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Abstract
A new Z-eigenvalue localization set for tensors is given and proved to be tighter than
those in the work of Wang et al. (Discrete Contin. Dyn. Syst., Ser. B 22(1):187-198, 2017).
Based on this set, a sharper upper bound for the Z-spectral radius of weakly
symmetric nonnegative tensors is obtained. Finally, numerical examples are given to
verify the theoretical results.

MSC: 15A18; 15A69

Keywords: Z-eigenvalue; localization set; nonnegative tensors; spectral radius;
weakly symmetric

1 Introduction
For a positive integer n, n ≥ , N denotes the set {, , . . . , n}. C (R) denotes the set of
all complex (real) numbers. We call A = (aii···im ) a real tensor of order m dimension n,
denoted by R

[m,n], if

aii···im ∈R,

where ij ∈ N for j = , , . . . , m. A is called nonnegative if aii···im ≥ . A = (ai···im ) ∈R
[m,n]

is called symmetric [] if

ai···im = aπ (i···im), ∀π ∈ �m,

where �m is the permutation group of m indices. A = (aii···im ) ∈ R[m,n] is called weakly
symmetric [] if the associated homogeneous polynomial

Axm =
∑

i,i,...,im∈N

aii···im xi xi · · ·xim

satisfies ∇Axm = mAxm–. It is shown in [] that a symmetric tensor is necessarily weakly
symmetric, but the converse is not true in general.

Given a tensor A = (ai···im ) ∈ R
[m,n], if there are λ ∈ C and x = (x, x · · · , xn)T ∈ C

n\{}
such that

Axm– = λx and xT x = ,

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1363-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1363-6&domain=pdf
http://orcid.org/0000-0001-5938-3518
mailto:zjx810204@163.com


Zhao Journal of Inequalities and Applications  (2017) 2017:85 Page 2 of 9

then λ is called an E-eigenvalue of A and x an E-eigenvector of A associated with λ, where
Axm– is an n dimension vector whose ith component is

(
Axm–)

i =
∑

i,...,im∈N

aii···im xi · · ·xim .

If λ and x are all real, then λ is called a Z-eigenvalue of A and x a Z-eigenvector of A
associated with λ; for details, see [, ].

Let A = (ai···im ) ∈ R
[m,n]. We define the Z-spectrum of A, denoted σ (A) to be the set

of all Z-eigenvalues of A. Assume σ (A) �= , then the Z-spectral radius [] of A, denoted
�(A), is defined as

�(A) := sup
{|λ| : λ ∈ σ (A)

}
.

Recently, much literature has focused on locating all Z-eigenvalues of tensors and
bounding the Z-spectral radius of nonnegative tensors in [, –]. It is well known that
one can use eigenvalue inclusion sets to obtain the lower and upper bounds of the spec-
tral radius of nonnegative tensors; for details, see [, –]. Therefore, the main aim of
this paper is to give a tighter Z-eigenvalue inclusion set for tensors, and use it to obtain a
sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors.

In , Wang et al. [] established the following Gers̆gorin-type Z-eigenvalue inclusion
theorem for tensors.

Theorem  ([], Theorem .) Let A = (ai···im ) ∈R
[m,n]. Then

σ (A) ⊆K(A) =
⋃

i∈N

Ki(A),

where

Ki(A) =
{

z ∈C : |z| ≤ Ri(A)
}

, Ri(A) =
∑

i,...,im∈N

|aii···im |.

To get a tighter Z-eigenvalue inclusion set than K(A), Wang et al. [] gave the following
Brauer-type Z-eigenvalue localization set for tensors.

Theorem  ([], Theorem .) Let A = (ai···im ) ∈R
[m,n]. Then

σ (A) ⊆L(A) =
⋃

i∈N

⋂

j∈N ,j �=i

Li,j(A),

where

Li,j(A) =
{

z ∈C :
(|z| –

(
Ri(A) – |aij···j|

))|z| ≤ |aij···j|Rj(A)
}

.

In this paper, we continue this research on the Z-eigenvalue localization problem for
tensors and its applications. We give a new Z-eigenvalue inclusion set for tensors and
prove that the new set is tighter than those in Theorem  and Theorem . As an application
of this set, we obtain a new upper bound for the Z-spectral radius of weakly symmetric
nonnegative tensors, which is sharper than some existing upper bounds.
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2 Main results
In this section, we give a new Z-eigenvalue localization set for tensors, and establish the
comparison between this set with those in Theorem  and Theorem . For simplification,
we denote

�j =
{

(i, i, . . . , im) : ik = j for some k ∈ {, . . . , m}, where j, i, . . . , im ∈ N
}

,

�j =
{

(i, i, . . . , im) : ik �= j for any k ∈ {, . . . , m}, where j, i, . . . , im ∈ N
}

.

For ∀i, j ∈ N , j �= i, let

r�j
i (A) =

∑

(i,...,im)∈�j

|aii···im |, r�j
i (A) =

∑

(i,...,im)∈�j

|aii···im |.

Then Ri(A) = r�j
i (A) + r�j

i (A).

Theorem  Let A = (ai···im ) ∈R[m,n]. Then

σ (A) ⊆ �(A) =
⋃

i∈N

⋂

j∈N ,j �=i

�i,j(A),

where

�i,j(A) =
{

z ∈ C :
(|z| – r�j

i (A)
)|z| ≤ r�j

i (A)Rj(A)
}

.

Proof Let λ be a Z-eigenvalue of A with corresponding Z-eigenvector x = (x, . . . , xn)T ∈
C

n\{}, i.e.,

Axm– = λx, and ‖x‖ = . ()

Assume |xt| = maxi∈N |xi|, then  < |xt|m– ≤ |xt| ≤ . For ∀j ∈ N , j �= t, from (), we have

λxt =
∑

(i,...,im)∈�j

ati···im xi · · ·xim +
∑

(i,...,im)∈�j

ati···im xi · · ·xim .

Taking the modulus in the above equation and using the triangle inequality give

|λ||xt| ≤
∑

(i,...,im)∈�j

|ati···im ||xi | · · · |xim | +
∑

(i,...,im)∈�j

|ati···im ||xi | · · · |xim |

≤
∑

(i,...,im)∈�j

|ati···im ||xj| +
∑

(i,...,im)∈�j

|ati···im ||xt|

= r�j
t (A)|xj| + r�j

t (A)|xt|,

i.e.,

(|λ| – r�j
t (A)

)|xt| ≤ r�j
t (A)|xj|. ()
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If |xj| = , by |xt| > , we have |λ| – r�j
t (A) ≤ . Then

(|λ| – r�j
t (A)

)|λ| ≤  ≤ r�j
t (A)Rj(A).

Obviously, λ ∈ �t,j(A). Otherwise, |xj| > . From (), we have

|λ||xj| ≤
∑

i,...,im∈N

|aji···im ||xi | · · · |xim | ≤
∑

i,...,im∈N

|aji···im ||xt|m– ≤ Rj(A)|xt|. ()

Multiplying () with () and noting that |xt||xj| > , we have

(|λ| – r�j
t (A)

)|λ| ≤ r�j
t (A)Rj(A),

which implies that λ ∈ �t,j(A). From the arbitrariness of j, we have λ ∈ ⋂
j∈N ,j �=t �t,j(A).

Furthermore, we have λ ∈ ⋃
i∈N

⋂
j∈N ,j �=i �i,j(A). �

Next, a comparison theorem is given for Theorem , Theorem  and Theorem .

Theorem  Let A = (ai···im ) ∈R[m,n]. Then

�(A) ⊆L(A) ⊆K(A).

Proof By Corollary . in [], L(A) ⊆K(A) holds. Here, we only prove �(A) ⊆L(A). Let
z ∈ �(A). Then there exists i ∈ N , such that z ∈ �i,j(A), ∀j ∈ N , j �= i, that is,

(|z| – r�j
i (A)

)|z| ≤ r�j
i (A)Rj(A), ∀j ∈ N , j �= i. ()

Next, we divide our subject in two cases to prove �(A) ⊆L(A).
Case I: If r�j

i (A)Rj(A) = , then we have

(|z| –
(
Ri(A) – |aij···j|

))|z| ≤ (|z| – r�j
i (A)

)|z| ≤ r�j
i (A)Rj(A) =  ≤ |aij···j|Rj(A),

which implies that z ∈ ⋂
j∈N ,j �=i Li,j(A) ⊆ L(A) from the arbitrariness of j, consequently,

�(A) ⊆L(A).
Case II: If r�j

i (A)Rj(A) > , then dividing both sides by r�j
i (A)Rj(A) in (), we have

|z| – r�j
i (A)

r�j
i (A)

|z|
Rj(A)

≤ , ()

which implies

|z| – r�j
i (A)

r�j
i (A)

≤ , ()

or

|z|
Rj(A)

≤ . ()
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Let a = |z|, b = r�j
i (A), c = r�j

i (A) – |aij···j| and d = |aij···j|. When () holds and d = |aij···j| > ,
from Lemma . in [], we have

|z| – (Ri(A) – |aij···j|)
|aij···j| =

a – (b + c)
d

≤ a – b
c + d

=
|z| – r�j

i (A)

r�j
i (A)

. ()

Furthermore, from () and (), we have

|z| – (Ri(A) – |aij···j|)
|aij···j|

|z|
Rj(A)

≤ |z| – r�j
i (A)

r�j
i (A)

|z|
Rj(A)

≤ ,

equivalently,

(|z| –
(
Ri(A) – |aij···j|

))|z| ≤ |aij···j|Rj(A),

which implies that z ∈ ⋂
j∈N ,j �=i Li,j(A) ⊆ L(A) from the arbitrariness of j, consequently,

�(A) ⊆L(A). When () holds and d = |aij···j| = , we have

|z| – r�j
i (A) – r�j

i (A) ≤ , i.e., |z| –
(
Ri(A) – |aij···j|

) ≤ ,

and furthermore

(|z| –
(
Ri(A) – |aij···j|

))|z| ≤  = |aij···j|Rj(A).

This also implies �(A) ⊆L(A).
On the other hand, when () holds, we only prove �(A) ⊆L(A) under the case that

|z| – r�j
i (A)

r�j
i (A)

> . ()

From (), we have a
b+c+d = |z|

Ri(A) > . When () holds and |aji···i| > , by Lemma . in [],
we have

|z|
Ri(A)

=
a

b + c + d
≤ a – b

c + d
=

|z| – r�j
i (A)

r�j
i (A)

. ()

By (), Lemma . in [] and similar to the proof of (), we have

|z| – (Rj(A) – |aji···i|)
|aji···i| ≤ |z|

Rj(A)
. ()

Multiplying () and (), we have

|z| – (Rj(A) – |aji···i|)
|aji···i|

|z|
Ri(A)

≤ |z| – r�j
i (A)

r�j
i (A)

|z|
Rj(A)

≤ ;
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equivalently,

(|z| –
(
Rj(A) – |aji···i|

))|z| ≤ |aji···i|Ri(A).

This implies z ∈ ⋂
i∈N ,i�=j Lj,i(A) ⊆ L(A) and �(A) ⊆ L(A) from the arbitrariness of i.

When () holds and |aji···i| = , we can obtain

|z| – Rj(A) ≤ , i.e., |z| –
(
Rj(A) – |aji···i|

) ≤ 

and

(|z| –
(
Rj(A) – |aji···i|

))|z| ≤  = |aji···i|Ri(A).

This also implies �(A) ⊆L(A). The conclusion follows from Case I and Case II. �

Remark  Theorem  shows that the set �(A) in Theorem  is tighter than K(A) in
Theorem  and L(A) in Theorem , that is, �(A) can capture all Z-eigenvalues of A more
precisely than K(A) and L(A).

Now, we give an example to show that �(A) is tighter than K(A) and L(A).

Example  Let A = (aijkl) ∈ R
[,] be a symmetric tensor defined by

a = , a = , and aijkl =  elsewhere.

By computation, we see that all the Z-eigenvalues of A are –.,  and .. By
Theorem , we have

K(A) = K(A) ∪K(A) =
{

z ∈C : |z| ≤ 
} ∪ {

z ∈C : |z| ≤ 
}

=
{

z ∈C : |z| ≤ 
}

.

By Theorem , we have

L(A) = L,(A) ∪L,(A) =
{

z ∈C : |z| ≤ .
} ∪ {

z ∈ C : |z| ≤ 
}

=
{

z ∈C : |z| ≤ 
}

.

By Theorem , we have

�(A) = �,(A) ∪ �,(A) =
{

z ∈C : |z| ≤ .
} ∪ {

z ∈C : |z| ≤ 
}

=
{

z ∈C : |z| ≤ 
}

.

The Z-eigenvalue inclusion sets K(A), L(A), �(A) and the exact Z-eigenvalues are drawn
in Figure , where K(A) and L(A) are represented by blue dashed boundary, �(A) is rep-
resented by red solid boundary and the exact eigenvalues are plotted by ‘+’, respectively. It
is easy to see σ (A) ⊆ �(A) ⊂ L(A) ⊆ K(A), that is, �(A) can capture all Z-eigenvalues
of A more precisely than L(A) and K(A).
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Figure 1 Comparisons of K(A), L(A) and �(A).

3 A new upper bound for the Z-spectral radius of weakly symmetric
nonnegative tensors

As an application of the results in Section , we in this section give a new upper bound for
the Z-spectral radius of weakly symmetric nonnegative tensors.

Theorem  Let A = (ai···im ) ∈R
[m,n] be a weakly symmetric nonnegative tensor. Then

�(A) ≤ max
i∈N

min
j∈N ,j �=i

	i,j(A),

where

	i,j(A) =



{
r�j

i (A) +

√
(
r�j

i (A)
) + r�j

i (A)Rj(A)
}

.

Proof From Lemma . in [], we know that �(A) is the largest Z-eigenvalue of A. It fol-
lows from Theorem  that there exists i ∈ N such that

(
�(A) – r�j

i (A)
)
�(A) ≤ r�j

i (A)Rj(A), ∀j ∈ N , j �= i. ()

Solving �(A) in () gives

�(A) ≤ 


{
r�j

i (A) +

√
(
r�j

i (A)
) + r�j

i (A)Rj(A)
}

= 	i,j(A).

From the arbitrariness of j, we have �(A) ≤ minj∈N ,j �=i 	i,j(A). Furthermore, �(A) ≤
maxi∈N minj∈N ,j �=i 	i,j(A). �
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By Theorem , Theorem . and Corollary . in [], the following comparison theorem
can be derived easily.

Theorem  Let A = (ai···im ) ∈ R[m,n] be a weakly symmetric nonnegative tensor. Then the
upper bound in Theorem  is sharper than those in Theorem . of [] and Corollary . of
[], that is,

�(A) ≤ max
i∈N

min
j∈N ,j �=i

	i,j(A)

≤ max
i∈N

min
j∈N ,j �=i



{

Ri(A) – aij···j +
√(

Ri(A) – aij···j
) + aij···jRj(A)

}

≤ max
i∈N

Ri(A).

Finally, we show that the upper bound in Theorem  is sharper than those in [, –, ]
by the following example.

Example  Let A = (aijk) ∈R[,] with the entries defined as follows:

A(:, :, ) =

⎛

⎜⎝
  
  .

. . 

⎞

⎟⎠ , A(:, :, ) =

⎛

⎜⎝
  
  

.  

⎞

⎟⎠ ,

A(:, :, ) =

⎛

⎜⎝
  

.  
  

⎞

⎟⎠ .

It is not difficult to verify that A is a weakly symmetric nonnegative tensor. By both Corol-
lary . of [] and Theorem . of [], we have

�(A) ≤ .

By Theorem . of [], we have

�(A) ≤ ..

By Theorem . of [], we have

�(A) ≤ ..

By both Theorem . of [] and Theorem  of [], we have

�(A) ≤ ..

By Theorem . of [], we have

�(A) ≤ ..
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By Theorem . of [], we have

�(A) ≤ ..

By Theorem , we obtain

�(A) ≤ .,

which shows that the upper bound in Theorem  is sharper.

4 Conclusions
In this paper, we present a new Z-eigenvalue localization set �(A) and prove that
this set is tighter than those in []. As an application, we obtain a new upper bound
maxi∈N minj∈N ,j �=i 	i,j(A) for the Z-spectral radius of weakly symmetric nonnegative ten-
sors, and we show that this bound is sharper than those in [, –, ] in some cases by a
numerical example.
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