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Abstract
In this paper, we investigate the existence of positive solutions for the boundary value
problem of nonlinear fractional differential equation with mixed fractional derivatives
and p-Laplacian operator. Then we establish two smart generalizations of
Lyapunov-type inequalities. Some applications are given to demonstrate the
effectiveness of the new results.

MSC: 26A33; 34A08; 76F70

Keywords: fractional boundary value problem; Lyapunov-type inequality;
p-Laplacian operator; Guo-Krasnoselskii fixed point theorem

1 Introduction
Lyapunov’s inequality [] has proved to be very useful in various problems related with
differential equations; for examples, see [, ] and the references therein. Recently, many
researchers have given some Lyapunov-type inequalities for different classes of fractional
boundary value problems (see [–]). In [], Ferreira investigated a Lyapunov-type in-
equality for the fractional boundary value problem

⎧
⎨

⎩

Dα
a+ y(t) + q(t)y(t) = , a < t < b,

y(a) = y(b) = ,
(.)

where Dα
a+ is the Riemann-Liouville fractional derivative of order α,  < α ≤ , a and b are

consecutive zeros, and q is a real and continuous function. It was proved that if (.) has a
nontrivial solution, then

∫ b

a

∣
∣q(t)

∣
∣ds > �(α)

(


b – a

)α–

. (.)

Obviously, if we set α =  in (.), one can obtain the classical Lyapunov inequality [].
In [], Jleli and Samet considered the fractional differential equation

CDα
a+ y(t) + q(t)y(t) = , a < t < b,  < α ≤ , (.)
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with the mixed boundary conditions

y(a) = y′(b) =  (.)

or

y′(a) = y(b) = , (.)

where CDα
a+ is the Caputo fractional derivative of order  < α ≤ . For boundary conditions

(.) and (.), two Lyapunov-type inequalities were established, respectively, as follows:

∫ b

a
(b – s)α–∣∣q(s)

∣
∣ds ≥ �(α)

max{α – ,  – α}(b – a)
(.)

and

∫ b

a
(b – s)α–∣∣q(s)

∣
∣ds ≥ �(α). (.)

Recently, we considered in [] the same equation (.) with the fractional boundary
condition

y(a) = CDβ

a+ y(b) = ,

where  < β ≤ .
In [], Arifi et al. considered the following nonlinear fractional boundary value problem

with p-Laplacian operator:

⎧
⎨

⎩

Dβ

a+ (�p(Dα
a+ u(t))) + χ (t)�p(u(t)) = , a < t < b,

u(a) = u′(a) = u′(b) = , Dα
a+ u(a) = Dα

a+ u(b) = ,
(.)

where  < α ≤ ,  < β ≤ , Dα
a+ , Dβ

a+ are the Riemann-Liouville fractional derivative of
orders α, β , �p(s) = |s|p–s, p > , and χ : [a, b] →R is a continuous function. It was proved
that if (.) has a nontrivial continuous solution, then

∫ b

a
(b – s)β–(s – a)β–∣∣χ (s)

∣
∣ds

≥ (
�(α)

)p–
�(β)(b – a)β–

(∫ b

a
(b – s)α–(s – a) ds

)–p

. (.)

More recently, Chidouh and Torres in [] considered the following boundary value
problem:

⎧
⎨

⎩

Dα
a+ y(t) + q(t)f (y(t)) = , a < t < b,

y(a) = y(b) = ,
(.)

where Dα
a+ is the Riemann-Liouville fractional derivative with  < α ≤ , and q : [a, b] →

R+ is a nontrivial Lebesgue integrable function. Under the assumption that the nonlinear
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term f ∈ C(R+,R+) is a concave and decreasing function, it was proved that if (.) has a
nontrivial solution, then

∫ b

a

∣
∣q(t)

∣
∣ds >

α–�(α)η
(b – a)α–f (η)

, (.)

where η = maxt∈[a,b] y(t). Obviously, if we set f (y) = y in (.), one can obtain a Lyapunov
inequality (.).

Motivated by the above work, in this paper, we consider the fractional boundary value
problem

⎧
⎨

⎩

Dβ

a+ (�p(CDα
a+ u(t))) – k(t)f (u(t)) = , a < t < b,

u′(a) = CDα
a+ u(a) = , u(b) = CDα

a+ u(b) = ,
(.)

where  < α,β ≤ , and k : [a, b] → R is a continuous function. We write (.) as an equiv-
alent integral equation and then, by using some properties of its Green function and the
Guo-Krasnoselskii fixed point theorem, we can obtain our first result asserting existence
of nontrivial positive solutions to problem (.). Then, under some assumptions on the
nonlinear term f , we are able to get two corresponding Lyapunov-type inequalities. Finally
in this paper, two corollaries and an example are given to demonstrate the effectiveness of
the obtained results.

2 Preliminaries
In this section, we recall the definitions of the Riemann-Liouville fractional integral, frac-
tional derivative, and the Caputo fractional derivative and give some lemmas which are
useful in this article. For more details, we refer to [, ].

Definition . Let α ≥  and f be a real function defined on [a, b]. The Riemann-Liouville
fractional integral of order α is defined by aIf ≡ f and

(
Iα

a+ f
)
(t) =


�(α)

∫ t

a
(t – s)α–f (s) ds, α > , t ∈ [a, b].

Definition . The Riemann-Liouville fractional derivative of order α >  of a function
f : [a, b] →R is given by

(
Dα

a+ f
)
(t) =


�(n – α)

dn

dtn

∫ t

a

f (s)
(t – s)α–n+ ds,

where n is the smallest integer greater or equal to α and � denotes the Gamma function.

Definition . The Caputo derivative of fractional order α ≥  is defined by CD
a+ f ≡ f

and

(CDα
a+ f

)
(t) =


�(n – α)

∫ t

a
(t – s)n–α–f (n)(s) ds, α > , t ∈ [a, b],

where n is the smallest integer greater or equal to α.



Liu et al. Journal of Inequalities and Applications  (2017) 2017:98 Page 4 of 11

Lemma . (Guo-Krasnoselskii fixed point theorem []) Let X be a Banach space and let
P ⊂ X be a cone. Assume � and � are bounded open subsets of X with  ∈ � ⊂ �̄ ⊂ �,
and let T : P ∩ (�̄ \ �) → P be a completely continuous operator such that

(i) ‖Tu‖ ≥ ‖u‖ for any u ∈ P ∩ ∂� and ‖Tu‖ ≤ ‖u‖ for any u ∈ P ∩ ∂�; or
(ii) ‖Tu‖ ≤ ‖u‖ for any u ∈ P ∩ ∂� and ‖Tu‖ ≥ ‖u‖ for any u ∈ P ∩ ∂�.
Then T has a fixed point in P ∩ (�̄ \ �).

Lemma . (Jensen’s inequality []) Let ν be a positive measure and let � be a measurable
set with ν(�) = . Let I be an interval and suppose that u is a real function in L(dν) with
u(t) ∈ I for all t ∈ �. If f is convex on I , then

f
(∫

�

u(t) dν(t)
)

≤
∫

�

(f ◦ u)(t) dν(t). (.)

If f is concave on I , then the inequality (.) holds with ≤ substituted by ≥.

3 Main results
We begin to write problem (.) in its equivalent integral form.

Lemma . If u ∈ C[a, b],  < α,β ≤ , p > , and 
p + 

q = . Then BVP (.) has a unique
solution

u(t) =
∫ b

a
G(t, s)�q

(∫ b

a
H(s, τ )k(τ )f

(
u(τ )

)
dτ

)

ds, (.)

where

G(t, s) =


�(α)

⎧
⎨

⎩

(b – s)α– – (t – s)α–, a ≤ s ≤ t ≤ b,

(b – s)α–, a ≤ t ≤ s ≤ b,
(.)

and

H(s, τ ) =


�(β)

⎧
⎨

⎩

( s–a
b–a )β–(b – τ )β– – (s – τ )β–, a ≤ τ ≤ s ≤ b,

( s–a
b–a )β–(b – τ )β–, a ≤ s ≤ τ ≤ b.

(.)

Proof Set �p(cDα
a+ u(t)) = v(t). Then BVP (.) can be turned into the following coupled

boundary value problems:

⎧
⎨

⎩

Dβ

a+ v(t) = k(t)f (u(t)), a < t < b,

v(a) = v(b) = ,
(.)

and

⎧
⎨

⎩

cDα
a+ u(t) = �q(v(t)), a < t < b,

u′(a) = u(b) = .
(.)
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From Lemma  of [], we see that BVP (.) has a unique solution, which is given by

v(t) = –
∫ b

a
H(t, s)k(s)f

(
u(s)

)
ds, (.)

where H(t, s) is as in (.). Moreover, by Lemma  of [], we see that BVP (.) has a unique
solution, which is given by

u(t) = –
∫ b

a
G(t, s)�q

(
v(s)

)
ds, (.)

where G(t, s) is as in (.). Substitute (.) into (.), we see that BVP (.) has a unique
solution which is given by (.). �

Lemma . The Green’s function H defined by (.) satisfies the following properties:
() H(t, s) ≥  for all a ≤ t, s ≤ b;
() maxt∈[a,b] H(t, s) = H(s, s), s ∈ [a, b];
() H(s, s) has a unique maximum given by

max
s∈[a,b]

H(s, s) =
(b – a)β–

β–�(β)
;

() mint∈[ a+b
 , a+b

 ] H(t, s) ≥ σ (s)H(s, s), a < s < b,
where

σ (s) =

⎧
⎨

⎩

( (b–a)(b–s)
 )β––(b–a)β–( a+b

 –s)β–

(s–a)β–(b–s)β– if s ∈ (a, cβ ],

( b–a
(s–a) )β– if s ∈ [cβ , b),

cβ :=
a+b

 – bAβ

 – Aβ

, Aβ =
((




)β–

–
(




)β–) 
β–

.

(.)

Proof The first three properties are proved in []. For convenience, we set

h(t, s) =


�(β)

((
t – a
b – a

)β–

(b – s)β– – (t – s)β–
)

, s ≤ t

and

h(t, s) =


�(β)

(
t – a
b – a

)β–

(b – s)β–, t ≤ s.

From [], we know that h(t, s) is decreasing with respect to t for s ≤ t, and h(t, s) is
increasing with respect to t for t ≤ s. Thus

min
t∈[ a+b

 , a+b
 ]

H(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

h( a+b
 , s) if s ∈ (a, a+b

 ],

min{h( a+b
 , s), h( a+b

 , s)} if s ∈ [ a+b
 , a+b

 ],

h( a+b
 , s) if s ∈ [ a+b

 , b).
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From

h

(
a + b


, s

)

= h

(
a + b


, s

)

we have
( a+b

 – s
b – s

)β–

=
(




)β–

–
(




)β–

,

which implies that

s =
a+b

 – bAβ

 – Aβ

= cβ ,

where cβ and Aβ are as in (.). It is easy to check that Aβ < 
 and cβ < a+b

 . On the other
hand, since

β– + β– ≥ 
√

β–β– ≥ 
β–

 
β–

 
β–

 = 
β–

 > β–,

we have
(




)β–

<
(




)β–

+
(




)β–

,

from which we deduce that Aβ < 
 and cβ > a+b

 . So cβ ∈ ( a+b
 , a+b

 ) is the unique solution
of the equation h( a+b

 , s) = h( a+b
 , s). Hence

min
t∈[ a+b

 , a+b
 ]

H(t, s) =

⎧
⎨

⎩

h( a+b
 , s) if s ∈ (a, cβ ],

h( a+b
 , s) if s ∈ [cβ , b)

=


�(β)

⎧
⎨

⎩

( (b–s)
 )β– – ( a+b

 – s)β– if s ∈ (a, cβ ],

( b–s
 )β– if s ∈ [cβ , b)

≥ σ (s)H(s, s). �

Remark . Since a+b
 < b–a

 implies a < b, we see that the conclusion of Lemma ()
in [] only holds for a < b

 .

Lemma . ([]) The Green’s function G defined by (.) satisfies the following properties:
(i)  ≤ G(t, s) ≤ G(s, s) = 

�(α) (b – s)α– for all a ≤ t, s ≤ b;
(ii) G(s, s) has a unique maximum given by

max
s∈[a,b]

G(s, s) =


�(α)
(b – a)α–;

(iii) mint∈[ a+b
 , a+b

 ] G(t, s) ≥ μ(s)G(s, s), a < s < b, where

μ(s) =

⎧
⎨

⎩

 – (
a+b

 –s
b–s )α– if s ∈ (a, a+b

 ],

 if s ∈ [ a+b
 , b).
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Let E = C[a, b] be endowed with the norm ‖x‖ = maxt∈[a,b] |x(t)|. Define the cone P ⊂ E by

P =
{

x ∈ E|x(t) ≥  ∀t ∈ [a, b] and ‖x‖ �= 
}

.

Theorem . Let k : [a, b] → R+ = [, +∞) be a nontrivial Lebesgue integrable function.
Suppose that there exist two positive constants r > r >  such that the following assump-
tions:

(H) f (x) ≥ ρ�p(r) for x ∈ [, r],
(H) f (x) ≤ ω�p(r) for x ∈ [, r],

are satisfied, where

ρ =
[∫ b

a
σ (τ )H(τ , τ )k(τ ) dτ × �p

(∫ a+b


a+b


μ(s)G(s, s) ds
)]–

and

ω =
[∫ b

a
H(τ , τ )k(τ ) dτ × �p

(∫ b

a
G(s, s) ds

)]–

.

Then FBVP (.) has at least one nontrivial positive solution u belonging to E such that
r ≤ ‖u‖ ≤ r.

Proof Let T : P → E be the operator defined by

Tu(t) =
∫ b

a
G(t, s)�q

(∫ b

a
H(s, τ )k(τ )f

(
u(τ )

)
dτ

)

ds.

By using the Arzela-Ascoli theorem, we can prove that T : P → P is completely contin-
uous. Let �i = {u ∈ P : ‖u‖ ≤ ri}, i = , . From (H), and Lemmas . and ., we obtain
for t ∈ [ a+b

 , a+b
 ] and u ∈ P ∩ ∂�

(Tu)(t) ≥
∫ b

a
min

t∈[ a+b
 , a+b

 ]
G(t, s)�q

(∫ b

a
H(s, τ )k(τ )f

(
u(τ )

)
dτ

)

ds

≥
∫ b

a
μ(s)G(s, s)�q

(∫ b

a
H(s, τ )k(τ )f

(
u(τ )

)
dτ

)

ds

≥
∫ a+b



a+b


μ(s)G(s, s) ds · �q

(∫ b

a
min

s∈[ a+b
 , a+b

 ]
H(s, τ )k(τ )f

(
u(τ )

)
dτ

)

≥
∫ a+b



a+b


μ(s)G(s, s) ds · �q

(∫ b

a
σ (τ )H(τ , τ )k(τ )f

(
u(τ )

)
dτ

)

≥
∫ a+b



a+b


μ(s)G(s, s) ds · �q

(∫ b

a
σ (τ )H(τ , τ )k(τ ) dτ

)

�q(ρ) · r

= ‖u‖.
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Hence, ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂�. On the other hand, from (H), Lemmas . and .,
we have

‖Tu‖ = max
t∈[a,b]

∫ b

a
G(t, s)�q

(∫ b

a
H(s, τ )k(τ )f

(
u(τ )

)
dτ

)

ds

≤
∫ b

a
G(s, s) ds · �q

(∫ b

a
H(τ , τ )k(τ )f

(
u(τ )

)
dτ

)

≤
∫ b

a
G(s, s) ds · �q

(∫ b

a
H(τ , τ )k(τ ) dτ

)

�q(ω)r = ‖u‖

for u ∈ P ∩ ∂�. Thus, by Lemma ., we see that the operator T has a fixed point in
u ∈ P ∩ (�̄ \ �) with r ≤ ‖u‖ ≤ r, and clearly u is a positive solution for FBVP (.).

Next, we will give two Lyapunov inequalities for FBVP (.). �

Theorem . Let k : [a, b] →R+ be a real nontrivial Lebesgue function. Suppose that there
exists a positive constant M satisfying  ≤ f (x) ≤ M�p(x) for any x ∈ R+. If (.) has a
nontrivial solution in P, then the following Lyapunov inequality holds:

∫ b

a
k(τ ) dτ >

β–�(β)
M(b – a)β– �p

(
�(α + )
(b – a)α

)

.

Proof Assume u ∈ P is a nontrivial solution for (.), then ‖u‖ �= . From (.), and Lem-
mas . and ., ∀t ∈ [a, b], we have

 ≤ u(t) ≤
∫ b

a
G(s, s)�q

(∫ b

a
H(τ , τ )k(τ )f

(
u(τ )

)
dτ

)

ds

<
∫ b

a
G(s, s) ds · �q

(∫ b

a
H(τ , τ )k(τ ) dτ

)

�q(M)‖u‖

≤ 
�(α)

∫ b

a
(b – s)α– ds · �q

(∫ b

a

(b – a)β–

β–�(β)
k(τ ) dτ

)

�q(M)‖u‖

=


�(α + )
(b – a)α · �q

(
(b – a)β–

β–�(β)

)

�q

(∫ b

a
k(τ ) dτ

)

�q(M)‖u‖,

which implies that

∫ b

a
k(τ ) dτ >

β–�(β)
M(b – a)β– �p

(
�(α + )
(b – a)α

)

. �

Theorem . Let k : [a, b] → R+ be a real nontrivial Lebesgue function. Assume that f ∈
C(R+,R+) is a concave and nondecreasing function. If (.) has a nontrivial solution u ∈ P,
then

∫ b

a
k(τ ) dτ >

β–�(β)�p(�(α + ))�p(η)
(b – a)αp+β–α–f (η)

,

where η = maxt∈[a,b] u(t).
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Proof By (.), Lemmas . and ., we get

u(t) ≤
∫ b

a
G(s, s)�q

(∫ b

a
H(τ , τ )k(τ )f

(
u(τ )

)
dτ

)

ds,

‖u‖ <


�(α)

∫ b

a
(b – s)α– ds · �q

(
(b – a)β–

β–�(β)

)

�q

(∫ b

a
k(τ )f

(
u(τ )

)
dτ

)

=
(b – a)α

�(α + )
· �q

(
(b – a)β–

β–�(β)

)

�q

(∫ b

a
k(τ )f

(
u(τ )

)
dτ

)

.

Using Lemma ., and taking into account that f is concave and nondecreasing, we see
that

‖u‖ <
(b – a)α

�(α + )
· �q

(
(b – a)β–

β–�(β)

)

�q

(∫ b

a
k(s) ds

)

�q

(∫ b

a

k(τ )f (u(τ )) dτ
∫ b

a k(s) ds

)

<
(b – a)α

�(α + )
· �q

(
(b – a)β–

β–�(β)

)

�q

(∫ b

a
k(s) ds

)

�q
(
f (η)

)
,

where η = maxt∈[a,b] u(t). Hence,

∫ b

a
k(s) ds >

β–�(β)�p(�(α + ))�p(η)
(b – a)αp+β–α–f (η)

.

The proof is completed. �

4 Applications
In the following, some applications of the obtained results are presented.

Corollary . If λ ∈ [, β–�(β)�p(�(α + ))], then the following eigenvalue problem:

⎧
⎨

⎩

Dβ

+ (�p(CDα
+ y(t))) – λ�p(y(t)) = ,  < t < ,

y′() = CDα
+ y() = , y() = CDα

+ y() = ,
(.)

has no corresponding eigenfunction y ∈ P, where  < α,β ≤ , and p > .

Proof Assume that y ∈ P is an eigenfunction of (.) corresponding to an eigenvalue λ ∈
[, β–�(β)�p(�(α + ))]. By using Theorem . with a = , b = , k(s) = λ and M = 
(f (y) = �p(y)), we get

λ > β–�(β)�p
(
�(α + )

)
,

which is a contradiction. �

From Theorems . and ., we have the following.

Corollary . For fractional boundary value problem (.), let k : [a, b] → R+ be a non-
trivial Lebesgue integrable function, and f ∈ C(R+,R+) be a concave and nondecreasing
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function. If there exist two positive constants r > r >  such that the assumptions (H) and
(H) hold, then

∫ b

a
k(τ ) dτ >

β–�(β)�p(�(α + ))�p(r)
(b – a)αp+β–α–f (r)

.

Example . Consider the following fractional boundary value problem:

⎧
⎨

⎩

D/
+ (�.(CD/

+ y)) –
√

t ln( + y) = ,  < t < ,

y′() = CD/
+ y() = , y() = CD/

+ y() = .

Obviously, we have
(i) f (y) = ln( + y) : R+ →R+ is continuous, concave and nondecreasing;

(ii) k(t) =
√

t : [, ] →R+ is a Lebesgue integrable function with
∫ 

 k(t) dt = 
 > .

We now compute the values of ρ and ω in (H) and (H), respectively.

Since A/ = (( 
 )/ – ( 

 )/) =  –
√


 , we have c/ =


 –A/
–A/

=  –
√


 . where A/ and c/

(β = /) are as in (.). Hence

σ (s) =

⎧
⎨

⎩

√



(–s)/–
(s(–s))/ if s ∈ (,  –

√


 ],


s/ if s ∈ [ –
√


 , ).

Thus, by a simple computation, we obtain

ρ ≈ ., ω ≈ ..

Choosing r = / and r = , we obtain
. f (y) = ln( + y) ≥ ρ�.(r) for y ∈ [, /];
. f (y) = ln( + y) ≤ ω�.(r) for y ∈ [, ].

Hence, from Corollary ., we obtain

∫ 


k(t) dt >

�(/)�.( 
�(/))

ln 
≈ ..

5 Conclusions
In this paper, we prove existence of positive solutions to a nonlinear fractional boundary
value problem involving a p-Laplacian operator. Then, under some mild assumptions on
the nonlinear term, we present two new Lyapunov-type inequalities. A numerical example
shows that the new results are efficient.
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