Two generalized Lyapunov-type inequalities for a fractional p-Laplacian equation with fractional boundary conditions

Yang Liu', Dapeng Xie ${ }^{1}$, Dandan Yang ${ }^{2}$ and Chuanzhi Bai ${ }^{2 *}$ ©

"Correspondence
czbai8@sohu.com
${ }^{2}$ Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, P.R. China Full list of author information is available at the end of the article

Abstract

In this paper, we investigate the existence of positive solutions for the boundary value problem of nonlinear fractional differential equation with mixed fractional derivatives and p-Laplacian operator. Then we establish two smart generalizations of Lyapunov-type inequalities. Some applications are given to demonstrate the effectiveness of the new results.

MSC: 26A33; 34A08; 76F70
Keywords: fractional boundary value problem; Lyapunov-type inequality; p-Laplacian operator; Guo-Krasnoselskii fixed point theorem

1 Introduction

Lyapunov's inequality [1] has proved to be very useful in various problems related with differential equations; for examples, see $[2,3]$ and the references therein. Recently, many researchers have given some Lyapunov-type inequalities for different classes of fractional boundary value problems (see [4-10]). In [7], Ferreira investigated a Lyapunov-type inequality for the fractional boundary value problem

$$
\left\{\begin{array}{l}
D_{a^{+}}^{\alpha} y(t)+q(t) y(t)=0, \quad a<t<b, \tag{1.1}\\
y(a)=y(b)=0,
\end{array}\right.
$$

where $D_{a^{+}}^{\alpha}$ is the Riemann-Liouville fractional derivative of order $\alpha, 1<\alpha \leq 2, a$ and b are consecutive zeros, and q is a real and continuous function. It was proved that if (1.1) has a nontrivial solution, then

$$
\begin{equation*}
\int_{a}^{b}|q(t)| \mathrm{d} s>\Gamma(\alpha)\left(\frac{4}{b-a}\right)^{\alpha-1} . \tag{1.2}
\end{equation*}
$$

Obviously, if we set $\alpha=2$ in (1.2), one can obtain the classical Lyapunov inequality [1].
In [8], Jleli and Samet considered the fractional differential equation

$$
\begin{equation*}
{ }^{C} D_{a^{+}}^{\alpha} y(t)+q(t) y(t)=0, \quad a<t<b, 1<\alpha \leq 2, \tag{1.3}
\end{equation*}
$$

with the mixed boundary conditions

$$
\begin{equation*}
y(a)=y^{\prime}(b)=0 \tag{1.4}
\end{equation*}
$$

or

$$
\begin{equation*}
y^{\prime}(a)=y(b)=0, \tag{1.5}
\end{equation*}
$$

where ${ }^{C} D_{a^{+}}^{\alpha}$ is the Caputo fractional derivative of order $1<\alpha \leq 2$. For boundary conditions (1.4) and (1.5), two Lyapunov-type inequalities were established, respectively, as follows:

$$
\begin{equation*}
\int_{a}^{b}(b-s)^{\alpha-2}|q(s)| \mathrm{d} s \geq \frac{\Gamma(\alpha)}{\max \{\alpha-1,2-\alpha\}(b-a)} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b}(b-s)^{\alpha-1}|q(s)| \mathrm{d} s \geq \Gamma(\alpha) \tag{1.7}
\end{equation*}
$$

Recently, we considered in [11] the same equation (1.3) with the fractional boundary condition

$$
y(a)={ }^{C} D_{a^{+}}^{\beta} y(b)=0,
$$

where $0<\beta \leq 1$.
In [12], Arifi et al. considered the following nonlinear fractional boundary value problem with p-Laplacian operator:

$$
\left\{\begin{array}{l}
D_{a^{+}}^{\beta}\left(\Phi_{p}\left(D_{a^{+}}^{\alpha} u(t)\right)\right)+\chi(t) \Phi_{p}(u(t))=0, \quad a<t<b \tag{1.8}\\
u(a)=u^{\prime}(a)=u^{\prime}(b)=0, \quad D_{a^{+}}^{\alpha} u(a)=D_{a^{+}}^{\alpha} u(b)=0
\end{array}\right.
$$

where $2<\alpha \leq 3,1<\beta \leq 2, D_{a^{+}}^{\alpha}, D_{a^{+}}^{\beta}$ are the Riemann-Liouville fractional derivative of orders $\alpha, \beta, \Phi_{p}(s)=|s|^{p-2} s, p>1$, and $\chi:[a, b] \rightarrow \mathbb{R}$ is a continuous function. It was proved that if (1.8) has a nontrivial continuous solution, then

$$
\begin{align*}
& \int_{a}^{b}(b-s)^{\beta-1}(s-a)^{\beta-1}|\chi(s)| \mathrm{d} s \\
& \quad \geq(\Gamma(\alpha))^{p-1} \Gamma(\beta)(b-a)^{\beta-1}\left(\int_{a}^{b}(b-s)^{\alpha-2}(s-a) \mathrm{d} s\right)^{1-p} \tag{1.9}
\end{align*}
$$

More recently, Chidouh and Torres in [13] considered the following boundary value problem:

$$
\left\{\begin{array}{l}
D_{a^{+}}^{\alpha} y(t)+q(t) f(y(t))=0, \quad a<t<b \tag{1.10}\\
y(a)=y(b)=0
\end{array}\right.
$$

where $D_{a^{+}}^{\alpha}$ is the Riemann-Liouville fractional derivative with $1<\alpha \leq 2$, and $q:[a, b] \rightarrow$ \mathbb{R}_{+}is a nontrivial Lebesgue integrable function. Under the assumption that the nonlinear
term $f \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$is a concave and decreasing function, it was proved that if (1.10) has a nontrivial solution, then

$$
\begin{equation*}
\int_{a}^{b}|q(t)| \mathrm{d} s>\frac{4^{\alpha-1} \Gamma(\alpha) \eta}{(b-a)^{\alpha-1} f(\eta)} \tag{1.11}
\end{equation*}
$$

where $\eta=\max _{t \in[a, b]} y(t)$. Obviously, if we set $f(y)=y$ in (1.11), one can obtain a Lyapunov inequality (1.2).

Motivated by the above work, in this paper, we consider the fractional boundary value problem

$$
\left\{\begin{array}{l}
D_{a^{+}}^{\beta}\left(\Phi_{p}\left({ }^{C} D_{a^{+}}^{\alpha} u(t)\right)\right)-k(t) f(u(t))=0, \quad a<t<b, \tag{1.12}\\
u^{\prime}(a)={ }^{C} D_{a^{+}}^{\alpha} u(a)=0, \quad u(b)={ }^{C} D_{a^{+}}^{\alpha} u(b)=0,
\end{array}\right.
$$

where $1<\alpha, \beta \leq 2$, and $k:[a, b] \rightarrow R$ is a continuous function. We write (1.12) as an equivalent integral equation and then, by using some properties of its Green function and the Guo-Krasnoselskii fixed point theorem, we can obtain our first result asserting existence of nontrivial positive solutions to problem (1.12). Then, under some assumptions on the nonlinear $\operatorname{term} f$, we are able to get two corresponding Lyapunov-type inequalities. Finally in this paper, two corollaries and an example are given to demonstrate the effectiveness of the obtained results.

2 Preliminaries

In this section, we recall the definitions of the Riemann-Liouville fractional integral, fractional derivative, and the Caputo fractional derivative and give some lemmas which are useful in this article. For more details, we refer to [14, 15].

Definition 2.1 Let $\alpha \geq 0$ and f be a real function defined on $[a, b]$. The Riemann-Liouville fractional integral of order α is defined by ${ }_{a} I^{0} f \equiv f$ and

$$
\left(I_{a^{+}}^{\alpha} f\right)(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t}(t-s)^{\alpha-1} f(s) \mathrm{d} s, \quad \alpha>0, t \in[a, b] .
$$

Definition 2.2 The Riemann-Liouville fractional derivative of order $\alpha>0$ of a function $f:[a, b] \rightarrow \mathbb{R}$ is given by

$$
\left(D_{a^{f}}^{\alpha} f\right)(t)=\frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{d t^{n}} \int_{a}^{t} \frac{f(s)}{(t-s)^{\alpha-n+1}} \mathrm{~d} s
$$

where n is the smallest integer greater or equal to α and Γ denotes the Gamma function.

Definition 2.3 The Caputo derivative of fractional order $\alpha \geq 0$ is defined by ${ }^{C} D_{a^{+}}^{0} f \equiv f$ and

$$
\left({ }^{C} D_{a}^{\alpha} f\right)(t)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{t}(t-s)^{n-\alpha-1} f^{(n)}(s) \mathrm{d} s, \quad \alpha>0, t \in[a, b],
$$

where n is the smallest integer greater or equal to α.

Lemma 2.1 (Guo-Krasnoselskii fixed point theorem [16]) Let X be a Banach space and let $P \subset X$ be a cone. Assume Ω_{1} and Ω_{2} are bounded open subsets of X with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let $T: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ be a completely continuous operator such that
(i) $\|T u\| \geq\|u\|$ for any $u \in P \cap \partial \Omega_{1}$ and $\|T u\| \leq\|u\|$ for any $u \in P \cap \partial \Omega_{2}$; or
(ii) $\|T u\| \leq\|u\|$ for any $u \in P \cap \partial \Omega_{1}$ and $\|T u\| \geq\|u\|$ for any $u \in P \cap \partial \Omega_{2}$.

Then T has a fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

Lemma 2.2 (Jensen's inequality [17]) Let v be a positive measure and let Ω be a measurable set with $v(\Omega)=1$. Let I be an interval and suppose that u is a real function in $L(d v)$ with $u(t) \in I$ for all $t \in \Omega$. Iff is convex on I, then

$$
\begin{equation*}
f\left(\int_{\Omega} u(t) \mathrm{d} v(t)\right) \leq \int_{\Omega}(f \circ u)(t) \mathrm{d} v(t) . \tag{2.1}
\end{equation*}
$$

Iff is concave on I, then the inequality (2.1) holds with \leq substituted by \geq.

3 Main results

We begin to write problem (1.12) in its equivalent integral form.

Lemma 3.1 If $u \in C[a, b], 1<\alpha, \beta \leq 2, p>1$, and $\frac{1}{p}+\frac{1}{q}=1$. Then $B V P(1.12)$ has a unique solution

$$
\begin{equation*}
u(t)=\int_{a}^{b} G(t, s) \Phi_{q}\left(\int_{a}^{b} H(s, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \tag{3.1}
\end{equation*}
$$

where

$$
G(t, s)=\frac{1}{\Gamma(\alpha)} \begin{cases}(b-s)^{\alpha-1}-(t-s)^{\alpha-1}, & a \leq s \leq t \leq b \tag{3.2}\\ (b-s)^{\alpha-1}, & a \leq t \leq s \leq b\end{cases}
$$

and

$$
H(s, \tau)=\frac{1}{\Gamma(\beta)} \begin{cases}\left(\frac{s-a}{b-a}\right)^{\beta-1}(b-\tau)^{\beta-1}-(s-\tau)^{\beta-1}, & a \leq \tau \leq s \leq b \tag{3.3}\\ \left(\frac{s-a}{b-a}\right)^{\beta-1}(b-\tau)^{\beta-1}, & a \leq s \leq \tau \leq b\end{cases}
$$

Proof Set $\Phi_{p}\left({ }^{c} D_{a^{+}}^{\alpha} u(t)\right)=v(t)$. Then BVP (1.12) can be turned into the following coupled boundary value problems:

$$
\left\{\begin{array}{l}
D_{a^{+}}^{\beta} v(t)=k(t) f(u(t)), \quad a<t<b \tag{3.4}\\
v(a)=v(b)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
{ }^{c} D_{a^{+}}^{\alpha} u(t)=\Phi_{q}(v(t)), \quad a<t<b \tag{3.5}\\
u^{\prime}(a)=u(b)=0
\end{array}\right.
$$

From Lemma 2 of [7], we see that BVP (3.4) has a unique solution, which is given by

$$
\begin{equation*}
v(t)=-\int_{a}^{b} H(t, s) k(s) f(u(s)) \mathrm{d} s \tag{3.6}
\end{equation*}
$$

where $H(t, s)$ is as in (3.3). Moreover, by Lemma 5 of [8], we see that BVP (3.5) has a unique solution, which is given by

$$
\begin{equation*}
u(t)=-\int_{a}^{b} G(t, s) \Phi_{q}(v(s)) \mathrm{d} s \tag{3.7}
\end{equation*}
$$

where $G(t, s)$ is as in (3.2). Substitute (3.6) into (3.7), we see that BVP (1.12) has a unique solution which is given by (3.1).

Lemma 3.2 The Green's function H defined by (3.3) satisfies the following properties:
(1) $H(t, s) \geq 0$ for all $a \leq t, s \leq b$;
(2) $\max _{t \in[a, b]} H(t, s)=H(s, s), s \in[a, b]$;
(3) $H(s, s)$ has a unique maximum given by

$$
\max _{s \in[a, b]} H(s, s)=\frac{(b-a)^{\beta-1}}{4^{\beta-1} \Gamma(\beta)}
$$

(4) $\min _{t \in\left[\frac{3 a+b}{4}, \frac{a+3 b}{4}\right]} H(t, s) \geq \sigma(s) H(s, s), a<s<b$,
where

$$
\begin{align*}
& \sigma(s)= \begin{cases}\frac{\left(\frac{3(b-a)(b-s)}{4}\right)^{\beta-1}-(b-a)^{\beta-1}\left(\frac{a+3 b}{4}-s\right)^{\beta-1}}{(s-a)^{\beta-1}(b-s)^{\beta-1}} & \text { if } s \in\left(a, c_{\beta}\right], \\
\left(\frac{b-a}{4(s-a)}\right)^{\beta-1} & \text { if } s \in\left[c_{\beta}, b\right),\end{cases} \tag{3.8}\\
& c_{\beta}:=\frac{\frac{a+3 b}{4}-b A_{\beta}}{1-A_{\beta}}, \quad A_{\beta}=\left(\left(\frac{3}{4}\right)^{\beta-1}-\left(\frac{1}{4}\right)^{\beta-1}\right)^{\frac{1}{\beta-1}} .
\end{align*}
$$

Proof The first three properties are proved in [7]. For convenience, we set

$$
h_{1}(t, s)=\frac{1}{\Gamma(\beta)}\left(\left(\frac{t-a}{b-a}\right)^{\beta-1}(b-s)^{\beta-1}-(t-s)^{\beta-1}\right), \quad s \leq t
$$

and

$$
h_{2}(t, s)=\frac{1}{\Gamma(\beta)}\left(\frac{t-a}{b-a}\right)^{\beta-1}(b-s)^{\beta-1}, \quad t \leq s .
$$

From [7], we know that $h_{1}(t, s)$ is decreasing with respect to t for $s \leq t$, and $h_{2}(t, s)$ is increasing with respect to t for $t \leq s$. Thus

$$
\min _{t \in\left[\frac{3 a+b}{4}, \frac{a+3 b}{4}\right]} H(t, s)= \begin{cases}h_{1}\left(\frac{a+3 b}{4}, s\right) & \text { if } s \in\left(a, \frac{3 a+b}{4}\right], \\ \min \left\{h_{1}\left(\frac{a+3 b}{4}, s\right), h_{2}\left(\frac{3 a+b}{4}, s\right)\right\} & \text { if } s \in\left[\frac{3 a+b}{4}, \frac{a+3 b}{4}\right], \\ h_{2}\left(\frac{3 a+b}{4}, s\right) & \text { if } s \in\left[\frac{a+3 b}{4}, b\right) .\end{cases}
$$

From

$$
h_{1}\left(\frac{a+3 b}{4}, s\right)=h_{2}\left(\frac{3 a+b}{4}, s\right)
$$

we have

$$
\left(\frac{\frac{a+3 b}{4}-s}{b-s}\right)^{\beta-1}=\left(\frac{3}{4}\right)^{\beta-1}-\left(\frac{1}{4}\right)^{\beta-1},
$$

which implies that

$$
s=\frac{\frac{a+3 b}{4}-b A_{\beta}}{1-A_{\beta}}=c_{\beta},
$$

where c_{β} and A_{β} are as in (3.8). It is easy to check that $A_{\beta}<\frac{3}{4}$ and $c_{\beta}<\frac{a+3 b}{4}$. On the other hand, since

$$
3^{\beta-1}+8^{\beta-1} \geq 2 \sqrt{3^{\beta-1} 8^{\beta-1}} \geq 4^{\frac{\beta-1}{2}} 3^{\frac{\beta-1}{2}} 8^{\frac{\beta-1}{2}}=96^{\frac{\beta-1}{2}}>9^{\beta-1}
$$

we have

$$
\left(\frac{3}{4}\right)^{\beta-1}<\left(\frac{2}{3}\right)^{\beta-1}+\left(\frac{1}{4}\right)^{\beta-1}
$$

from which we deduce that $A_{\beta}<\frac{2}{3}$ and $c_{\beta}>\frac{3 a+b}{4}$. So $c_{\beta} \in\left(\frac{3 a+b}{4}, \frac{a+3 b}{4}\right)$ is the unique solution of the equation $h_{1}\left(\frac{a+3 b}{4}, s\right)=h_{2}\left(\frac{3 a+b}{4}, s\right)$. Hence

$$
\begin{aligned}
\min _{t \in\left[\frac{3 a+b}{4}, \frac{a+3 b}{4}\right]} H(t, s) & = \begin{cases}h_{1}\left(\frac{a+3 b}{4}, s\right) & \text { if } s \in\left(a, c_{\beta}\right], \\
h_{2}\left(\frac{3 a+b}{4}, s\right) & \text { if } s \in\left[c_{\beta}, b\right)\end{cases} \\
& =\frac{1}{\Gamma(\beta)} \begin{cases}\left(\frac{3(b-s)}{4}\right)^{\beta-1}-\left(\frac{a+3 b}{4}-s\right)^{\beta-1} & \text { if } s \in\left(a, c_{\beta}\right], \\
\left(\frac{b-s}{4}\right)^{\beta-1} & \text { if } s \in\left[c_{\beta}, b\right)\end{cases} \\
& \geq \sigma(s) H(s, s) .
\end{aligned}
$$

Remark 3.1 Since $\frac{2 a+b}{3}<\frac{2 b-a}{3}$ implies $3 a<b$, we see that the conclusion of Lemma 7(4) in [13] only holds for $a<\frac{b}{3}$.

Lemma 3.3 ([8]) The Green's function G defined by (3.2) satisfies the following properties:
(i) $0 \leq G(t, s) \leq G(s, s)=\frac{1}{\Gamma(\alpha)}(b-s)^{\alpha-1}$ for all $a \leq t, s \leq b$;
(ii) $G(s, s)$ has a unique maximum given by

$$
\max _{s \in[a, b]} G(s, s)=\frac{1}{\Gamma(\alpha)}(b-a)^{\alpha-1}
$$

(iii) $\min _{t \in\left[\frac{3 a+b}{4}, \frac{a+3 b}{4}\right]} G(t, s) \geq \mu(s) G(s, s), a<s<b$, where

$$
\mu(s)= \begin{cases}1-\left(\frac{\frac{a+3 b}{4}-s}{b-s}\right)^{\alpha-1} & \text { if } s \in\left(a, \frac{a+3 b}{4}\right], \\ 1 & \text { if } s \in\left[\frac{a+3 b}{4}, b\right) .\end{cases}
$$

Let $E=C[a, b]$ be endowed with the norm $\|x\|=\max _{t \in[a, b]}|x(t)|$. Define the cone $P \subset E$ by

$$
P=\{x \in E \mid x(t) \geq 0 \forall t \in[a, b] \text { and }\|x\| \neq 0\} .
$$

Theorem 3.4 Let $k:[a, b] \rightarrow \mathbb{R}_{+}=[0,+\infty)$ be a nontrivial Lebesgue integrable function. Suppose that there exist two positive constants $r_{2}>r_{1}>0$ such that the following assumptions:
(H1) $f(x) \geq \rho \Phi_{p}\left(r_{1}\right)$ for $x \in\left[0, r_{1}\right]$,
(H2) $f(x) \leq \omega \Phi_{p}\left(r_{2}\right)$ for $x \in\left[0, r_{2}\right]$,
are satisfied, where

$$
\rho=\left[\int_{a}^{b} \sigma(\tau) H(\tau, \tau) k(\tau) \mathrm{d} \tau \times \Phi_{p}\left(\int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} \mu(s) G(s, s) \mathrm{d} s\right)\right]^{-1}
$$

and

$$
\omega=\left[\int_{a}^{b} H(\tau, \tau) k(\tau) \mathrm{d} \tau \times \Phi_{p}\left(\int_{a}^{b} G(s, s) \mathrm{d} s\right)\right]^{-1} .
$$

Then FBVP (1.12) has at least one nontrivial positive solution u belonging to E such that $r_{1} \leq\|u\| \leq r_{2}$.

Proof Let $T: P \rightarrow E$ be the operator defined by

$$
\operatorname{Tu}(t)=\int_{a}^{b} G(t, s) \Phi_{q}\left(\int_{a}^{b} H(s, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s
$$

By using the Arzela-Ascoli theorem, we can prove that $T: P \rightarrow P$ is completely continuous. Let $\Omega_{i}=\left\{u \in P:\|u\| \leq r_{i}\right\}, i=1,2$. From (H1), and Lemmas 3.2 and 3.3, we obtain for $t \in\left[\frac{3 a+b}{4}, \frac{a+3 b}{4}\right]$ and $u \in P \cap \partial \Omega_{1}$

$$
\begin{aligned}
(T u)(t) & \geq \int_{a}^{b} \min _{t \in\left[\frac{3 a+b}{4}, \frac{a+3 b}{4}\right]} G(t, s) \Phi_{q}\left(\int_{a}^{b} H(s, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \geq \int_{a}^{b} \mu(s) G(s, s) \Phi_{q}\left(\int_{a}^{b} H(s, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \geq \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} \mu(s) G(s, s) \mathrm{d} s \cdot \Phi_{q}\left(\int_{a}^{b} \min _{s \in\left[\frac{3 a+b}{4}, \frac{a+3 b}{4}\right]} H(s, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \\
& \geq \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} \mu(s) G(s, s) \mathrm{d} s \cdot \Phi_{q}\left(\int_{a}^{b} \sigma(\tau) H(\tau, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \\
& \geq \int_{\frac{3 a+b}{4}}^{\frac{a+3 b}{4}} \mu(s) G(s, s) \mathrm{d} s \cdot \Phi_{q}\left(\int_{a}^{b} \sigma(\tau) H(\tau, \tau) k(\tau) \mathrm{d} \tau\right) \Phi_{q}(\rho) \cdot r_{1} \\
& =\|u\| .
\end{aligned}
$$

Hence, $\|T u\| \geq\|u\|$ for $u \in P \cap \partial \Omega_{1}$. On the other hand, from (H2), Lemmas 3.2 and 3.3, we have

$$
\begin{aligned}
\|T u\| & =\max _{t \in[a, b]} \int_{a}^{b} G(t, s) \Phi_{q}\left(\int_{a}^{b} H(s, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& \leq \int_{a}^{b} G(s, s) \mathrm{d} s \cdot \Phi_{q}\left(\int_{a}^{b} H(\tau, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \\
& \leq \int_{a}^{b} G(s, s) \mathrm{d} s \cdot \Phi_{q}\left(\int_{a}^{b} H(\tau, \tau) k(\tau) \mathrm{d} \tau\right) \Phi_{q}(\omega) r_{2}=\|u\|
\end{aligned}
$$

for $u \in P \cap \partial \Omega_{2}$. Thus, by Lemma 2.1, we see that the operator T has a fixed point in $u \in P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ with $r_{1} \leq\|u\| \leq r_{2}$, and clearly u is a positive solution for FBVP (1.12).

Next, we will give two Lyapunov inequalities for FBVP (1.12).

Theorem 3.5 Let $k:[a, b] \rightarrow \mathbb{R}_{+}$be a real nontrivial Lebesgue function. Suppose that there exists a positive constant M satisfying $0 \leq f(x) \leq M \Phi_{p}(x)$ for any $x \in \mathbb{R}_{+}$. If (1.12) has a nontrivial solution in P, then the following Lyapunov inequality holds:

$$
\int_{a}^{b} k(\tau) \mathrm{d} \tau>\frac{4^{\beta-1} \Gamma(\beta)}{M(b-a)^{\beta-1}} \Phi_{p}\left(\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}\right) .
$$

Proof Assume $u \in P$ is a nontrivial solution for (1.12), then $\|u\| \neq 0$. From (3.1), and Lemmas 3.2 and $3.3, \forall t \in[a, b]$, we have

$$
\begin{aligned}
0 & \leq u(t) \leq \int_{a}^{b} G(s, s) \Phi_{q}\left(\int_{a}^{b} H(\tau, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
& <\int_{a}^{b} G(s, s) \mathrm{d} s \cdot \Phi_{q}\left(\int_{a}^{b} H(\tau, \tau) k(\tau) \mathrm{d} \tau\right) \Phi_{q}(M)\|u\| \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{a}^{b}(b-s)^{\alpha-1} \mathrm{~d} s \cdot \Phi_{q}\left(\int_{a}^{b} \frac{(b-a)^{\beta-1}}{4^{\beta-1} \Gamma(\beta)} k(\tau) \mathrm{d} \tau\right) \Phi_{q}(M)\|u\| \\
& =\frac{1}{\Gamma(\alpha+1)}(b-a)^{\alpha} \cdot \Phi_{q}\left(\frac{(b-a)^{\beta-1}}{4^{\beta-1} \Gamma(\beta)}\right) \Phi_{q}\left(\int_{a}^{b} k(\tau) \mathrm{d} \tau\right) \Phi_{q}(M)\|u\|,
\end{aligned}
$$

which implies that

$$
\int_{a}^{b} k(\tau) \mathrm{d} \tau>\frac{4^{\beta-1} \Gamma(\beta)}{M(b-a)^{\beta-1}} \Phi_{p}\left(\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}\right) .
$$

Theorem 3.6 Let $k:[a, b] \rightarrow \mathbb{R}_{+}$be a real nontrivial Lebesgue function. Assume that $f \in$ $C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$is a concave and nondecreasing function. If (1.12) has a nontrivial solution $u \in P$, then

$$
\int_{a}^{b} k(\tau) \mathrm{d} \tau>\frac{4^{\beta-1} \Gamma(\beta) \Phi_{p}(\Gamma(\alpha+1)) \Phi_{p}(\eta)}{(b-a)^{\alpha p+\beta-\alpha-1} f(\eta)}
$$

where $\eta=\max _{t \in[a, b]} u(t)$.

Proof By (3.1), Lemmas 3.2 and 3.3, we get

$$
\begin{aligned}
u(t) & \leq \int_{a}^{b} G(s, s) \Phi_{q}\left(\int_{a}^{b} H(\tau, \tau) k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \mathrm{d} s \\
\|u\| & <\frac{1}{\Gamma(\alpha)} \int_{a}^{b}(b-s)^{\alpha-1} \mathrm{~d} s \cdot \Phi_{q}\left(\frac{(b-a)^{\beta-1}}{4^{\beta-1} \Gamma(\beta)}\right) \Phi_{q}\left(\int_{a}^{b} k(\tau) f(u(\tau)) \mathrm{d} \tau\right) \\
& =\frac{(b-a)^{\alpha}}{\Gamma(\alpha+1)} \cdot \Phi_{q}\left(\frac{(b-a)^{\beta-1}}{4^{\beta-1} \Gamma(\beta)}\right) \Phi_{q}\left(\int_{a}^{b} k(\tau) f(u(\tau)) \mathrm{d} \tau\right) .
\end{aligned}
$$

Using Lemma 2.2, and taking into account that f is concave and nondecreasing, we see that

$$
\begin{aligned}
\|u\| & <\frac{(b-a)^{\alpha}}{\Gamma(\alpha+1)} \cdot \Phi_{q}\left(\frac{(b-a)^{\beta-1}}{4^{\beta-1} \Gamma(\beta)}\right) \Phi_{q}\left(\int_{a}^{b} k(s) \mathrm{d} s\right) \Phi_{q}\left(\int_{a}^{b} \frac{k(\tau) f(u(\tau)) \mathrm{d} \tau}{\int_{a}^{b} k(s) \mathrm{d} s}\right) \\
& <\frac{(b-a)^{\alpha}}{\Gamma(\alpha+1)} \cdot \Phi_{q}\left(\frac{(b-a)^{\beta-1}}{4^{\beta-1} \Gamma(\beta)}\right) \Phi_{q}\left(\int_{a}^{b} k(s) \mathrm{d} s\right) \Phi_{q}(f(\eta)),
\end{aligned}
$$

where $\eta=\max _{t \in[a, b]} u(t)$. Hence,

$$
\int_{a}^{b} k(s) \mathrm{d} s>\frac{4^{\beta-1} \Gamma(\beta) \Phi_{p}(\Gamma(\alpha+1)) \Phi_{p}(\eta)}{(b-a)^{\alpha p+\beta-\alpha-1} f(\eta)} .
$$

The proof is completed.

4 Applications

In the following, some applications of the obtained results are presented.

Corollary 4.1 If $\lambda \in\left[0,4^{\beta-1} \Gamma(\beta) \Phi_{p}(\Gamma(\alpha+1))\right]$, then the following eigenvalue problem:

$$
\left\{\begin{array}{l}
D_{0^{+}}^{\beta}\left(\Phi_{p}\left({ }^{C} D_{0^{+}}^{\alpha} y(t)\right)\right)-\lambda \Phi_{p}(y(t))=0, \quad 0<t<1 \tag{4.1}\\
y^{\prime}(0)={ }^{C} D_{0^{+}}^{\alpha} y(0)=0, \quad y(1)={ }^{C} D_{0^{+}}^{\alpha} y(1)=0,
\end{array}\right.
$$

has no corresponding eigenfunction $y \in P$, where $1<\alpha, \beta \leq 2$, and $p>1$.

Proof Assume that $y_{0} \in P$ is an eigenfunction of (4.1) corresponding to an eigenvalue $\lambda_{0} \in$ $\left[0,4^{\beta-1} \Gamma(\beta) \Phi_{p}(\Gamma(\alpha+1))\right]$. By using Theorem 3.5 with $a=0, b=1, k(s)=\lambda_{0}$ and $M=1$ $\left(f(y)=\Phi_{p}(y)\right)$, we get

$$
\lambda_{0}>4^{\beta-1} \Gamma(\beta) \Phi_{p}(\Gamma(\alpha+1)),
$$

which is a contradiction.

From Theorems 3.4 and 3.6, we have the following.

Corollary 4.2 For fractional boundary value problem (1.12), let $k:[a, b] \rightarrow \mathbb{R}_{+}$be a nontrivial Lebesgue integrable function, and $f \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$be a concave and nondecreasing
function. If there exist two positive constants $r_{2}>r_{1}>0$ such that the assumptions (H1) and (H2) hold, then

$$
\int_{a}^{b} k(\tau) \mathrm{d} \tau>\frac{4^{\beta-1} \Gamma(\beta) \Phi_{p}(\Gamma(\alpha+1)) \Phi_{p}\left(r_{1}\right)}{(b-a)^{\alpha p+\beta-\alpha-1} f\left(r_{2}\right)} .
$$

Example 4.3 Consider the following fractional boundary value problem:

$$
\left\{\begin{array}{l}
D_{0^{+}}^{3 / 2}\left(\Phi_{1.8}\left({ }^{C} D_{0^{+}}^{4 / 3} y\right)\right)-\sqrt{t} \ln (15+y)=0, \quad 0<t<1, \\
y^{\prime}(0)={ }^{C} D_{0^{+}}^{4 / 3} y(0)=0, \quad y(1)={ }^{C} D_{0^{+}}^{4 / 3} y(1)=0 .
\end{array}\right.
$$

Obviously, we have
(i) $f(y)=\ln (15+y): \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous, concave and nondecreasing;
(ii) $k(t)=\sqrt{t}:[0,1] \rightarrow \mathbb{R}_{+}$is a Lebesgue integrable function with $\int_{0}^{1} k(t) \mathrm{d} t=\frac{2}{3}>0$.

We now compute the values of ρ and ω in (H1) and (H2), respectively.

Since $A_{3 / 2}=\left(\left(\frac{3}{4}\right)^{1 / 2}-\left(\frac{1}{4}\right)^{1 / 2}\right)^{2}=1-\frac{\sqrt{3}}{2}$, we have $c_{3 / 2}=\frac{\frac{3}{4}-A_{3 / 2}}{1-A_{3 / 2}}=1-\frac{\sqrt{3}}{6}$. where $A_{3 / 2}$ and $c_{3 / 2}$ ($\beta=3 / 2$) are as in (3.8). Hence

$$
\sigma(s)= \begin{cases}\frac{\sqrt{3}}{2} \frac{(1-s)^{1 / 2}-1}{(s(1-s))^{1 / 2}} & \text { if } s \in\left(0,1-\frac{\sqrt{3}}{6}\right], \\ \frac{1}{2 s^{1 / 2}} & \text { if } s \in\left[1-\frac{\sqrt{3}}{6}, 1\right) .\end{cases}
$$

Thus, by a simple computation, we obtain

$$
\rho \approx 61.7797, \quad \omega \approx 3.8213
$$

Choosing $r_{1}=1 / 50$ and $r_{2}=1$, we obtain

1. $f(y)=\ln (15+y) \geq \rho \Phi_{1.8}\left(r_{1}\right)$ for $y \in[0,1 / 50]$;
2. $f(y)=\ln (15+y) \leq \omega \Phi_{1.8}\left(r_{2}\right)$ for $y \in[0,1]$.

Hence, from Corollary 4.2, we obtain

$$
\int_{0}^{1} k(t) \mathrm{d} t>\frac{2 \Gamma(3 / 2) \Phi_{1.8}\left(\frac{1}{50} \Gamma(7 / 3)\right)}{\ln 16} \approx 0.0321
$$

5 Conclusions

In this paper, we prove existence of positive solutions to a nonlinear fractional boundary value problem involving a p-Laplacian operator. Then, under some mild assumptions on the nonlinear term, we present two new Lyapunov-type inequalities. A numerical example shows that the new results are efficient.

Competing interests

The authors declare that they have no competing interests

Authors' contributions

All authors contributed equally in drafting this manuscript and giving the main proofs. All authors read and approved the final manuscript.

Author details

'Department of Mathematics, Hefei Normal University, Hefei, Anhui 230061, P.R. China. ${ }^{2}$ Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, P.R. China

Acknowledgements

The authors thank the editor and referees for their careful reading of the manuscript and a number of excellent suggestions. This work is supported by Natural Science Foundation of China (11571136 and 11271364),

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 24 January 2017 Accepted: 20 April 2017 Published online: 03 May 2017

References

1. Lyapunov, AM: Problème général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse 2, 203-407 (1907)
2. Brown, RC, Hinton, DB: Lyapunov inequalities and their applications. In: Rassias, TM (ed.) Survey on Classical Inequalities. Math. Appl., vol. 517, pp. 1-25. Kluwer Academic, Dordrecht (2000)
3. Tiryaki, A: Recent developments of Lyapunov-type inequalities. Adv. Dyn. Syst. Appl. 5(2), 231-248 (2010)
4. Ferreira, RAC: On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function. J. Math. Anal. Appl. 412, 1058-1063 (2014)
5. Ma, D: A generalized Lyapunov inequality for a higher-order fractional boundary value problem. J. Inequal. Appl. 2016, 261 (2016)
6. Dhar, S, Kong, Q, McCabe, M: Fractional boundary value problems and Lyapunov-type inequalities with fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2016, 43 (2016)
7. Ferreira, RAC: A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16(4), 978-984 (2013)
8. Jleli, M, Samet, B: Lypunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 18(2), 443-451 (2015)
9. Jeli, M, Kirane, M, Samet, B: Lyapunov-type inequalities for fractional partial differential equations. Appl. Math. Lett. 66, 30-39 (2017)
10. Jeli, M, Nieto, JJ, Samet, B: Lyapunov-type inequalities for a higher order fractional differential equation with fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2017, 16 (2017)
11. Rong, J, Bai, C: Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions. Adv. Differ. Equ., 201582 (2015)
12. Arif, NA, Altun, I, Jeli, M, Lashin, A, Samet, B: Lyapunov-type inequalities for a fractional p-Laplacian equation. J. Inequal. Appl. 2016, 189 (2016)
13. Chidouh, A, Torres, DFM: A generalized Lyapunov's inequality for a fractional boundary value problem. J. Comput. Appl. Math. 312, 192-197 (2017)
14. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
15. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
16. Guo, G, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science and Engineering, vol. 5. Academic Press, Boston (1988)
17. Rudin, W: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

