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Abstract
By estimating the ratio of the smallest component and the largest component of a
Perron vector, we provide a new bound for the spectral radius of a nonnegative
tensor. And it is proved that the proposed result improves the bound in (Li and Ng in
Numer. Math. 130(2):315-335, 2015).

Keywords: nonnegative tensor; weakly irreducible; spectral radius; Perron eigenpair

1 Introduction
Let C (R) be the set of all complex (real) numbers, R+ (R++) be the set of all nonnegative
(positive) numbers, Cn (Rn) be the set of all dimension n complex (real) vectors, and R

n
+

(Rn
++) be the set of all dimension n nonnegative (positive) vectors. An order m dimension

n complex (real) tensor A = (aii···im ), denoted by A ∈ C
[m,n] (A ∈ R

[m,n], respectively),
consists of nm entries:

aii···im ∈C (R), ∀ik ∈ N = {, , . . . , n}, k = , , . . . , m.

A tensor A = (aii···im ) ∈R
[m,n] is called nonnegative if

aii···im ≥ , ∀ik ∈ N , k = , , . . . , m.

As the eigenvalues of matrices have many extensive applications, the H-eigenvalues []
for higher order tensors also have a wide range of applications such as numerical multi-
linear algebra and higher order Markov chains [–].

Definition  ([]) Let A = (aii···im ) ∈ C
[m,n]. Then (λ, x) ∈ C×C

n\{} is called an eigen-
pair of A if

Axm– = λx[m–],

where Axm– and x[m–] are dimension n vectors with ith entries

(
Axm–)

i =
∑

i,...,im∈N

aii···im xi · · ·xim ,
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and

x[m–]
i = xm–

i .

Specifically, (λ, x) is called an H-eigenpair if (λ, x) ∈R×Rn.

Recently, the spectral radius problem for nonnegative tensors has attracted special
attention of researchers [–]. In [], Chang et al. generalized the famous Perron-
Frobenius theorem [] for irreducible nonnegative matrices to irreducible nonnegative
tensors.

Definition  ([]) Let A = (aii···im ) ∈ C
[m,n]. A is called reducible if there is a nonempty

proper subset K ⊂ N such that

aii···im = , ∀i ∈ K ,∀i, . . . , im /∈ K .

If A is not reducible, then we call A irreducible.

Theorem  ([]) Let A = (aii···im ) ∈R[m,n] be an irreducible nonnegative tensor and

ρ(A) = max
{|λ| : λ ∈ σ (A)

}

be the spectral radius of A, where

σ (A) = {λ : λ is an eigenvalue of A}.

Then ρ(A) >  is an eigenvalue of A with a positive eigenvector x corresponding to it.

Note that ρ(A) and x in Theorem  are called the Perron root and the Perron vector of
A, respectively, and (ρ(A), x) is regarded as a Perron eigenpair.

Subsequently, Friedland et al. generalized the result in Theorem  to weakly irreducible
[] nonnegative tensors in [].

Definition  ([]) Let A = (aii···im ) ∈C
[m,n], define a matrix M = (Mij) ∈C

n×n with

Mij =
∑

j∈{i,...,im}
|aii···im |, ∀i ∈ N ,∀j ∈ N .

A is called weakly irreducible if M is an irreducible matrix.

Theorem  ([]) Let A = (aii···im ) ∈ R[m,n] be a weakly irreducible nonnegative ten-
sor. Then ρ(A) >  is an eigenvalue of A with a positive eigenvector x corresponding
to it.

In [], Yang and Yang generalized the result in Theorem  to nonnegative tensors.
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Theorem  ([]) Let A = (aii···im ) ∈ R
[m,n] be a nonnegative tensor, then ρ(A) ≥  is an

eigenvalue of A with a nonnegative eigenvector x corresponding to it.

For the spectral radius of a nonnegative tensor A, although some algorithms of calcu-
lating its value were proposed [–], it is not easy to choose an appropriate iterative
initial value such that these iterative methods rapidly converge to its exact value. There-
fore, it is necessary to give an initial estimate for the spectral radius of a nonnegative
tensor. Actually, there are already some results for the bound of the nonnegative ten-
sors’ spectral radius, for example, Yang and Yang extended the classical spectral radius
bound for nonnegative matrices to nonnegative tensors in [] and obtained the following
result.

Theorem  ([]) Let A = (aii···im ) ∈R
[m,n] be a nonnegative tensor, then

r ≤ ρ(A) ≤ R, ()

where

ri(A) =
∑

i,...,im∈N

aii···im , r = min
i∈N

ri(A), R = max
i∈N

ri(A).

In [], by estimating the ratio of the smallest component and the largest component of a
Perron vector, Li and Ng gave the following bound for the spectral radius of a nonnegative
tensor and proved it is better than the bound in ().

Theorem  ([]) Let A = (aii···im ) ∈R
[m,n] be a nonnegative tensor, then

ν(A) ≤ ρ(A) ≤ ω(A), ()

where

ν(A) = min
i,j∈N

{
aij···j

(


τ (A)m– – 
)

+ ri(A)
}

,

ω(A) = max
i,j∈N

{
ri(A) – aij···j

(
 – τ (A)m–)},

τ (A) =
(

r – β(A)
R – β(A)

) 
(m–)

,

β(A) = min
i,j∈N

{aij···j}.

Furthermore, r ≤ ν(A) ≤ ω(A) ≤ R.

In this paper, we continue to study this problem and present a new lower bound and a
new upper bound for the spectral radius of a nonnegative tensor by giving a new ratio of
the smallest component and the largest component of a Perron vector. It is proved that
this bound is better than the bound in (). Numerical examples are also given to illustrate
the efficiency of the proposed results.
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2 Bounds for the spectral radius of nonnegative tensors
In this section, we first give a lemma to estimate the ratio of the smallest component and
the largest component of a Perron vector, and then we give a bound for the spectral radius
of nonnegative tensors.

Lemma  Let A = (aii···im ) ∈ R
[m,n] be a weakly irreducible nonnegative tensor with a

Perron vector x, and let xs = mini∈N {xi}, xl = maxi∈N {xi}. Then

xs

xl
≤ ζ (A),

where

ζ (A) =
{ r – β(A) –

∑m–
k= [

(m–
k

)
(n – )kβk(A)( – ( r–β(A)

R–β(A) )
m–k–
(m–) )]

R – β(A)

} 
(m–)

,

βt(A) = min
i,j∈N

{
aii···im : (i, . . . , im) ∈ �(j; m – t – )

}
, t = , , . . . , m – ,

�(j; u) =
⋃

S⊆{,...,m},
|S|=u

{
(i, . . . , im) : iv = j,∀v ∈ S, and iv 	= j,∀v /∈ S

}
, u = , , . . . , m – .

Proof Since A is a weakly irreducible nonnegative tensor, according to Theorem , we
have (ρ(A), x) ∈R++ ×R

n
++ is a Perron eigenpair of A. Without loss of generality, suppose

that rp(A) = R, rq(A) = r. By Axm– = ρ(A)x[m–], we have that for each i ∈ N ,

ρ(A)xm–
i =

∑

i,...,im∈N

aii···im xi · · ·xim

= ail···lxm–
l +

∑

(i,...,im) 	=(l,...,l),
i,...,im∈N

aii···im xi · · ·xim

≥ ail···lxm–
l +

∑

(i,...,im) 	=(l,...,l),
i,...,im∈N

aii···im xm–
s

= ail···l
(
xm–

l – xm–
s

)
+ ri(A)xm–

s . ()

Taking i = p in (), we obtain that

ρ(A)xm–
p ≥ apl···l

(
xm–

l – xm–
s

)
+ Rxm–

s . ()

Multiplying x–(m–)
p on both sides of () gives

ρ(A) ≥ apl···l
(

xm–
l – xm–

s
xm–

p

)
+ R

xm–
s

xm–
p

≥ β(A)
(

xm–
l – xm–

s

xm–
p

)
+ R

xm–
s

xm–
p

≥ β(A)
(

xm–
l – xm–

s

xm–
l

)
+ R

xm–
s

xm–
l

= β(A) +
(
R – β(A)

)(xs

xl

)m–

. ()
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Similarly, we have that for each i ∈ N ,

ρ(A)xm–
i =

∑

i,...,im∈N

aii···im xi · · ·xim

≤ ais···sxm–
s +

∑

(i,...,im)∈�(s;m–)

aii···im xm–
s xl + · · ·

+
∑

(i,...,im)∈�(s;k)

aii···im xk
s xm–k–

l + · · ·

+
∑

(i,...,im)∈�(s;)

aii···im xsxm–
l +

∑

(i,...,im)∈�(s;)

aii···im xm–
l

= ais···s
(
xm–

s – xm–
l

)
+

∑

(i,...,im)∈�(s;m–)

aii···im
(
xm–

s xl – xm–
l

)

+ · · · +
∑

(i,...,im)∈�(s;k)

aii···im
(
xk

s xm–k–
l – xm–

l
)

+ · · ·

+
∑

(i,...,im)∈�(s;)

aii···im
(
xsxm–

l – xm–
l

)
+ ri(A)xm–

l

≤ β(A)
(
xm–

s – xm–
l

)
+

(
m – 



)
(n – )β(A)

(
xm–

s xl – xm–
l

)
+ · · ·

+
(

m – 
m – k – 

)
(n – )m–k–βm–k–(A)

(
xk

s xm–k–
l – xm–

l
)

+ · · ·

+
(

m – 
m – 

)
(n – )m–βm–(A)

(
xsxm–

l – xm–
l

)
+ ri(A)xm–

l

=
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

(
xm–k–

s xk
l – xm–

l
)

+ ri(A)xm–
l . ()

Taking i = q in (), we have that

ρ(A)xm–
q ≤

m–∑

k=

(
m – 

k

)
(n – )kβk(A)xm–k–

s xk
l

+

(

r –
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

)

xm–
l . ()

Multiplying x–(m–)
q on both sides of () gives

ρ(A) ≤
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

xm–k–
s xk

l
xm–

q
+

(

r –
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

)
xm–

l
xm–

q

≤
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

xm–k–
s xk

l
xm–

s
+

(

r –
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

)
xm–

l
xm–

s

=
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

(
xl

xs

)k

+

[

r –
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

](
xl

xs

)m–

. ()
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Combining () with () gives

(
R – β(A)

)
(

xs

xl

)m–

≤
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

(
xl

xs

)k

+

[

r –
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

](
xl

xs

)m–

. ()

Multiplying ( xs
xl

)m– on both sides of () gives

(
R – β(A)

)(xs

xl

)(m–)

≤
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

(
xs

xl

)m–k–

+

[

r –
m–∑

k=

(
m – 

k

)
(n – )kβk(A)

]

. ()

Note that it is not easy to get the bound of xs
xl

simply from (); however, we can overcome
this difficulty by using the fact that  ≤ xs

xl
≤  for the right-hand side of (). Hence by ()

we have that

(
R – β(A)

)(xs

xl

)(m–)

≤ r – β(A), ()

that is, xs
xl

≤ ( r–β(A)
R–β(A) )


(m–) , which together with () yields

(
xs

xl

)(m–)

≤
∑m–

k=
(m–

k
)
(n – )kβk(A)( r–β(A)

R–β(A) )
m–k–
(m–)

R – β(A)
+

r –
∑m–

k=
(m–

k
)
(n – )kβk(A)

R – β(A)

= ζ (A)(m–).

The conclusion follows. �

Theorem  Let A = (aii···im ) ∈R
[m,n] be a weakly irreducible nonnegative tensor. Then

L(A) ≤ ρ(A) ≤ U (A), ()

where

L(A) = min
i,j∈N

{
aij···j

[


ζ (A)m– – 
]

+ ri(A)
}

,

and

U (A) = max
i,j∈N

{ ∑

(i,...,im)∈⋃m–
k= �(j;k)

aii···im
(
ζ (A)k – 

)
+ ri(A)

}
.

Proof Since A is a weakly irreducible nonnegative tensor, there is a Perron vector x ∈ Rn
++

such thatAxm– = ρ(A)x[m–]. Suppose that xs = mini∈N {xi}, xl = maxi∈N {xi}. By () we have
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that for each i ∈ N ,

ρ(A)xm–
i ≥ ail···l

(
xm–

l – xm–
s

)
+ ri(A)xm–

s . ()

Taking i = s and multiplying x–(m–)
s on both sides of (), we obtain that

ρ(A) ≥ asl···l
(

xm–
l – xm–

s

xm–
s

)
+ rs(A) = asl···l

[(
xl

xs

)m–

– 
]

+ rs(A). ()

Combining () with Lemma  gives

ρ(A) ≥ asl···l
[


ζ (A)m– – 

]
+ rs(A)

≥ min
i,j∈N

{
aij···j

[


ζ (A)m– – 
]

+ ri(A)
}

. ()

Similarly, by the first inequality of (), we have that for each i ∈ N ,

ρ(A)xm–
i ≤ ais···sxm–

s +
∑

(i,...,im)∈�(s;m–)

aii···im xm–
s xl + · · ·

+
∑

(i,...,im)∈�(s;k)

aii···im xk
s xm–k–

l + · · ·

+
∑

(i,...,im)∈�(s;)

aii···im xsxm–
l +

∑

(i,...,im)∈�(s;)

aii···im xm–
l

=
∑

(i,...,im)∈⋃m–
k= �(s;k)

aii···im
(
xk

s xm–k–
l – xm–

l
)

+ ri(A)xm–
l . ()

Taking i = l and multiplying x–(m–)
l on both sides of (), we obtain that

ρ(A) ≤
∑

(i,...,im)∈⋃m–
k= �(s;k)

ali···im

(
xk

s xm–k–
l – xm–

l
xm–

l

)
+ rl(A)

=
∑

(i,...,im)∈⋃m–
k= �(s;k)

ali···im

[(
xs

xl

)k

– 
]

+ rl(A). ()

Combining () with Lemma  gives

ρ(A) ≤
∑

(i,...,im)∈⋃m–
k= �(s;k)

ali···im
(
ζ (A)k – 

)
+ rl(A)

≤ max
i,j∈N

{ ∑

(i,...,im)∈⋃m–
k= �(j;k)

aii···im
(
ζ (A)k – 

)
+ ri(A)

}
.

The proof is completed. �

Remark  It is easy to see that the bound in () also holds for general nonnegative ten-
sors. In fact, if A = (aii···im ) ∈ R

[m,n] is a nonnegative tensor, and F = (fii···im ) ∈ R
[m,n]
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with fii···im =  for all ir ∈ N , r = , , . . . , m, then A + εF is a weakly irreducible tensor for
any ε > . Hence by Theorem  we can give the bound of ρ(A + εF ). Since the spectral
radius of a nonnegative tensor is a continuous function of its entries, the bound for ρ(A)
can be obtained when ε → , which is exactly the bound in ().

Remark  Note that the first inequality of () can be replaced by

ρ(A)xm–
i ≤ ais···sxm–

s +
∑

(i,...,im)∈�(s;m–)

aii···im xm–
s xl +

∑

(i,...,im)∈⋃m–
k= �(s;k)

aii···im xm–
l ,

then, similar to the proof of Lemma , we can obtain that

xs

xl
≤ δ(A), ()

where

δ(A) =
{ r – β(A) – (m – )(n – )β(A)[ – ( r–β(A)

R–β(A) )
m–

(m–) ]
R – β(A)

} 
(m–)

.

And hence, by the similar proof of Theorem , we can give another bound of spectral
radius for a nonnegative weakly irreducible tensor A as follows.

Corollary  Let A = (aii···im ) ∈R
[m,n] be a nonnegative weakly irreducible tensor. Then

L(A) ≤ ρ(A) ≤ U(A), ()

where

L(A) = min
i,j∈N

{
aij···j

(


δ(A)m– – 
)

+ ri(A)
}

,

and

U(A) = max
i,j∈N

{
ri(A) – aij···j

(
 – δ(A)m–) –

∑

(i,...,im)∈�(j;m–)

aii···im
(
 – δ(A)m–)

}
.

Remark  From the expression of L(A), U (A), L(A) and U(A), it can be easily obtained
that

L(A) ≤L(A) and U (A) ≤ U(A).

Although the bound in () is not better than the bound in (), it needs less computations.

Next is a comparison result for the bound in () and the bound in ().

Theorem  Let A = (aii···im ) ∈ R[m,n] be a nonnegative tensor. Then

ν(A) ≤L(A) ≤ U (A) ≤ ω(A). ()
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Proof We only prove ν(A) ≤L(A), U (A) ≤ ω(A) can be similarly proved. Note that

τ (A) =
(

r – β(A)
R – β(A)

) 
(m–)

,

and

ζ (A) =
{ r – β(A) –

∑m–
k= [

(m–
k

)
(n – )kβk(A)( – ( r–β(A)

R–β(A) )
m–k–
(m–) )]

R – β(A)

} 
(m–)

.

Since r ≤ R, we have

m–∑

k=

[(
m – 

k

)
(n – )kβk(A)

(
 –

(
r – β(A)
R – β(A)

) m–k–
(m–)

)]
≥ .

Hence we can obtain ζ (A) ≤ τ (A), consequently, ν(A) ≤L(A) because

ν(A) = min
i,j∈N

{
aij···j

(


τ (A)m– – 
)

+ ri(A)
}

,

and

L(A) = min
i,j∈N

{
aij···j

[


ζ (A)m– – 
]

+ ri(A)
}

.

The proof is completed. �

Remark  Note that δ(A) ≤ τ (A) is also obvious. Therefore, combining the proof of The-
orem  and Remark , we have that

ν(A) ≤L(A) ≤L(A) ≤ U (A) ≤ U(A) ≤ ω(A).

3 Numerical examples
In this section, we use two examples to illustrate the effectiveness of our proposed results.

Example  Let A = (aiiii ) be an order  dimension  tensor, where

A(:, :, , ) =

⎡

⎢
⎣

. . .
. . .
. . .

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

. . .
. . .
. . .

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

. . .
. . .
. . .

⎤

⎥
⎦ ,



Li et al. Journal of Inequalities and Applications  (2017) 2017:88 Page 10 of 12

A(:, :, , ) =

⎡

⎢
⎣

. . .
. . .
. . .

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

. . .
. . .
. . .

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

. . .
. . .
. . .

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

. . .
. . .
. . .

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

. . .
. . .
. . .

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

. . .
. . .
. . .

⎤

⎥
⎦ .

By the bound in (), we have

. ≤ ρ(A) ≤ ..

By the bound in (), we have

. ≤ ρ(A) ≤ ..

By the bound in (), we have

. ≤ ρ(A) ≤ ..

By the bound in (), we have

. ≤ ρ(A) ≤ ..

In fact, ρ(A) ≈ ..
And the relative errors for the exact value and the lower and upper bound of () respec-

tively are ρ(A)–r
ρ(A) = ., and R–ρ(A)

ρ(A) = ..
The relative errors for the exact value and the lower bound of () respectively are

ρ(A)–ν(A)
ρ(A) = . and ω(A)–ρ(A)

ρ(A) = ..
The relative errors for the exact value and the lower and upper bound of () respectively

are ρ(A)–L(A)
ρ(A) = . and U(A)–ρ(A)

ρ(A) = ..
The relative errors for the exact value and the lower and upper bound of () respectively

are ρ(A)–L(A)
ρ(A) = . and U (A)–ρ(A)

ρ(A) = ..
This example shows that the bound in () is better.
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Example  Consider the ninth tensor generated by the MATLAB code

k = ; A = rand(k, k, k, k).

By the bound in (), we have

.e+ ≤ ρ(A) ≤ .e+.

By the bound in (), we have

.e+ ≤ ρ(A) ≤ .e+.

By the bound in (), we have

.e+ ≤ ρ(A) ≤ .e+.

By the bound in (), we have

.e+ ≤ ρ(A) ≤ .e+.

In fact, ρ(A) ≈ .e+.
And the relative errors for the exact value and the lower and upper bound of () respec-

tively are ρ(A)–r
ρ(A) = . and R–ρ(A)

ρ(A) = ..
The relative errors for the exact value and the lower bound of () respectively are

ρ(A)–ν(A)
ρ(A) = . and ω(A)–ρ(A)

ρ(A) = ..
The relative errors for the exact value and the lower and upper bound of () respectively

are ρ(A)–L(A)
ρ(A) = . and U(A)–ρ(A)

ρ(A) = ..
The relative errors for the exact value and the lower and upper bound of () respectively

are ρ(A)–L(A)
ρ(A) = . and U (A)–ρ(A)

ρ(A) = ..
This example shows that the bound in () is better.

4 Results and discussion
The main result of this paper is Theorem . From Remark  and the proof of Lemma , it
is not difficult to see that the right expressions of last inequality () can also be replaced by
many similar expressions according to the extent of magnifying inequality. Therefore, we
can also obtain other bounds for the spectral radius of a nonnegative tensor. Furthermore,
we notice that the bound in () is the best of them as the last inequality () reaches the op-
timum for all those possible expressions, which can be shown by two numerical examples
above.

5 Conclusions
In this paper, we propose a new bound for the spectral radius of a nonnegative tensor
by estimating the ratio of the smallest component and the largest component of a Perron
vector. And we prove that the proposed result improves the bound in [].

Competing interests
The authors declare that they have no competing interests.



Li et al. Journal of Inequalities and Applications  (2017) 2017:88 Page 12 of 12

Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (11361074, 11601473), and CAS ‘Light of
West China’ Program.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 December 2016 Accepted: 10 April 2017

References
1. Li, W, Ng, MK: Some bounds for the spectral radius of nonnegative tensors. Numer. Math. 130(2), 315-335 (2015)
2. Qi, L: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302-1324 (2005)
3. Qi, L, Sun, W, Wang, Y: Numerical multilinear algebra and its applications. Front. Math. China 2(4), 501-526 (2007)
4. Norris, J: Markov Chains. Cambridge University Press, Cambridge (1997)
5. Adke, S, Deshmukh, S: Limit distribution of a high order Markov chain. J. R. Stat. Soc., Ser. B, Methodol. 50(1), 105-108

(1988)
6. Chang, K, Pearson, K, Zhang, T: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6(2), 507-520

(2008)
7. Hu, S, Huang, Z, Qi, L: Strictly nonnegative tensors and nonnegative tensor partition. Sci. China Math. 57(1), 181-195

(2014)
8. Friedlandv, S, Gaubert, S, Han, L: Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear

Algebra Appl. 438(2), 738-749 (2013)
9. Yang, Y, Yang, Q: Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl.

31(5), 2517-2530 (2010)
10. Horn, R, Johnson, C: Matrix Analysis. Cambridge University Press, Cambridge (1986)
11. Ng, M, Qi, L Zhou, G: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31(3),

1090-1099 (2009)
12. Liu, Y, Zhou, G, Ibrahim, N: An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative

tensor. J. Comput. Appl. Math. 235(1), 286-292 (2010)
13. Zhang, L, Qi, L: Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor.

Numer. Linear Algebra Appl. 19(5), 830-841 (2012)


	A new bound for the spectral radius of nonnegative tensors
	Abstract
	Keywords

	Introduction
	Bounds for the spectral radius of nonnegative tensors
	Numerical examples
	Results and discussion
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Publisher's Note
	References


