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Abstract
In this paper, we establish new Poisson type inequalities with respect to a cone. As
applications, the integral representations of harmonic functions are also obtained.
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1 Introduction
Let B(P, R) denote the open ball with center at P and radius R in Rn, where Rn is the n-
dimensional Euclidean space, P ∈ Rn and R > . Let B(P) denote the neighborhood of
P and SR = B(O, R) for simplicity. The unit sphere and the upper half unit sphere in Rn

are denoted by S and S+
 , respectively. For simplicity, a point (,�) on S and the set

{�; (,�) ∈ �} for a set �, � ⊂ S, are often identified with � and �, respectively. Let
�×� denote the set {(r,�) ∈ Rn; r ∈ �, (,�) ∈ �}, where � ⊂ R+ and � ⊂ S. We denote
the set R+ × S+

 = {(X, xn) ∈ Rn; xn > } by Tn, which is called the half space.
We shall also write h ≈ h for two positive functions h and h if and only if there

exists a positive constant a such that a–h ≤ h ≤ ah. We denote max{u(r,�), } and
max{–u(r,�), } by u+(r,�) and u–(r,�), respectively.

The set R+ × � in Rn is called a cone. We denote it by Cn(�), where � ⊂ S. The
sets I × � and I × ∂� with an interval on R are denoted by Cn(�; I) and Sn(�; I), re-
spectively. We denote Cn(�) ∩ SR and Sn(�; (, +∞)) by Sn(�; R) and Sn(�), respec-
tively.

Furthermore, we denote by dσ (resp. dSR) the (n – )-dimensional volume elements in-
duced by the Euclidean metric on ∂Cn(�) (resp. SR) and by dw the elements of the Eu-
clidean volume in Rn.

It is well known (see, e.g. [], p.) that

�∗ϕ(�) + λϕ(�) =  in �,

ϕ(�) =  on ∂�,
()

where �∗ is the Laplace-Beltrami operator. We denote the least positive eigenvalue of this
boundary value problem () by λ and the normalized positive eigenfunction corresponding
to λ by ϕ(�),

∫
�

ϕ(�) dS = .
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We remark that the function rℵ±
ϕ(�) is harmonic in Cn(�), belongs to the class

C(Cn(�)\{O}) and vanishes on Sn(�), where

ℵ± = –n +  ±
√

(n – ) + λ.

For simplicity we shall write χ instead of ℵ+ – ℵ–.
For simplicity we shall assume that the boundary of the domain � is twice continuously

differentiable, ϕ ∈ C(�) and ∂ϕ

∂n >  on ∂�. Then (see [], pp.-)

dist(�, ∂�) ≈ ϕ(�), ()

where � ∈ �.
Let δ(P) = dist(P, ∂Cn(�)). Then

ϕ(�) ≈ δ(P), ()

for any P = (,�) ∈ � (see []).
Let u(r,�) be a function on Cn(�). For any given r ∈ R+, The integral

∫

�

u(r,�)ϕ(�) dS,

is denoted by Nu(r), when it exists. The finite or infinite limit

lim
r→∞ r–ℵ+Nu(r)

is denoted by Uu, when it exists.
The function

PCn(�)(P, Q) =
∂GCn(�)(P, Q)

∂nQ

is called the ordinary Poisson kernel, where GCn(�) is the Green function.
The Poisson integral of g relative to Cn(�) is defined by

PICn(�)[g](P) =

cn

∫

Sn(�)
PCn(�)(P, Q)g(Q) dσ ,

where g is a continuous function on ∂Cn(�) and ∂
∂nQ

denotes the differentiation at Q along
the inward normal into Cn(�).

Remark  (see []) Let � = S+
 . Then

GTn (P, Q) =

⎧
⎨

⎩

log |P – Q∗| – log |P – Q|, n = ,

|P – Q|–n – |P – Q∗|–n, n ≥ ,
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where Q∗ = (Y , –yn), that is, Q∗ is the mirror image of Q = (Y , yn) on ∂Tn. Hence, for the
two points P = (X, xn) ∈ Tn and Q = (Y , yn) ∈ ∂Tn, we have

PTn (P, Q) =
∂

∂nQ
GTn (P, Q) =

⎧
⎨

⎩

|P – Q|–xn, n = ,

(n – )|P – Q|–nxn, n ≥ .

We consider functions f satisfying

∫

Sn(�)

|f (t,�)|p
 + tγ

dσ < ∞, ()

where p >  and

γ >
–ℵ+ – n + 

p
+ n – .

Further, we denote A� the class of all measurable functions g(t,�) (Q = (t,�) = (Y , yn) ∈
Cn(�)) satisfying the following inequality:

∫

Cn(�)

|g(t,�)|pϕ
 + tγ + dw < ∞ ()

and the class B� consists of all measurable functions h(t,�) ((t,�) = (Y , yn) ∈ Sn(�)) sat-
isfying

∫

Sn(�)

|h(t,�)|p
 + tγ –

∂ϕ

∂n
dσ < ∞. ()

We will also consider the class of all continuous functions u(t,�) ((t,�) ∈ Cn(�)) har-
monic in Cn(�) with u+(t,�) ∈ A� ((t,�) ∈ Cn(�)) and u+(t,�) ∈ B� ((t,�) ∈ Sn(�)) is
denoted by C� .

Remark  If we denote � = S+
 in () and (), then we have

∫

Tn

yn|f (Y , yn)|
 + tn+ dQ < ∞ and

∫

∂Tn

|g(Y , )|
 + tn dY < ∞.

Theorem A (see []) Let g be a measurable function on ∂Tn such that

∫

∂Tn

|g(Q)|
 + |Q|n dQ < ∞.

Then the harmonic function PITn [g] satisfies PITn [g](P) = o(r secn– θ) as r → ∞ in Tn.

2 Results
We first obtain the solutions of the Dirichlet problem with continuous data on the bound-
ary of a cone.
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Theorem  Let

ℵ+ >
γ – n + 

p
if p > ,

ℵ+ ≥ γ – n +  if p = ,

and g be a continuous function on ∂Cn(�) satisfying (). Then the function PICn(�)[g](P)
satisfies

PICn(�)[g](P) ∈ C(
Cn(�)

) ∩ C(
Cn(�)

)
,

�PICn(�)[g](P) =  in Cn(�),

PICn(�)[g](P) = g on ∂Cn(�),

lim
r→∞,P=(r,�)∈Cn(�)

r
n–γ –

p ϕn–(�)PICn(�)[g](P) = .

For the related results about the growth properties of PITn [g](P) in the upper half space,
we refer the reader to the paper by Zhang and Piskarev (see []). Corollary  generalizes
Theorem A to the conical case.

Corollary  Let g be a continuous function on ∂Cn(�) satisfying () with p =  and γ =
–ℵ– + . Then PICn(�)[g](P) is a harmonic function on Cn(�) and

lim
r→∞,P=(r,�)∈Cn(�)

r–ℵ+
ϕn–(�)PICn(�)[g](P) = .

From Theorem  we immediately have the following result.

Corollary  Let g be a continuous function on ∂Cn(�) satisfying () with p =  and γ =
–ℵ– + . Then

UPICn(�)[g] = UPICn(�)[|g|] = .

It is well known that if h ≥  on Tn and h ∈ CS+


(see Remark ), then [–] there exists
a constant c ≥  such that

h(P) = PITn [h](P) + cxn ()

for all P = (X, xn) ∈ Tn, the integral in () is absolutely convergent. In the half space, similar
results about integral representations of analytic functions and harmonic functions were
proved by Khuskivadze and Paatashvili (see []), Su (see []) and Xue (see []), respec-
tively. Motivated by these results, we will prove that if h ∈ C� , then a similar representation
to () also holds in Cn(�).

Theorem  If h ≥  on Cn(�) and h ∈ C� , then h ∈ B� and

h(P) = PICn(�)[h](P) + Uhrℵ+
ϕ(�)

(
P = (r,�) ∈ Cn(�)

)
. ()

Remark  Equation () is equivalent to () in the case � = S+
 .
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3 Lemmas
The following estimates of PCn(�)(P, Q) play an important role in our discussions.

Lemma  (see [], Lemma  and Remark)

PCn(�)(P, Q) ≤ Mrℵ–
tℵ+–ϕ(�) ()

(
resp. PCn(�)(P, Q) ≤ Mrℵ+

tℵ––ϕ(�)
)
, ()

where P ∈ Cn(�) and any Q ∈Sn(�) such that  < t
r ≤ 

 (resp.  < r
t ≤ 

 );

PCn(�)(P, Q) ≤ M
ϕ(�)
tn– + M

rϕ(�)
|P – Q|n , ()

where P = (r,�) ∈ Cn(�) and any Q ∈Sn(�; ( 
 r, 

 r)). We have

∂GCn(�;(t,t))((t,�), (r,�))
∂t

≤ M
(

t

r

)γ –
ϕ(�)ϕ(�)

tn–


()

and

–M
(

r
t

)ℵ+
ϕ(�)ϕ(�)

tn–


≤ ∂GCn(�;(t,t))((t,�), (r,�))
∂t

, ()

where GCn(�;(t,t)) is the Green function of Cn(�; (t, t)) and  < t < r < 
 t < +∞.

Lemma  For Q′ ∈ ∂Cn(�) and any ε > , there exists a neighborhood B(Q′) of Q′ in Rn

and a number R ( < R < ∞) such that


cn

∫

Sn(�;(R,∞))

∣
∣PCn(�)(P, Q)

∣
∣
∣
∣g(Q)

∣
∣dσ < ε, ()

where P ∈ Cn(�) ∩ B(Q′) and g is an upper semi-continuous function. Then

lim sup
P∈Cn(�),P→Q′

PICn(�)[g](P) ≤ g
(
Q′).

Lemma  (see []) Let  < r < R and u(t,�) be a subharmonic function on Cn(�; (r, R)).
Then

∫

Cn(�;(r,R))

(


tγ – –
tℵ+

Rχ

)

ϕ�u dw

= χ

∫

Sn(�;R)

uϕ

Rγ – dSR +
∫

Sn(�;(r,R))
u
(


tγ – –

tℵ+

Rχ

)
∂ϕ

∂n
dσ + d(r) +

d(r)
Rχ

,

where

d(r) =
∫

Sn(�;r)

ℵ–

rγ – uϕ –
ϕ

rγ –
∂u
∂n

dSr ,

d(r) =
∫

Sn(�;r)
rℵ+

ϕ
∂u
∂n

–
ℵ+uϕ

r–ℵ+ dSr .
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Proof Apply the second Green formula to the subharmonic function u(t,�) and

v(t,�) =
(


tγ – –

tℵ+

Rχ

)

ϕ = ψ(t)ϕ

in the domain Cn(�; (r, R)).
Then

∫

Cn(�;(r,R))
v�u dw =

∫

Sn(�;R)

(

u
∂v
∂n

– v
∂u
∂n

)

dSR +
∫

Sn(�;r)

(

u
∂v
∂n

– v
∂u
∂n

)

dSr

+
∫

Sn(�;(r,R))

(

u
∂v
∂n

– v
∂u
∂n

)

dσ

= –ψ ′(R)
∫

Sn(�;R)
uϕ dSR – ψ(r)

∫

Sn(�;r)
ϕ

∂u
∂n

dSr

+ ψ ′(r)
∫

Sn(�;r)
uϕ dSr +

∫

Sn(�;(r,R))
uψ(t)

∂ϕ

∂n
dσ ,

which yields the desired result. �

Lemma  Let h(r,�) be a harmonic function on Cn(�) vanishing continuously on Sn(�),
then h(r,�) = Uhrℵ+

ϕ(�) for  < r < ∞.

Proof Note that h(r,�) is twice continuously differentiable on {(r,�) ∈ Rn : (,�) ∈ �,  <
r < ∞} (see [], pp.-). By differentiating twice under the integral sign,

∂Nh(r)
∂r =

∫

�

∂h(r,�)
∂r ϕ(�) dS

= –
n – 

r

∫

�

∂h(r,�)
∂r

ϕ(�) dS –

r

∫

�

(
�∗h

)
ϕ(�) dS.

Hence, we obtain from the formula of Green (see, e.g. [], p.)

∫

�

(
�∗h

)
ϕ(�) dS =

∫

�

h
(
�∗ϕ(�)

)
dS.

So

∂Nh(r)
∂r +

n – 
r

∂Nh(r)
∂r

–
λ

r Nh(r) = 

for any r ( < r < ∞), which gives

Nh(r) = Arℵ+
+ Brℵ–

( < r < ∞),

where A and B are constants independent of r. We remark that h(r,�) converges uni-
formly to zero as r →  and hence limr→ Nh(r) = . Thus A = Uh. Since Nh(r) = Uhrℵ+ ,
the conclusion of Lemma  follows immediately. �
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4 Proof of Theorem 1
Since the case  < p ≤  can be proved similarly, we only consider the case p >  here.

Let P = (r,�) ∈ Cn(�) be fixed. We take a number R such that R > max(, 
 r). If ℵ+ > γ –n+

p
and 

p + 
q = , then (ℵ– + γ

p – )q + n –  < . By (), () and Hölder’s inequality with respect
to the modified Laplace operator, we have


cn

∫

Sn(�;(R,∞))

∣
∣PCn(�)(P, Q)

∣
∣
∣
∣g(Q)

∣
∣dσ

≤ Mc–
n rℵ+

ϕ(�)
(∫

Sn(�;( 
 r,∞))

t(ℵ–+ γ
p –)q dσ

) 
q
(∫

Sn(�;(R,∞))

∣
∣g(Q)

∣
∣pt–γ dσ

) 
p

≤ M′r
γ –n+

p ϕ(�)
(∫

Sn(�;(R,∞))

∣
∣g(Q)

∣
∣pt–γ dσ

) 
p

≤ ∞, ()

where

M′ = Mc–
n

(



)ℵ––+ γ
p + n–

q
((

γ –  –
γ

p

)

q +  – n
)– 

q
.

Thus PICn(�)[g](P) is finite for any P ∈ Cn(�). Since PCn(�)(P, Q) is a harmonic function
of P ∈ Cn(�) for any Q ∈Sn(�), PICn(�)[g](P) is also a harmonic function of P ∈ Cn(�).

Consider

lim
P∈Cn(�),P→Q′ PICn(�)[g](P) = g

(
Q′)

for any Q′ ∈ ∂Cn(�), and apply Lemma  to g(Q) and –g(Q). Take any Q′ = (t′,�′) ∈ ∂Cn(�)
and ε > . Let δ be a positive integer. Then from (), we can choose a number R, R >
max{, (t′ + δ)} such that () holds for any P ∈ Cn(�) ∩ B(Q′, δ).

For ε (> ) mentioned above, there exists Rε >  such that

∫

Sn(�;(Rε ,∞))

|g(Q)|p
 + tγ

dσ < ε.

We put P = (r,�) ∈ Cn(�) satisfying r > 
 Rε , and write

PICn(�)[g] ≤ PI + PI + PI + PI + PI,

where

PI =

cn

∫

Sn(�;(,])
|PCn(�)||g|dσ ,

PI =

cn

∫

Sn(�;(,Rε ])
|PCn(�)||g|dσ ,

PI =

cn

∫

Sn(�;(Rε , 
 r])

|PCn(�)||g|dσ ,
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PI =

cn

∫

Sn(�;( 
 r, 

 r))
|PCn(�)||g|dσ ,

PI =

cn

∫

Sn(�;[ 
 r,∞])

|PCn(�)||g|dσ .

If γ > (–ℵ+ – n + )p + n – , then {ℵ+ –  + γ

p }q + n –  > . By () and Hölder’s inequality
with respect to the modified Laplace operator we have

PI(P) ≤ Mrℵ–
ϕ(�)

∫

Sn(�;(,Rε ])
tℵ+–∣∣g(Q)

∣
∣dσ

≤ Mrℵ–
ϕ(�)

(∫

Sn(�;(,Rε ])

∣
∣g(Q)

∣
∣pt–γ dσ

) 
p
(∫

Sn(�;(,Rε ])
t(ℵ+–+ γ

p )q dσ

) 
q

≤ Mrℵ–
R

ℵ++n–+ γ –n+
p

ε ϕ(�), ()

PI(P) ≤ Mrℵ–
ϕ(�), ()

PI(P) ≤ Mεr
γ –n+

p ϕ(�). ()

If ℵ+ > γ –n+
p , then {ℵ– –  + γ

p }q + n –  < . We obtain by () and Hölder’s inequality
with respect to the modified Laplace operator

PI(P) ≤ Mrℵ+
ϕ(�)

∫

Sn(�;[ 
 r,∞))

tℵ––∣∣g(Q)
∣
∣dσ

≤ Mrℵ+
ϕ(�)

(∫

Sn(�;[ 
 r,∞))

∣
∣g(Q)

∣
∣pt–γ dσ

) 
p
(∫

Sn(�;[ 
 r,∞))

t(ℵ––+ γ
p )q dσ

) 
q

≤ Mεr
γ –n+

p ϕ(�). ()

By (), we consider the inequality

PI(P) ≤ PI(P) + PI(P),

where

PI(P) = Mϕ(�)
∫

Sn(�;( 
 r, 

 r))
t–n∣∣g(Q)

∣
∣dσ ,

PI(P) = Mrϕ(�)
∫

Sn(�;( 
 r, 

 r))

|g(Q)|
|P – Q|n dσ .

We first have

PI(P) ≤ Mϕ(�)
∫

Sn(�;( 
 r, 

 r))
tℵ++ℵ––∣∣g(Q)

∣
∣dσ

≤ Mrℵ+
ϕ(�)

∫

Sn(�;( 
 r,∞))

tℵ––∣∣g(Q)
∣
∣dσ

≤ Mεr
γ –n+

p ϕ(�), ()

which is similar to the estimate of PI(P).
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Next, we shall estimate PI(P). Take a sufficiently small positive real number b such
that Sn(�; ( 

 r, 
 r)) ⊂ B(P, 

 r) for any P = (r,�) ∈ �(b), where (see [, , ])

�(b) =
{

P = (r,�) ∈ Cn(�); inf
z∈∂�

∣
∣(,�) – (, z)

∣
∣ < b,  < r < ∞

}

and divide Cn(�) into two sets �(b) and Cn(�) – �(b).
If P = (r,�) ∈ Cn(�) – �(b), then there exists a positive b′ such that |P – Q| ≥ b′r for any

Q ∈Sn(�), and hence

PI(P) ≤ Mϕ(�)
∫

Sn(�;( 
 r, 

 r))
t–n∣∣g(Q)

∣
∣dσ

≤ Mεr
γ –n+

p ϕ(�). ()

Put P = (r,�) ∈ �(b) and set

Hi(P) =
{

Q ∈Sn

(

�;
(




r,



r
))

; i–δ(P) ≤ |P – Q| < iδ(P)
}

.

Since Sn(�) ∩ {Q ∈ Rn : |P – Q| < δ(P)} = ∅, we have

PI(P) = M
i(P)∑

i=

∫

Hi(P)
rϕ(�)

|g(Q)|
|P – Q|n dσ ,

where i(P) is a positive integer satisfying i(P)–δ(P) ≤ r
 < i(P)δ(P).

By (), we have rϕ(�) ≤ Mδ(P) (P = (r,�) ∈ Cn(�)). By Hölder’s inequality with respect
to the modified Laplace operator (see []) we obtain

∫

Hi(P)
rϕ(�)

|g(Q)|
|P – Q|n dσ

≤
∫

Hi(P)
rϕ(�)

|g(Q)|
{i–δ(P)}n dσ

≤ M(–i)nϕ–n(�)
∫

Hi(P)
t–n∣∣g(Q)

∣
∣dσ

≤ Mεr
γ –n+

p ϕ–n(�)

for i = , , , . . . , i(P).
So

PI(P) ≤ Mεr
γ –n+

p ϕ–n(�). ()

Combining ()-(), we finally obtain

PICn(�)[g](P) = o
(
r

γ –n+
p ϕ–n(�)

)

as r → ∞, where P = (r,�) ∈ Cn(�). Thus we complete the proof of Theorem .
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5 Proof of Theorem 2
We apply Lemma  with R > r =  to h in Cn(�; (, R)) and have the following result (see
[, ]):

m+(R) +
∫

Sn(�;(,R))
h+

(


tγ – –
tℵ+

Rχ

)
∂ϕ

∂n
dσ + d +

d

Rχ

= m–(R) +
∫

Sn(�;(,R))
h–

(


tγ – –
tℵ+

Rχ

)
∂ϕ

∂n
dσ ,

where

m±(R) = χ

∫

Sn(�;R)

h±ϕ

Rγ – dSR,

d =
∫

Sn(�;)
ℵ–hϕ – ϕ

∂h
∂n

dS, d =
∫

Sn(�;)
ϕ

∂h
∂n

– ℵ+hϕ dS.

If R > , then we have

m–(R) +



∫

Sn(�;(, R
 ))

h–

tγ –
∂ϕ

∂n
dσ ≤ m–(R) +

∫

Sn(�;(,R))
h–

(


tγ – –
tℵ+

Rχ

)
∂ϕ

∂n
dσ

≤ m+(R) +
∫

Sn(�;(,R))

h+

tγ –
∂ϕ

∂n
dσ + |d| + |d|. ()

Since h ∈ C� , we obtain by ()

∫ ∞



m+(R)
R

dR =
∫

Cn(�;(,∞))

(h+)pϕ

tγ + dσ ≤ 
∫

Cn(�)

(h+)pϕ

 + tγ + dσ < ∞,

which yields (see [])

lim inf
R→∞ m+(R) = . ()

Combining (), () and (), we conclude that (see [, ])

lim inf
R→∞




∫

Sn(�;(, R
 ))

(h–)p

tγ –
∂ϕ

∂n
dσ < ∞,

which gives

∫

Sn(�)

(h–)p

 + tγ –
∂ϕ

∂n
dσ < ∞.

Notice that the condition () is stronger than (), h also satisfies () by Theorem . Con-
sider the harmonic function

h′(P) = h(P) – PICn(�)[h](P),

which vanishes continuously on Sn(�) by Lemma .
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Since

Uh′ = Uh + UPICn(�)[h],

it follows from Corollary  that Uh′ = Uh.
Hence, by applying Lemma  to h′(P), we obtain (). Then Theorem  is proved.

6 Conclusions
In this paper, we discussed the improved Poisson type inequalities with respect to a cone
only using gradient information. They inherited the advantages of the Poisson type conju-
gate gradient methods for solving the unconstrained minimization problems, but they had
broader application scope. Moreover, the integral representations of harmonic functions
are also obtained.
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