### RESEARCH



CrossMark

# A new Z-eigenvalue localization set for tensors

Jianxing Zhao\*

\*Correspondence: zjx810204@163.com College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P.R. China

#### Abstract

A new Z-eigenvalue localization set for tensors is given and proved to be tighter than those in the work of Wang *et al.* (Discrete Contin. Dyn. Syst., Ser. B 22(1):187-198, 2017). Based on this set, a sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples are given to verify the theoretical results.

MSC: 15A18; 15A69

**Keywords:** *Z*-eigenvalue; localization set; nonnegative tensors; spectral radius; weakly symmetric

#### **1** Introduction

For a positive integer  $n, n \ge 2$ , N denotes the set  $\{1, 2, ..., n\}$ .  $\mathbb{C}$  ( $\mathbb{R}$ ) denotes the set of all complex (real) numbers. We call  $\mathcal{A} = (a_{i_1i_2\cdots i_m})$  a real tensor of order m dimension n, denoted by  $\mathbb{R}^{[m,n]}$ , if

 $a_{i_1i_2\cdots i_m} \in \mathbb{R}$ ,

where  $i_j \in N$  for j = 1, 2, ..., m.  $\mathcal{A}$  is called nonnegative if  $a_{i_1 i_2 \cdots i_m} \ge 0$ .  $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$  is called symmetric [2] if

 $a_{i_1\cdots i_m} = a_{\pi(i_1\cdots i_m)}, \quad \forall \pi \in \Pi_m,$ 

where  $\Pi_m$  is the permutation group of *m* indices.  $\mathcal{A} = (a_{i_1 i_2 \cdots i_m}) \in \mathbb{R}^{[m,n]}$  is called weakly symmetric [3] if the associated homogeneous polynomial

$$\mathcal{A}x^m = \sum_{i_1, i_2, \dots, i_m \in N} a_{i_1 i_2 \cdots i_m} x_{i_1} x_{i_2} \cdots x_{i_m}$$

satisfies  $\nabla Ax^m = mAx^{m-1}$ . It is shown in [3] that a symmetric tensor is necessarily weakly symmetric, but the converse is not true in general.

Given a tensor  $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ , if there are  $\lambda \in \mathbb{C}$  and  $x = (x_1, x_2 \cdots, x_n)^T \in \mathbb{C}^n \setminus \{0\}$ such that

$$\mathcal{A}x^{m-1} = \lambda x$$
 and  $x^T x = 1$ ,



© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

then  $\lambda$  is called an *E*-eigenvalue of A and *x* an *E*-eigenvector of A associated with  $\lambda$ , where  $Ax^{m-1}$  is an *n* dimension vector whose *i*th component is

$$(\mathcal{A}x^{m-1})_i = \sum_{i_2,\ldots,i_m \in N} a_{ii_2\cdots i_m} x_{i_2}\cdots x_{i_m}.$$

If  $\lambda$  and *x* are all real, then  $\lambda$  is called a *Z*-eigenvalue of *A* and *x* a *Z*-eigenvector of *A* associated with  $\lambda$ ; for details, see [2, 4].

Let  $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ . We define the *Z*-spectrum of  $\mathcal{A}$ , denoted  $\sigma(\mathcal{A})$  to be the set of all *Z*-eigenvalues of  $\mathcal{A}$ . Assume  $\sigma(\mathcal{A}) \neq 0$ , then the *Z*-spectral radius [3] of  $\mathcal{A}$ , denoted  $\varrho(\mathcal{A})$ , is defined as

$$\varrho(\mathcal{A}) := \sup \{ |\lambda| : \lambda \in \sigma(\mathcal{A}) \}.$$

Recently, much literature has focused on locating all *Z*-eigenvalues of tensors and bounding the *Z*-spectral radius of nonnegative tensors in [1, 5-10]. It is well known that one can use eigenvalue inclusion sets to obtain the lower and upper bounds of the spectral radius of nonnegative tensors; for details, see [1, 11-14]. Therefore, the main aim of this paper is to give a tighter *Z*-eigenvalue inclusion set for tensors, and use it to obtain a sharper upper bound for the *Z*-spectral radius of weakly symmetric nonnegative tensors.

In 2017, Wang *et al.* [1] established the following Geršgorin-type *Z*-eigenvalue inclusion theorem for tensors.

**Theorem 1** ([1], Theorem 3.1) Let  $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ . Then

$$\sigma(\mathcal{A}) \subseteq \mathcal{K}(\mathcal{A}) = \bigcup_{i \in N} \mathcal{K}_i(\mathcal{A}),$$

where

$$\mathcal{K}_i(\mathcal{A}) = \{ z \in \mathbb{C} : |z| \le R_i(\mathcal{A}) \}, \qquad R_i(\mathcal{A}) = \sum_{i_2, \dots, i_m \in N} |a_{ii_2 \cdots i_m}|.$$

To get a tighter *Z*-eigenvalue inclusion set than  $\mathcal{K}(\mathcal{A})$ , Wang *et al.* [1] gave the following Brauer-type *Z*-eigenvalue localization set for tensors.

**Theorem 2** ([1], Theorem 3.2) Let  $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ . Then

$$\sigma(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}) = \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} \mathcal{L}_{i,j}(\mathcal{A}),$$

where

$$\mathcal{L}_{i,j}(\mathcal{A}) = \big\{ z \in \mathbb{C} : \big( |z| - \big( R_i(\mathcal{A}) - |a_{ij\cdots j}| \big) \big) |z| \le |a_{ij\cdots j}| R_j(\mathcal{A}) \big\}.$$

In this paper, we continue this research on the *Z*-eigenvalue localization problem for tensors and its applications. We give a new *Z*-eigenvalue inclusion set for tensors and prove that the new set is tighter than those in Theorem 1 and Theorem 2. As an application of this set, we obtain a new upper bound for the *Z*-spectral radius of weakly symmetric nonnegative tensors, which is sharper than some existing upper bounds.

#### 2 Main results

In this section, we give a new Z-eigenvalue localization set for tensors, and establish the comparison between this set with those in Theorem 1 and Theorem 2. For simplification, we denote

$$\Delta_{j} = \{(i_{2}, i_{3}, \dots, i_{m}) : i_{k} = j \text{ for some } k \in \{2, \dots, m\}, \text{ where } j, i_{2}, \dots, i_{m} \in N\},\$$
  
$$\overline{\Delta_{j}} = \{(i_{2}, i_{3}, \dots, i_{m}) : i_{k} \neq j \text{ for any } k \in \{2, \dots, m\}, \text{ where } j, i_{2}, \dots, i_{m} \in N\}.$$

For  $\forall i, j \in N, j \neq i$ , let

$$r_i^{\Delta_j}(\mathcal{A}) = \sum_{(i_2,\dots,i_m)\in\Delta_j} |a_{ii_2\cdots i_m}|, \qquad r_i^{\overline{\Delta_j}}(\mathcal{A}) = \sum_{(i_2,\dots,i_m)\in\overline{\Delta_j}} |a_{ii_2\cdots i_m}|.$$

Then  $R_i(\mathcal{A}) = r_i^{\Delta_j}(\mathcal{A}) + r_i^{\overline{\Delta}_j}(\mathcal{A}).$ 

**Theorem 3** Let  $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ . Then

$$\sigma(\mathcal{A}) \subseteq \Psi(\mathcal{A}) = \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} \Psi_{i,j}(\mathcal{A}),$$

where

$$\Psi_{i,j}(\mathcal{A}) = \big\{ z \in \mathbb{C} : \big( |z| - r_i^{\overline{\Delta}_j}(\mathcal{A}) \big) |z| \le r_i^{\Delta_j}(\mathcal{A}) R_j(\mathcal{A}) \big\}.$$

*Proof* Let  $\lambda$  be a *Z*-eigenvalue of  $\mathcal{A}$  with corresponding *Z*-eigenvector  $x = (x_1, \dots, x_n)^T \in \mathbb{C}^n \setminus \{0\}, i.e.,$ 

$$Ax^{m-1} = \lambda x$$
, and  $||x||_2 = 1.$  (1)

Assume  $|x_t| = \max_{i \in N} |x_i|$ , then  $0 < |x_t|^{m-1} \le |x_t| \le 1$ . For  $\forall j \in N, j \ne t$ , from (1), we have

$$\lambda x_t = \sum_{(i_2,\dots,i_m)\in\Delta_j} a_{ti_2\cdots i_m} x_{i_2}\cdots x_{i_m} + \sum_{(i_2,\dots,i_m)\in\overline{\Delta}_j} a_{ti_2\cdots i_m} x_{i_2}\cdots x_{i_m}.$$

Taking the modulus in the above equation and using the triangle inequality give

$$\begin{aligned} |\lambda||x_t| &\leq \sum_{(i_2,\dots,i_m)\in\Delta_j} |a_{ti_2\cdots i_m}||x_{i_2}|\cdots|x_{i_m}| + \sum_{(i_2,\dots,i_m)\in\overline{\Delta_j}} |a_{ti_2\cdots i_m}||x_{i_2}|\cdots|x_{i_m}| \\ &\leq \sum_{(i_2,\dots,i_m)\in\Delta_j} |a_{ti_2\cdots i_m}||x_j| + \sum_{(i_2,\dots,i_m)\in\overline{\Delta_j}} |a_{ti_2\cdots i_m}||x_t| \\ &= r_t^{\Delta_j}(\mathcal{A})|x_j| + r_t^{\overline{\Delta_j}}(\mathcal{A})|x_t|, \end{aligned}$$

i.e.,

$$\left(|\lambda| - r_t^{\overline{\Delta}_j}(\mathcal{A})\right)|x_t| \le r_t^{\Delta_j}(\mathcal{A})|x_j|.$$
<sup>(2)</sup>

If  $|x_j| = 0$ , by  $|x_t| > 0$ , we have  $|\lambda| - r_t^{\overline{\Delta}_j}(\mathcal{A}) \le 0$ . Then

$$(|\lambda| - r_t^{\overline{\Delta}_j}(\mathcal{A}))|\lambda| \leq 0 \leq r_t^{\Delta_j}(\mathcal{A})R_j(\mathcal{A}).$$

Obviously,  $\lambda \in \Psi_{t,j}(\mathcal{A})$ . Otherwise,  $|x_j| > 0$ . From (1), we have

$$|\lambda||x_{j}| \leq \sum_{i_{2},\dots,i_{m}\in N} |a_{ji_{2}\cdots i_{m}}||x_{i_{2}}|\cdots|x_{i_{m}}| \leq \sum_{i_{2},\dots,i_{m}\in N} |a_{ji_{2}\cdots i_{m}}||x_{t}|^{m-1} \leq R_{j}(\mathcal{A})|x_{t}|.$$
(3)

Multiplying (2) with (3) and noting that  $|x_t||x_j| > 0$ , we have

$$(|\lambda| - r_t^{\overline{\Delta}_j}(\mathcal{A}))|\lambda| \leq r_t^{\Delta_j}(\mathcal{A})R_j(\mathcal{A}),$$

which implies that  $\lambda \in \Psi_{t,j}(\mathcal{A})$ . From the arbitrariness of j, we have  $\lambda \in \bigcap_{j \in N, j \neq t} \Psi_{t,j}(\mathcal{A})$ . Furthermore, we have  $\lambda \in \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} \Psi_{i,j}(\mathcal{A})$ .

Next, a comparison theorem is given for Theorem 1, Theorem 2 and Theorem 3.

**Theorem 4** Let  $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ . Then

$$\Psi(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}) \subseteq \mathcal{K}(\mathcal{A}).$$

*Proof* By Corollary 3.1 in [1],  $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{K}(\mathcal{A})$  holds. Here, we only prove  $\Psi(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$ . Let  $z \in \Psi(\mathcal{A})$ . Then there exists  $i \in N$ , such that  $z \in \Psi_{i,j}(\mathcal{A})$ ,  $\forall j \in N, j \neq i$ , that is,

$$\left(|z| - r_i^{\overline{\Delta}_j}(\mathcal{A})\right)|z| \le r_i^{\Delta_j}(\mathcal{A})R_j(\mathcal{A}), \quad \forall j \in N, j \neq i.$$
(4)

Next, we divide our subject in two cases to prove  $\Psi(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$ .

Case I: If  $r_i^{\Delta_j}(\mathcal{A})R_j(\mathcal{A}) = 0$ , then we have

$$\left(|z|-\left(R_i(\mathcal{A})-|a_{ij\cdots j}|\right)\right)|z|\leq \left(|z|-r_i^{\overline{\Delta}_j}(\mathcal{A})\right)|z|\leq r_i^{\Delta_j}(\mathcal{A})R_j(\mathcal{A})=0\leq |a_{ij\cdots j}|R_j(\mathcal{A}),$$

which implies that  $z \in \bigcap_{j \in N, j \neq i} \mathcal{L}_{i,j}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$  from the arbitrariness of *j*, consequently,  $\Psi(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$ .

Case II: If  $r_i^{\Delta_j}(\mathcal{A})R_j(\mathcal{A}) > 0$ , then dividing both sides by  $r_i^{\Delta_j}(\mathcal{A})R_j(\mathcal{A})$  in (4), we have

$$\frac{|z| - r_i^{\Delta_j}(\mathcal{A})}{r_i^{\Delta_j}(\mathcal{A})} \frac{|z|}{R_j(\mathcal{A})} \le 1,$$
(5)

which implies

$$\frac{|z| - r_i^{\Delta_j}(\mathcal{A})}{r_i^{\Delta_j}(\mathcal{A})} \le 1,\tag{6}$$

or

$$\frac{|z|}{R_j(\mathcal{A})} \le 1. \tag{7}$$

Let a = |z|,  $b = r_i^{\overline{\Delta}_j}(\mathcal{A})$ ,  $c = r_i^{\Delta_j}(\mathcal{A}) - |a_{ij\cdots j}|$  and  $d = |a_{ij\cdots j}|$ . When (6) holds and  $d = |a_{ij\cdots j}| > 0$ , from Lemma 2.2 in [11], we have

$$\frac{|z| - (R_i(\mathcal{A}) - |a_{ij\cdots j}|)}{|a_{ij\cdots j}|} = \frac{a - (b+c)}{d} \le \frac{a-b}{c+d} = \frac{|z| - r_i^{\Delta_j}(\mathcal{A})}{r_i^{\Delta_j}(\mathcal{A})}.$$
(8)

Furthermore, from (5) and (8), we have

$$\frac{|z|-(R_i(\mathcal{A})-|a_{ij\cdots j}|)}{|a_{ij\cdots j}|}\frac{|z|}{R_j(\mathcal{A})} \leq \frac{|z|-r_i^{\Delta_j}(\mathcal{A})}{r_i^{\Delta_j}(\mathcal{A})}\frac{|z|}{R_j(\mathcal{A})} \leq 1,$$

equivalently,

$$(|z| - (R_i(\mathcal{A}) - |a_{ij\cdots j}|))|z| \le |a_{ij\cdots j}|R_j(\mathcal{A}),$$

which implies that  $z \in \bigcap_{j \in N, j \neq i} \mathcal{L}_{i,j}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$  from the arbitrariness of *j*, consequently,  $\Psi(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$ . When (6) holds and  $d = |a_{ij\cdots j}| = 0$ , we have

$$|z|-r_i^{\overline{\Delta}_j}(\mathcal{A})-r_i^{\Delta_j}(\mathcal{A})\leq 0, \quad i.e., \quad |z|-\left(R_i(\mathcal{A})-|a_{ij\cdots j}|\right)\leq 0,$$

and furthermore

$$(|z| - (R_i(\mathcal{A}) - |a_{ij\cdots j}|))|z| \leq 0 = |a_{ij\cdots j}|R_j(\mathcal{A}).$$

This also implies  $\Psi(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$ .

On the other hand, when (7) holds, we only prove  $\Psi(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$  under the case that

$$\frac{|z| - r_i^{\Delta_j}(\mathcal{A})}{r_i^{\Delta_j}(\mathcal{A})} > 1.$$
<sup>(9)</sup>

From (9), we have  $\frac{a}{b+c+d} = \frac{|z|}{R_i(\mathcal{A})} > 1$ . When (7) holds and  $|a_{ji\cdots i}| > 0$ , by Lemma 2.3 in [11], we have

$$\frac{|z|}{R_i(\mathcal{A})} = \frac{a}{b+c+d} \le \frac{a-b}{c+d} = \frac{|z|-r_i^{\Delta_j}(\mathcal{A})}{r_i^{\Delta_j}(\mathcal{A})}.$$
(10)

By (7), Lemma 2.2 in [11] and similar to the proof of (8), we have

$$\frac{|z| - (R_j(\mathcal{A}) - |a_{ji\cdots i}|)}{|a_{ji\cdots i}|} \le \frac{|z|}{R_j(\mathcal{A})}.$$
(11)

\_

Multiplying (10) and (11), we have

$$\frac{|z|-(R_j(\mathcal{A})-|a_{ji\cdots i}|)}{|a_{ji\cdots i}|}\frac{|z|}{R_i(\mathcal{A})} \leq \frac{|z|-r_i^{\Delta_j}(\mathcal{A})}{r_i^{\Delta_j}(\mathcal{A})}\frac{|z|}{R_j(\mathcal{A})} \leq 1;$$

equivalently,

$$(|z| - (R_j(\mathcal{A}) - |a_{ji\cdots i}|))|z| \le |a_{ji\cdots i}|R_i(\mathcal{A}).$$

This implies  $z \in \bigcap_{i \in N, i \neq j} \mathcal{L}_{j,i}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$  and  $\Psi(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$  from the arbitrariness of *i*. When (7) holds and  $|a_{ji\cdots i}| = 0$ , we can obtain

$$|z|-R_j(\mathcal{A})\leq 0,$$
 i.e.,  $|z|-(R_j(\mathcal{A})-|a_{ji\cdots i}|)\leq 0$ 

and

$$(|z|-(R_j(\mathcal{A})-|a_{ji\cdots i}|))|z|\leq 0=|a_{ji\cdots i}|R_i(\mathcal{A}).$$

This also implies  $\Psi(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A})$ . The conclusion follows from Case I and Case II.

**Remark 1** Theorem 4 shows that the set  $\Psi(\mathcal{A})$  in Theorem 3 is tighter than  $\mathcal{K}(\mathcal{A})$  in Theorem 1 and  $\mathcal{L}(\mathcal{A})$  in Theorem 2, that is,  $\Psi(\mathcal{A})$  can capture all *Z*-eigenvalues of  $\mathcal{A}$  more precisely than  $\mathcal{K}(\mathcal{A})$  and  $\mathcal{L}(\mathcal{A})$ .

Now, we give an example to show that  $\Psi(\mathcal{A})$  is tighter than  $\mathcal{K}(\mathcal{A})$  and  $\mathcal{L}(\mathcal{A})$ .

**Example 1** Let  $\mathcal{A} = (a_{iikl}) \in \mathbb{R}^{[4,2]}$  be a symmetric tensor defined by

 $a_{1222} = 1$ ,  $a_{2222} = 2$ , and  $a_{ijkl} = 0$  elsewhere.

By computation, we see that all the *Z*-eigenvalues of A are -0.5000, 0 and 2.7000. By Theorem 1, we have

$$\mathcal{K}(\mathcal{A}) = \mathcal{K}_1(\mathcal{A}) \cup \mathcal{K}_2(\mathcal{A}) = \left\{ z \in \mathbb{C} : |z| \le 1 \right\} \cup \left\{ z \in \mathbb{C} : |z| \le 5 \right\}$$
$$= \left\{ z \in \mathbb{C} : |z| \le 5 \right\}.$$

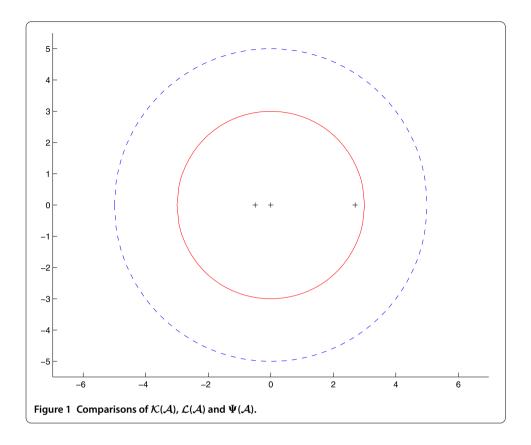
By Theorem 2, we have

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}_{1,2}(\mathcal{A}) \cup \mathcal{L}_{2,1}(\mathcal{A}) = \left\{ z \in \mathbb{C} : |z| \le 2.2361 \right\} \cup \left\{ z \in \mathbb{C} : |z| \le 5 \right\}$$
$$= \left\{ z \in \mathbb{C} : |z| \le 5 \right\}.$$

By Theorem 3, we have

$$\begin{split} \Psi(\mathcal{A}) &= \Psi_{1,2}(\mathcal{A}) \cup \Psi_{2,1}(\mathcal{A}) = \left\{ z \in \mathbb{C} : |z| \le 2.2361 \right\} \cup \left\{ z \in \mathbb{C} : |z| \le 3 \right\} \\ &= \left\{ z \in \mathbb{C} : |z| \le 3 \right\}. \end{split}$$

The *Z*-eigenvalue inclusion sets  $\mathcal{K}(\mathcal{A})$ ,  $\mathcal{L}(\mathcal{A})$ ,  $\Psi(\mathcal{A})$  and the exact *Z*-eigenvalues are drawn in Figure 1, where  $\mathcal{K}(\mathcal{A})$  and  $\mathcal{L}(\mathcal{A})$  are represented by blue dashed boundary,  $\Psi(\mathcal{A})$  is represented by red solid boundary and the exact eigenvalues are plotted by '+', respectively. It is easy to see  $\sigma(\mathcal{A}) \subseteq \Psi(\mathcal{A}) \subset \mathcal{L}(\mathcal{A}) \subseteq \mathcal{K}(\mathcal{A})$ , that is,  $\Psi(\mathcal{A})$  can capture all *Z*-eigenvalues of  $\mathcal{A}$  more precisely than  $\mathcal{L}(\mathcal{A})$  and  $\mathcal{K}(\mathcal{A})$ .



## 3 A new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors

As an application of the results in Section 2, we in this section give a new upper bound for the *Z*-spectral radius of weakly symmetric nonnegative tensors.

**Theorem 5** Let  $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$  be a weakly symmetric nonnegative tensor. Then

$$\varrho(\mathcal{A}) \leq \max_{i \in N} \min_{j \in N, j \neq i} \Phi_{i,j}(\mathcal{A}),$$

where

$$\Phi_{i,j}(\mathcal{A}) = \frac{1}{2} \left\{ r_i^{\overline{\Delta}_j}(\mathcal{A}) + \sqrt{\left(r_i^{\overline{\Delta}_j}(\mathcal{A})\right)^2 + 4r_i^{\Delta_j}(\mathcal{A})R_j(\mathcal{A})} \right\}$$

*Proof* From Lemma 4.4 in [1], we know that  $\rho(A)$  is the largest *Z*-eigenvalue of *A*. It follows from Theorem 3 that there exists  $i \in N$  such that

$$\left(\varrho(\mathcal{A}) - r_i^{\overline{\Delta}_j}(\mathcal{A})\right)\varrho(\mathcal{A}) \le r_i^{\Delta_j}(\mathcal{A})R_j(\mathcal{A}), \quad \forall j \in N, j \neq i.$$
(12)

Solving  $\rho(A)$  in (12) gives

$$\varrho(\mathcal{A}) \leq \frac{1}{2} \left\{ r_i^{\overline{\Delta}_j}(\mathcal{A}) + \sqrt{\left(r_i^{\overline{\Delta}_j}(\mathcal{A})\right)^2 + 4r_i^{\Delta_j}(\mathcal{A})R_j(\mathcal{A})} \right\} = \Phi_{i,j}(\mathcal{A}).$$

From the arbitrariness of j, we have  $\rho(\mathcal{A}) \leq \min_{j \in N, j \neq i} \Phi_{i,j}(\mathcal{A})$ . Furthermore,  $\rho(\mathcal{A}) \leq \max_{i \in N} \min_{j \in N, j \neq i} \Phi_{i,j}(\mathcal{A})$ .  $\Box$ 

By Theorem 4, Theorem 4.5 and Corollary 4.1 in [1], the following comparison theorem can be derived easily.

**Theorem 6** Let  $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$  be a weakly symmetric nonnegative tensor. Then the upper bound in Theorem 5 is sharper than those in Theorem 4.5 of [1] and Corollary 4.5 of [5], that is,

$$\begin{split} \varrho(\mathcal{A}) &\leq \max_{i \in N} \min_{j \in N, j \neq i} \Phi_{i,j}(\mathcal{A}) \\ &\leq \max_{i \in N} \min_{j \in N, j \neq i} \frac{1}{2} \Big\{ R_i(\mathcal{A}) - a_{ij \cdots j} + \sqrt{\big( R_i(\mathcal{A}) - a_{ij \cdots j} \big)^2 + 4a_{ij \cdots j} R_j(\mathcal{A})} \Big\} \\ &\leq \max_{i \in N} R_i(\mathcal{A}). \end{split}$$

Finally, we show that the upper bound in Theorem 5 is sharper than those in [1, 5-8, 10] by the following example.

**Example 2** Let  $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{[3,3]}$  with the entries defined as follows:

$$\mathcal{A}(:,:,1) = \begin{pmatrix} 3 & 3 & 0 \\ 3 & 2 & 2.5 \\ 0.5 & 2.5 & 0 \end{pmatrix}, \qquad \mathcal{A}(:,:,2) = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 0 & 3 \\ 2.5 & 3 & 1 \end{pmatrix},$$
$$\mathcal{A}(:,:,3) = \begin{pmatrix} 1 & 3 & 0 \\ 2.5 & 3 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

It is not difficult to verify that A is a weakly symmetric nonnegative tensor. By both Corollary 4.5 of [5] and Theorem 3.3 of [6], we have

$$\varrho(\mathcal{A}) \leq 19.$$

By Theorem 3.5 of [7], we have

$$\varrho(\mathcal{A}) \leq 18.6788.$$

By Theorem 4.6 of [1], we have

$$\rho(A) \le 18.6603.$$

By both Theorem 4.5 of [1] and Theorem 6 of [8], we have

$$\varrho(\mathcal{A}) \leq 18.5656.$$

By Theorem 4.7 of [1], we have

$$\varrho(\mathcal{A}) \leq 18.3417.$$

By Theorem 2.9 of [10], we have

 $\varrho(A) \le 17.2063.$ 

By Theorem 5, we obtain

 $\rho(A) \le 15.2580,$ 

which shows that the upper bound in Theorem 5 is sharper.

#### **4** Conclusions

In this paper, we present a new *Z*-eigenvalue localization set  $\Psi(\mathcal{A})$  and prove that this set is tighter than those in [1]. As an application, we obtain a new upper bound  $\max_{i \in N} \min_{j \in N, j \neq i} \Phi_{i,j}(\mathcal{A})$  for the *Z*-spectral radius of weakly symmetric nonnegative tensors, and we show that this bound is sharper than those in [1, 5–8, 10] in some cases by a numerical example.

#### **Competing interests**

The author declares that they have no competing interests.

#### Author's contributions

The author read and approved the final manuscript.

#### Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11501141), the Foundation of Guizhou Science and Technology Department (Grant No. [2015]2073) and the Natural Science Programs of Education Department of Guizhou Province (Grant No. [2016]066).

#### **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 February 2017 Accepted: 11 April 2017 Published online: 21 April 2017

#### References

- 1. Wang, G, Zhou, GL, Caccetta, L: Z-Eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst., Ser. B 22(1), 187-198 (2017)
- 2. Qi, LQ: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302-1324 (2005)
- Chang, KC, Pearson, K, Zhang, T: Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438, 4166-4182 (2013)
- Lim, LH: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP '05), pp. 129-132 (2005)
- Song, YS, Qi, LQ: Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J. Matrix Anal. Appl. 34, 1581-1595 (2013)
- Li, W, Liu, DD, Vong, SW: Z-Eigenpair bounds for an irreducible nonnegative tensor. Linear Algebra Appl. 483, 182-199 (2015)
- 7. He, J: Bounds for the largest eigenvalue of nonnegative tensors. J. Comput. Anal. Appl. 20(7), 1290-1301 (2016)
- 8. He, J, Liu, YM, Ke, H, Tian, JK, Li, X: Bounds for the Z-spectral radius of nonnegative tensors. SpringerPlus 5, 1727 (2016)
- 9. He, J, Huang, TZ: Upper bound for the largest Z-eigenvalue of positive tensors. Appl. Math. Lett. 38, 110-114 (2014)
- 10. Liu, QL, Li, YT: Bounds for the Z-eigenpair of general nonnegative tensors. Open Math. 14, 181-194 (2016)
- Li, CQ, Li, YT: An eigenvalue localization set for tensor with applications to determine the positive (semi-)definiteness
  of tensors. Linear Multilinear Algebra 64(4), 587-601 (2016)
- 12. Li, CQ, Li, YT, Kong, X: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39-50 (2014)
- Li, CQ, Zhou, JJ, Li, YT: A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra 64(4), 727-736 (2016)
- 14. Li, CQ, Chen, Z, Li, YT: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36-53 (2015)