapping and an at-
tracting nonexpansive mapping.

Lemma . ([]) Suppose that E is strictly convex, T an attracting nonexpansive and
T a nonexpansive mapping which have a common fixed point. Then we have F(TT) =
F(TT) = F(T) ∩ F(T).
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Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H , φ :
C × C →R be a bifunction satisfying the conditions (A)-(A). Let T : C → C be a nonex-
pansive mapping with F = F(T) ∩ EP(φ) 
= ∅, and f : C → C a contraction with coefficient
α ∈ [, ). Let {xn} be a sequence generated by the viscosity implicit midpoint rule

⎧
⎪⎪⎨

⎪⎪⎩

xn+ = αnf (xn) + ( – αn)Tun,

un ∈ C such that φ(un, y) + 
r 〈y – un, un – zn〉 ≥ , ∀y ∈ C, r > ,

zn = xn+xn+
 , n ≥ ,

(.)

where {αn} is a sequence in (, ) such that:
(i) limn→∞ αn = ,

(ii)
∑∞

n= αn = ∞,
(iii) either

∑∞
n= |αn+ – αn| < ∞ or limn→∞ αn+

αn
= .

Then {xn} converges strongly to a fixed point q of F , which also solves the following vari-
ational inequality:

〈
(I – f )q, j(x – q)

〉 ≥ , x ∈ F .

Proof We can rewrite (.) as

xn+ = αnf (xn) + ( – αn)TTr

(
xn + xn+



)
. (.)

By Lemma ., we know that Tr is firmly nonexpansive. Furthermore, we can prove that
Tr is attracting nonexpansive. Indeed, for any x /∈ F(Tr) and y ∈ F(Tr), we have

‖Trx – Try‖ ≤ 〈Trx – Try, x – y〉

=


[‖Trx – Try‖ + ‖x – y‖ – ‖Trx – x‖],

which implies that

‖Trx – Try‖ ≤ ‖x – y‖ – ‖Trx – x‖

< ‖x – y‖.

Therefore Tr is attracting nonexpansive. By Lemma ., we find that F(TTr) = F(T) ∩
F(Tr) = F(T) ∩ EP(φ) = F . So we easily get the desired results by Theorem .. �

5 Numerical examples
In the last section, we give two numerical examples where our main results may be applied.

Example . Assume that R is a real line with the Euclidean norm. Let f , T : R → R be
defined by f (x) = 

 x and Tx = 
 x for any x ∈ R, respectively. It is easy to see that F(T) = {}.

Let αn = 
n for each n ∈N. Let {xn} be a sequence generated by (.) and {yn} be a sequence



Luo et al. Journal of Inequalities and Applications  (2017) 2017:154 Page 10 of 12

Figure 1 Comparison.

generated by (.), respectively. Then by Theorem . and Theorem . of [], we find that
{xn} and {yn} converge strongly to . We can rewrite (.) and (.) as follows:

xn+ =
n – 

n
xn, (.)

yn+ =
n

n + 
xn. (.)

Choose x =  and y =  in (.) and (.), we get the following numerical results in Figure .

Remark . By Figure , we know that {yn} converges to  more quickly than {xn}. So the
rate of convergence of viscosity implicit midpoint rule (.) is better than viscosity iterative
algorithm (.).

Example . Let 〈·, ·〉 : R ×R
 →R be the inner product defined by

〈x, y〉 = x · y = x · y + x · y + x · y

and let ‖ · ‖ : R → R be the usual norm defined by ‖x‖ =
√

x
 + y

 + z
 for any x =

(x, x, x), y = (y, y, y) ∈ R
. For all x ∈ R, let T , f : R → R

 be defined by Tx = 
 x,

and f (x) = 
 x, respectively. Let αn = 

n for each n ∈ N. Assume that {xn} is a sequence
generated by (.). We can see easily that F(T) = {}. Then {xn} converges strongly to .
Moreover, we can rewrite (.) as follows:

xn+ =
n + 
n + 

xn. (.)

Choose x = (, , ) in (.), we obtain the numerical results shown in Figure  and Fig-
ure .
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Figure 2 Two dimension.

Figure 3 Three dimension.

Acknowledgements
This work was supported by the Training Programs of Famous Teachers in Chongqing Normal University
(NO.02030307-00047) and the Key Project of Teaching Reforms for Postgraduates in Chongqing (NO.yjg20162006).

Competing interests
The authors declare that there is no conflict of interests regarding this manuscript.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1School of Mathematics Science, Chongqing Normal University, Chongqing, 401331, China. 2Department of
Mathematics, University of Nigeria, Nsukka, Nigeria.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 October 2016 Accepted: 22 May 2017

References
1. Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
2. Moudafi, A: Viscosity approximation methods for fixed points problems. J. Math. Anal. Appl. 241, 46-55 (2000)
3. Song, Y, Chen, R, Zhou, H: Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces.

Nonlinear Anal. 66, 1016-1024 (2007)
4. Jung, JS: Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal.

Appl. 302, 509-520 (2005)



Luo et al. Journal of Inequalities and Applications  (2017) 2017:154 Page 12 of 12

5. Ceng, LC, Xu, HK, Yao, JC: The viscosity approximation method for asymptotically nonexpansive mappings in Banach
spaces. Nonlinear Anal. 69, 1402-1412 (2008)

6. Zegeye, H, Shahzad, N: Viscosity methods of approximation for a common fixed point of a family of
quasi-nonexpansive mappings. Nonlinear Anal. 68, 2005-2012 (2008)

7. Sunthrayuth, P, Kumam, P: Viscosity approximation methods base on generalized contraction mappings for a
countable family of strict pseudo-contractions, a general system of variational inequalities and a generalized mixed
equilibrium problem in Banach spaces. Math. Comput. Model. 58, 1814-1828 (2013)

8. Bader, G, Deuflhard, P: A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math.
41, 373-398 (1983)

9. Deuflhard, P: Recent progress in extrapolation methods for ordinary differential equations. SIAM Rev. 27(4), 505-535
(1985)

10. Somalia, S: Implicit midpoint rule to the nonlinear degenerate boundary value problems. Int. J. Comput. Math. 79(3),
327-332 (2002)

11. Xu, HK, Aoghamdi, MA, Shahzad, N: The viscosity technique for the implicit midpoint rule of nonexpansive mappings
in Hilbert spaces. Fixed Point Theory Appl. 2015, 41 (2015)

12. Zhou, H: Convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces. Nonlinear
Anal. 69, 3160-3173 (2008)

13. Ceng, LC, Wang, C, Yao, JC: Strong convergence theorems by a relaxed extragradient method for a general system of
variational inequalities. Math. Methods Oper. Res. 67, 375-390 (2008)

14. Cai, G, Bu, S: Convergence analysis for variational inequality problems and fixed point problems in 2-uniformly
smooth and uniformly convex Banach spaces. Math. Comput. Model. 55, 538-546 (2012)

15. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145
(1994)

16. Combettes, PL, Hirstoaga, SA: Equilibrium programming in Hilbert space. J. Nonlinear Convex Anal. 6, 117-136 (2005)
17. Chancelier, J-P: Iterative schemes for computing fixed points of nonexpansive mappings in Banach spaces. J. Math.

Anal. Appl. 353, 141-153 (2009)


	The viscosity iterative algorithms for the implicit midpoint rule of nonexpansive mappings in uniformly smooth Banach spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Applications
	Numerical examples
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


