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Abstract
In this paper, we prove a stochastic Fubini theorem by solving a special backward
stochastic differential equation (BSDE, for short) which is different from the existing
techniques. As an application, we obtain the well-posedness of a class of BSDEs with
the Itô integral in drift term under a subtle Lipschitz condition.
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1 Introduction and the main result
Given T > , let (�,F ,Ft , P; t ≥ ) be a complete filtration space and F = {Ft ; t ≥ } be a
filtration satisfying the usual conditions which are generated by the following two mutually
independent stochastic processes:

(i) a d-dimensional Brownian motion {B(t); t ≥ };
(ii) a Poisson random measure N on R

+ × E, where E = R
l – {} with the Borel σ -field

B(E). λ is the intensity (Lévy measure) of N with the property that

∫
E

(
 ∧ |z|)λ(dz) < ∞

and μ is the compensator of N with μ(dt, dz) = dtλ(dz). Then
{Ñ((, t] × A) = (N – μ)((, t] × A),Ft ; t ≥ } is a compensated Poisson process
which is a càdlàg martingale for all A ∈ B(E) satisfying λ(A) < ∞.

Fubini theorems giving conditions for change of the order of integration in multiple inte-
grals are useful in all forms of calculus. The first such result of stochastic Fubini theorems
perhaps belongs to Doob []. After that, there are two directions on this topic. One is to
generalize the Itô integrals; the other is to study the theorem under the weaker integrabil-
ity conditions (see [–] and the references therein). In those works, suppose that M is a
stochastic process and (X,�,μ) is a σ -finite measure space, and φ : X × [, T] ×� → R is
a stochastic process satisfying certain measurability properties. Under some integrability
conditions, the following stochastic Fubini theorem holds:

∫
X

∫ t


φ(x, s) dM(s) dμ(x) =

∫ t



∫
X

φ(x, s) dμ(x) dM(s), t ∈ [, T]. (.)
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The usual technique to prove (.) is the approximation method, i.e., firstly, (.) is
proved for a simple process φn which is used to approximate φ in appropriate processes
space, then it is proved by taking the appropriate limit. In this work, we treat a spe-
cial case: X = [, T]. In this case φ is only a process in [, T], and does the Fubini the-
orem hold? The key point is that the Lebesgue integral should be F-adapted so that
the Itô integral makes sense. In this paper, we want to prove this type of stochastic Fu-
bini theorem by using the backward stochastic differential equation (BSDE, for short)
method.

For simplicity, we consider only the case d = l =  throughout this paper; the general
cases can be treated by a similar method. For any n ≥ , denote by |x| the Euclidean norm
of x ∈ R

n. Also, we define the following classes of processes which will be used in the
sequel.

• For any t ∈ [, T], L
Ft

(�;Rn) is the space of all Ft-measurable and R
n-valued random

variables ξ satisfying |ξ |L
Ft

(�;Rn) = E|ξ | < ∞.

• L
F

(�; D([, T];Rn)) is the space of all F-adapted càdlàg stochastic processes X(·)
satisfying |X(·)|L

F
(�;D([,T];Rn)) = E(supt∈[,T] |X(t)|) < ∞.

• L
F

(�; C([, T];Rn)) is the subspace of L
F

(�; D([, T];Rn)) whose element has
continuous paths a.s.

• L
P,F(�; L(, T ;Rn)) is the space of all F-predictable and R

n-valued stochastic
processes K(·, ·) satisfying |K(·, ·)|L

P,F(�;L(,T ;Rn)) = E
∫ T


∫

E |K(t, z)|λ(dz) dt < ∞.

• For general p, q ≥ , Lp
F

(�; Lq(, T ;Rn)) denotes the space of all F-adapted processes
Y (·) satisfying |Y (·)|p

Lp
F

(�;Lq(,T ;Rn))
= E(

∫ T
 |Y (t)|q dt)p/q < ∞.

The main theorem of this paper is stated as follows.

Theorem . For any Y (·) ∈ L
F

(�; L(, T ;Rn)), K(·, ·) ∈ L
P,F(�; L(, T ;Rn)) and any

g(·), h(·) ∈ L(, T), we have

∫ T

t
g(s)

∫ s

t
Y (u) dB(u) ds =

∫ T

t

∫ T

s
g(u) duY (s) dB(s),

∫ T

t
h(s)

∫ s

t

∫
E

K(u, z)Ñ(du, dz) ds =
∫ T

t

∫
E

∫ T

s
h(u) duK(s, z)Ñ(ds, dz).

(.)

As an application, under suitable conditions, we obtain the well-posedness of the fol-
lowing two BSDEs:

yT – y(t) =
∫ T

t

∫ s

t
f
(
u, Y (u)

)
dB(u) ds +

∫ T

t
Y (s) dB(s), in [, T] (.)

and

yT – y(t) =
∫ T

t

∫ s

t
g
(
u, y(u), Y (u)

)
dB(u) ds +

∫ T

t
Y (s) dB(s), in [, T]. (.)

The development of BSDEs theory has lasted for  years. Linear BSDEs were first intro-
duced in  by Bismut in [] as the equations for the conjugate variable in the stochastic
version of the Pontryagin maximum principle. Pardoux and Peng in [] first studied the
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general nonlinear BSDEs of the following form in :

yT – y(t) =
∫ T

t
l
(
s, y(s), Y (s)

)
ds +

∫ T

t
l

(
s, y(s), Y (s)

)
dB(s), in [, T]. (.)

Since , there has appeared a large number of works published related to the theory
and applications for BSDEs (see [–] for examples).

It seems that (.) belongs to the following backward stochastic Volterra integral equa-
tion:

y(t) = k(t) –
∫ T

t
l
(
t, s, y(s), Y (t, s)

)
ds –

∫ T

t
Y (t, s) dB(s), in [, T],

which was studied in [, ]. Because of the special form, we can transform (.) and
(.) into (.). Hence the second component Y of the solution just depends on one time
variable.

The paper is organized as follows. In Section , we present some fundamental results,
well-posedness of BSDEs and prove Theorem . by virtue of BSDEs. In Section , we
apply Theorem . to solve BSDEs (.) and (.) and get the well-posedness under subtle
Lipschitz conditions.

2 Proof of the main result
The following BSDE with jump has been studied in some works, such as [, ]:

⎧⎨
⎩

dy(t) = f (t, y(t), Y (t), K(t, ·)) dt + Y (t) dB(t) +
∫

E K(t, z)Ñ(dt, dz), in [, T],

y(T) = yT ,
(.)

where f satisfies f (·, , , ) ∈ L
F

(�; L(, T ;Rn)), and

∣∣f (t, y, Y , K) – f (t, ỹ, Ỹ , K̃)
∣∣

≤ L
(|y – ỹ| + |Y – Ỹ | + |K – K̃ |L(E,B(E),λ;Rn)

)
a.e. t ∈ [, T], a.s., (.)

for any y, ỹ, Y , Ỹ ∈R
n, K , K̃ ∈ L(E,B(E),λ;Rn).

The following lemma is about the well-posedness of (.). The proof can be found
in [, ]. Hence, it is omitted. For simplicity, we denote H = L

F
(�; D([, T];Rn)) ×

L
F

(�; L(, T ;Rn)) × L
P,F(�; L(, T ;Rn)) with the canonical norm.

Lemma . For any yT ∈ L
FT

(�;Rn), equation (.) admits a unique adapted solution
(y(·), Y (·), K(·, ·)) ∈ H. Furthermore, there is a constant C > , depending only on L and T ,
such that

∣∣(y(·), Y (·), K(·, ·))∣∣H ≤ C
(∣∣f (·, , , )

∣∣
L
F

(�;L(,T ;Rn)) + |yT |L
FT

(�;Rn)
)
. (.)

In order to prove Theorem ., we first consider the following BSDE in [, T]:

yT – y(t) =
∫ T

t

(
g(s)

∫ s

t
Y (u) dB(u) + h(s)

∫ s

t

∫
E

K(u, z)Ñ(du, dz)
)

ds

+
∫ T

t
Y (s) dB(s) +

∫ T

t

∫
E

K(s, z)Ñ(ds, dz). (.)
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g(·) and h(·) ∈ L(, T) such that for any t ∈ [, T],

∫ T

t
g(s) ds +  > δ,

∫ T

t
h(s) ds +  > δ, (.)

where δ is a positive constant.
The well-posedness of (.) is presented in the following theorem.

Theorem . Under assumption (.), for any yT ∈ L
FT

(�;Rn), equation (.) admits a
unique adapted solution (y(·), Y (·), K(·, ·)) ∈H such that

∣∣(y(·), Y (·), K(·, ·))∣∣H ≤ C|yT |L
FT

(�;Rn), (.)

where C is a constant depending on δ and T .

Proof We divide the proof into two steps.
Step . By Lemma ., we know that the following BSDE

yT – y(t)

=
∫ T

t

(∫ T

s
g(u) du + 

)
Y (s) dB(s)

+
∫ T

t

∫
E

(∫ T

s
h(u) du + 

)
K(s, z)Ñ(ds, dz) (.)

admits a unique solution (y(·), Y (·), K(·, ·)) satisfying

∣∣∣∣
(

y(·),
(∫ T

·
g(u) du + 

)
Y (·),

(∫ T

·
h(u) du + 

)
K(·, ·)

)∣∣∣∣
H

≤ C|yT |L
FT

(�;Rn), (.)

where C depends only on T . Hence, by virtue of (.), it follows that

∣∣Y (·)∣∣ ≤ /δ
∣∣∣∣
(∫ T

·
g(u) du + 

)
Y (·)

∣∣∣∣,
∣∣K(·, ·)∣∣ ≤ /δ

∣∣∣∣
(∫ T

·
h(u) du + 

)
K(·, ·)

∣∣∣∣.
(.)

Then, by (.) and (.), we deduce that

∣∣(y(·), Y (·), K(·, ·))∣∣H ≤ C|yT |L
FT

(�;Rn), (.)

where C depends on δ and T .
Step . By (.), we can easily obtain

y(t) – y() =
∫ t



(∫ T

s
g(u) du + 

)
Y (s) dB(s)

+
∫ t



∫
E

(∫ T

s
h(u) du + 

)
K(s, z)Ñ(ds, dz). (.)
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Applying Itô’s formula to (
∫ T

t g(s) ds + )
∫ t

 Y (u) dB(u), one can get

∫ t



(∫ T

s
g(u) du + 

)
Y (s) dB(s)

=
(∫ T

t
g(s) ds + 

)∫ t


Y (u) dB(u) +

∫ t


g(s)

∫ s


Y (u) dB(u) ds. (.)

Similarly, one has

∫ t



∫
E

(∫ T

s
h(u) du + 

)
K(s, z)Ñ(ds, dz)

=
(∫ T

t
h(s) ds + 

)∫ t



∫
E

K(u, z)Ñ(du, dz)

+
∫ t


h(s)

∫ s



∫
E

K(u, z)Ñ(du, dz) ds. (.)

Substituting (.) and (.) into (.) yields

y(t) – y()

=
∫ t


g(s)

∫ s


Y (u) dB(u) ds +

∫ t


h(s)

∫ s



∫
E

K(u, z)Ñ(du, dz) ds

+
(∫ T

t
g(s) ds + 

)∫ t


Y (u) dB(u) +

(∫ T

t
h(s) ds + 

)∫ t



∫
E

K(u, z)Ñ(du, dz)

=
∫ t


g(s)

∫ s


Y (u) dB(u) ds +

∫ t


h(s)

∫ s



∫
E

K(u, z)Ñ(du, dz) ds

+
∫ T

t
g(s) ds

∫ t


Y (u) dB(u) +

∫ T

t
h(s) ds

∫ t



∫
E

K(u, z)Ñ(du, dz)

+
∫ t


Y (s) dB(s) +

∫ t



∫
E

K(s, z)Ñ(ds, dz)

=
(∫ t


g(s)

∫ s


+

∫ T

t
g(s)

∫ t


+

∫ T

t
g(s)

∫ s

t
–

∫ T

t
g(s)

∫ s

t

)
Y (u) dB(u) ds

+
(∫ t


h(s)

∫ s


+

∫ T

t
h(s)

∫ t


+

∫ T

t
h(s)

∫ s

t
–

∫ T

t
h(s)

∫ s

t

)∫
E

K(u, z)Ñ(du, dz) ds

+
∫ t


Y (s) dB(s) +

∫ t



∫
E

K(s, z)Ñ(ds, dz)

=
(∫ T


g(s)

∫ s


–

∫ T

t
g(s)

∫ s

t

)
Y (u) dB(u) ds

+
(∫ T


h(s)

∫ s


–

∫ T

t
h(s)

∫ s

t

)∫
E

K(u, z)Ñ(du, dz) ds

+
∫ t


Y (s) dB(s) +

∫ t



∫
E

K(s, z)Ñ(ds, dz). (.)
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Taking t = T in (.), one has

yT – y() =
∫ T


g(s)

∫ s


Y (u) dB(u) ds +

∫ T


h(s)

∫ s



∫
E

K(u, z)Ñ(du, dz) ds

+
∫ T


Y (s) dB(s) +

∫ T



∫
E

K(s, z)Ñ(ds, dz). (.)

Subtracting (.) from (.), we just obtain (.). Hence (y(·), Y (·), K(·, ·)) is a unique
solution to (.). The desired estimate (.) follows from (.). That completes the
proof. �

As a corollary, we give the proof of the stochastic Fubini theorem stated in Theorem ..

Proof of Theorem . Set

ξ =
∫ T



(
g+(s)

∫ s


Y (u) dB(u) + h+(s)

∫ s



∫
E

K(u, z)Ñ(du, dz)
)

ds

+
∫ T


Y (s) dB(s) +

∫ T



∫
E

K(s, z)Ñ(ds, dz), (.)

where g+(·), h+(·) are the positive parts of g(·), h(·), respectively. By Hölder’s inequality and
the Itô isometry, we have

|ξ |L
FT

(�;Rn)

≤ 
(

TE

∫ T



(
g+(s)

)
(∫ s


Y (u) dB(u)

)

ds

+ TE

∫ T



(
h+(s)

)
(∫ s



∫
E

K(u, z)Ñ(ds, dz)
)

ds

+ |Y |L
F

(�;L(,T ;Rn)) + |K |L
P,F(�;L(,T ;Rn))

)

≤ 
(
T

∣∣g+∣∣
L(,T) + 

)|Y |L
F

(�;L(,T ;Rn)) + 
(
T

∣∣h+∣∣
L(,T) + 

)|K |L
P,F(�;L(,T ;Rn))

< ∞. (.)

By the proof of Theorem ., it is easy to get that

y(T) – y(t) =
∫ T

t

(
g+(s)

∫ s

t
Y (u) dB(u) + h+(s)

∫ s

t

∫
E

K(u, z)Ñ(du, dz)
)

ds

+
∫ T

t
Y (s) dB(s) +

∫ T

t

∫
E

K(s, z)Ñ(ds, dz), in [, T], (.)

with terminal condition y(T) = ξ admits a unique solution (y(·), Y (·), K(·, ·)). And (.) is
equivalent to

y(T) – y(t) =
∫ T

t

(∫ T

s
g+(u) du + 

)
Y (s) dB(s)

+
∫ T

t

∫
E

(∫ T

s
h+(u) du + 

)
K(s, z)Ñ(ds, dz). (.)
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Combining (.) and (.), we can get

∫ T

t
g+(s)

∫ s

t
Y (u) dB(u) ds =

∫ T

t

∫ T

s
g+(u) duY (s) dB(s),

∫ T

t
h+(s)

∫ s

t

∫
E

K(u, z)Ñ(du, dz) ds =
∫ T

t

∫
E

∫ T

s
h+(u) duK(s, z)Ñ(ds, dz).

(.)

Similarly, we have

∫ T

t
g–(s)

∫ s

t
Y (u) dB(u) ds =

∫ T

t

∫ T

s
g–(u) duY (s) dB(s),

∫ T

t
h–(s)

∫ s

t

∫
E

K(u, z)Ñ(du, dz) ds =
∫ T

t

∫
E

∫ T

s
h–(u) duK(s, z)Ñ(ds, dz).

(.)

Addition of (.) and (.) gives (.), which completes the proof. �

3 An application: well-posedness of two BSDEs
In this section, we consider only the BSDEs driven by one-dimensional Brownian motions.
The other cases such as BSDEs driven by high dimension Brownian motions and BSDEs
with jumps can also be treated in a similar procedure. Let (�,F ,Ft , P; t ≥ ) be a complete
filtration space and B(·) be a one-dimensional standard Brownian motion whose natural
filtration is given by F = {Ft}t≥. As an application of Theorem ., we prove the well-
posedness of the following two BSDEs:

yT – y(t) =
∫ T

t

∫ s

t
f
(
u, Y (u)

)
dB(u) ds +

∫ T

t
Y (s) dB(s), in [, T] (.)

and

yT – y(t) =
∫ T

t

∫ s

t
g
(
u, y(u), Y (u)

)
dB(u) ds +

∫ T

t
Y (s) dB(s), in [, T]. (.)

Here, generators f (·, ·) and g(·, ·, ·) satisfy the following assumptions:
(H) f (·, ) ∈ L

F
(�; L(, T ;Rn)),

∣∣f (t, Y ) – f (t, Ỹ )
∣∣ ≤ 

T + θ
|Y – Ỹ | a.e. t ∈ [, T], a.s.,

and
(H) g(·, , ) ∈ L

F
(�; L(, T ;Rn)),

∣∣g(t, y, Y ) – g(t, ỹ, Ỹ )
∣∣ ≤ L|y – ỹ| +


(T + θ )

|Y – Ỹ | a.e. t ∈ [, T], a.s.,

respectively, where y, ỹ, Y , Ỹ ∈R
n, and L and θ are positive constants.

Theorem . Under assumption (H), for any yT ∈ L
FT

(�;Rn), equation (.) ad-
mits a unique adapted solution (y(·), Y (·)) ∈ L

F
(�; C([, T];Rn)) × L

F
(�; L(, T ;Rn))



Wang Journal of Inequalities and Applications  (2017) 2017:77 Page 8 of 13

such that

∣∣(y(·), Y (·))∣∣L
F

(�;C([,T];Rn))×L
F

(�;L(,T ;Rn))

≤ C
(|yT |L

FT
(�;Rn) +

∣∣f (·, )
∣∣
L
F

(�;L(,T ;Rn))

)
, (.)

where C is a constant depending on θ and T .

Proof We divide the proof into three steps.
Step . Suppose that f (·, Y (·)) ∈ L

F
(�; L(, T ;Rn)). Then by Theorem . we rewrite

equation (.) as follows:

yT – y(t) =
∫ T

t

(
(T – s)f

(
s, Y (s)

)
+ Y (s)

)
dB(s), in [, T]. (.)

We know that the following BSDE admits a unique adapted solution (y(·), Z(·))
⎧⎨
⎩

dy(t) = Z(t) dB(t), in [, T],

y(T) = yT .
(.)

We define an operator S : L
F

(�; L(, T ;Rn)) → L
F

(�; L(, T ;Rn)) by S(X(t)) = Z(t) –
(T – t)f (t, X(t)) for a.e. t. For any X, X ∈ L

F
(�; L(, T ;Rn)) and a.e. t,

∣∣S(
X(t)

)
– S

(
X(t)

)∣∣ = (T – t)
∣∣f (t, X(t)

)
– f

(
t, X(t)

)∣∣
≤ (T – t)/(T + θ )

∣∣X(t) – X(t)
∣∣

≤ T/(T + θ )
∣∣X(t) – X(t)

∣∣.

We see that S is contractive. Hence, by the Banach fixed point theorem, S admits a unique
fixed point Y (·) ∈ L

F
(�; L(, T ;Rn)) such that S(Y (·)) = Y (·), i.e.,

(T – t)f
(
Y (t)

)
+ Y (t) = Z(t) a.e. t ∈ [, T]. (.)

By (.) and (.), we conclude that (y(·), Y (·)) is the unique solution to (.).
Step . In this step, we check that for this Y (·), f (·, Y (·)) ∈ L

F
(�; L(, T ;Rn))

∣∣f (·, Y (·))∣∣
L
F

(�;L(,T ;Rn))

≤ 
∣∣f (·, Y (·)) – f (·, )

∣∣
L
F

(�;L(,T ;Rn)) + T
∣∣f (·, )

∣∣
L
F

(�;L(,T ;Rn))

≤ /(T + θ )|Y |L
F

(�;L(,T ;Rn)) + T
∣∣f (·, )

∣∣
L
F

(�;L(,T ;Rn))

< ∞.

Step . In this step, we show that (.) holds.
By Jensen’s inequality, Doob’s maximal inequality and equation (.), we see that

E

∣∣∣ sup
t∈[,T]

y(t)
∣∣∣

= E

∣∣∣ sup
t∈[,T]

E(yT |Ft)
∣∣∣ ≤ E|yT |. (.)
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Applying Itô’s formula to |y(·)|, we get

E

∫ T



∣∣(T – t)f
(
t, Y (t)

)
+ Y (t)

∣∣ dt ≤ E|yT |. (.)

On the other hand, one has

E

∫ T



∣∣(T – t)f
(
t, Y (t)

)
+ Y (t)

∣∣ dt

≥ E

∫ T



(∣∣(T – t)
(
f
(
t, Y (t)

)
– f (t, )

)
+ Y (t)

∣∣ –
∣∣(T – t)f (t, )

∣∣) dt

≥ 

E

∫ T



∣∣(T – t)
(
f
(
t, Y (t)

)
– f (t, )

)
+ Y (t)

∣∣ dt – E
∫ T



∣∣(T – t)f (t, )
∣∣ dt. (.)

By |a + b| ≥ ( – ε)|a| +  – /ε|b|, where ε > , and assumption (H), we can obtain

E

∫ T



∣∣(T – t)
(
f
(
t, Y (t)

)
– f (t, )

)
+ Y (t)

∣∣ dt

≥ ( – ε)E
∫ T



∣∣(T – t)
(
f
(
t, Y (t)

)
– f (t, )

)∣∣ dt + ( – /ε)E
∫ T



∣∣Y (t)
∣∣ dt

≥ ( – ε)E
∫ T



(
T – t
T + θ

)∣∣Y (t)
∣∣ dt +

(
 –


ε

)
E

∫ T



∣∣Y (t)
∣∣ dt

≥
[

( – ε)
(

T
T + θ

)

+
(

 –

ε

)]
E

∫ T



∣∣Y (t)
∣∣ dt. (.)

Taking ε = T+θ
T , by (.), we have

E

∫ T



∣∣(T – t)
(
f
(
t, Y (t)

)
– f (t, )

)
+ Y (t)

∣∣ dt ≥
(

θ

T + θ

)

E

∫ T



∣∣Y (t)
∣∣ dt. (.)

(.), together with (.), yields

E

∫ T



∣∣(T – t)f
(
t, Y (t)

)
+ Y (t)

∣∣ dt

≥ 


(
θ

T + θ

)

E

∫ T



∣∣Y (t)
∣∣ dt – T

E

∫ T



∣∣f (t, )
∣∣ dt. (.)

Combining (.) and (.), one has

∣∣Y (·)∣∣
L
F

(�;L(,T ;Rn)) ≤ C
(
E|yT | +

∣∣f (·, )
∣∣
L
F

(�;L(,T ;Rn))

)
, (.)

where C is a constant depending on θ and T . That completes the proof. �

We list two examples from which we can see that the Lipschitz constant /(T +θ ) cannot
be improved.

Example . For any θ > , suppose that yT =
∫ T
θ

(s – θ )/(T – θ ) dB(s) and f (s, x) =
–χ[,θ ](s)x/(T – s) – χ(θ ,T](s)x/(T – θ ) with Lipschitz constant /(T – θ ). Then equation (.)
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can be written as

yT – y(t) =
∫ T

t
(s – θ )/(T – θ )χ(θ ,T](s)Y (s) dB(s), in [, T].

For any η ∈ L
F

((, θ ) × �;R), let

y(t) = χ(θ ,T](t)
∫ t

θ

(s – θ )/(T – θ ) dB(s),

Yη(t) = χ[,θ ](t)η(t) + χ(θ ,T](t), ∀t ∈ [, T].

It is easy to check that (y(·), Yη(·)) ∈ L
F

(�; C([, T];R)) × L
F

(�; L(, T ;R)) is an adapted
solution of (.). Since η is arbitrary, the solution of (.) is not unique.

Example . Set yT = B(T) and f (t, x) = –x/T whose Lipschitz constant is /T . If equa-
tion (.) has an adapted solution (y, Y ) ∈ L

F
(�; C([, T];R)) × L

F
(�; L(, T ;R)), then by

Theorem ., (.) becomes

yT – y(t) =
∫ T

t

s
T

Y (s) dB(s). (.)

Since (B(·), ) is the unique adapted solution of yT – y(t) =
∫ T

t Z(t) dB(t), we get that

Y (t) = T/tZ(t)χ{t 	=}(t) = T/tχ{t 	=}(t).

It is clear that |Y (·)|L
F

(�;L(,T ;R)) = +∞. Hence (.) with f (t, x) = –x/T , yT = B(T) does not
have a square integrable adapted solution.

From the previous two examples, we know that in equation (.), Lipschitz constant
/(T + θ ) cannot be improved. But in the one-dimensional case, we can obtain a better
result.

Theorem . Suppose that in equation (.), yT ∈ L
FT

(�;R), f (·, ) ∈ L
F

(�; L(, T ;R)),
and

/(T + θ )(x – x) ≤ f (·, x) – f (·, x) ≤ L(x – x), ∀x ≥ x,

where θ and L are positive constants and L ≥ /(T + θ ). Then BSDE (.) admits a unique
solution.

Proof Set h(t, x) = (T – t)f (t, x) + x. It is easy to see that

θ/(T + θ )(x – x) ≤ h(t, x) – h(t, x) ≤ (TL + )(x – x), ∀x ≥ x.

By Theorem . in [], we conclude that (.) admits a unique solution. �

For β >  and X ∈ L
F

(�; L(, T ;Rn)), ‖X‖
β denotes E

∫ T
 eβt|X(t)| dt. Hβ denotes the

space L
F

(�; L(, T ;Rn)) endowed with the norm ‖ · ‖β .
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Theorem . Under assumption (H), for any yT ∈ L
FT

(�;Rn), equation (.) admits a
unique adapted solution (y(·), Y (·)) such that

∣∣(y(·), Y (·))∣∣L
F

(�;C([,T];Rn))×L
F

(�;L(,T ;Rn))

≤ C
(|yT |L

FT
(�;Rn) +

∣∣g(·, , )
∣∣
L
F

(�;L(,T ;Rn))

)
, (.)

where C is a constant depending on L and T .

Proof We divide the proof into two steps.
Step . For any ȳ(·), Ȳ (·) ∈ L

F
(�; L(, T ;Rn)), by virtue of the martingale representation

theorem, the following BSDE admits a unique solution (y(·), Y (·))

yT – y(t) =
∫ T

t

∫ s

t
g
(
u, ȳ(u), Ȳ (u)

)
dB(u) ds +

∫ T

t
Y (s) dB(s), in [, T]. (.)

Step . We use the Banach fixed point theorem for the mapping � from Hβ × Hβ to
itself, which maps (ȳ(·), Ȳ (·)) onto (y(·), Y (·)), where β is determined later.

For any (ȳi(·), Ȳi(·)), suppose that the corresponding solution to (.) is (yi(·), Yi(·)),
i = , .

In order to use Theorem ., we first check that g(·, ȳi(·), Ȳi(·)) ∈ L
F

(�; L(, T ;Rn)). In-
deed, applying the same method as that in Step  of Theorem ., one has

∣∣g(
t, ȳi(t), Ȳi(t)

)∣∣
L
F

(�;L(,T ;Rn))

≤ 
∣∣g(

t, ȳi(t), Ȳi(t)
)

– g(t, , )
∣∣
L
F

(�;L(,T ;Rn)) + 
∣∣g(·, , )

∣∣
L
F

(�;L(,T ;Rn))

≤ L∣∣ȳi(·)
∣∣
L
F

(�;L(,T ;Rn)) + /(T + θ )∣∣Ȳi(·)
∣∣
L
F

(�;L(,T ;Rn))

+ 
∣∣g(·, , )

∣∣
L
F

(�;L(,T ;Rn))

< ∞.

Hence, by Theorem ., for i = , , (.) turns to

yi(T) – yi(t) =
∫ T

t

(
(T – s)g

(
s, ȳi(s), Ȳi(s)

)
+ Yi(s)

)
dB(s), in [, T]. (.)

Set �y = y – y, �Y = Y – Y, �ȳ = ȳ – ȳ, �Ȳ = Ȳ – Ȳ and �g(·) = g(·, ȳ(·), Ȳ(·)) –
g(·, ȳ(·), Ȳ(·)). Applying Itô’s formula to eβ·(y(·) – y(·)), we have

eβT(
�y(T)

) – eβt(�y(t)
)

= β

∫ T

t
eβs(�y(s)

) ds + 
∫ T

t
eβs(�y(s)

)[
(T – s)

(
�g(s)

)
+

(
�Y (s)

)]
dB(s)

+
∫ T

t
eβs[(T – s)

(
�g(s)

)
+

(
�Y (s)

)] ds.
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Setting y(T) = y(T) and taking expectation, we get

Eeβt(�y(t)
) + βE

∫ T

t
eβs(�y(s)

) ds + E

∫ T

t
eβs(�Y (s)

) ds

= –E
∫ T

t
eβs(T – s)(�g(s)

) ds – E
∫ T

t
eβt(T – s)�g(s)�Y (s) ds, ∀t ∈ [, T].

Let t = ,

β‖�y‖
β + ‖�Y‖

β

≤ E
∫ T


eβs(T – s)

(
L�ȳ(s) +


(T + θ )

�Ȳ (s)
)

�Y (s) ds

< εL
E

∫ T


eβs(T – s)(�ȳ(s)

) ds +

ε

‖�Y‖
β

+
ε

(T + θ ) E

∫ T


eβs(T – s)(�Ȳ (s)

) ds +

ε

‖�Y‖
β

≤ εLT‖�ȳ‖
β +

εT

(T + θ ) ‖�Ȳ‖
β +

(

ε

+

ε

)
‖�Y‖

β ,

which is equivalent to

‖�y‖
β +

( – 
ε

– 
ε

)
β

‖�Y‖
β <

εLT

β

(
‖�ȳ‖

β +
ε

εL(T + θ ) ‖�Ȳ‖
β

)
.

Take ε, ε and β satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε > , ε > , 
ε

+ 
ε

< ,
(– 

ε
– 

ε
)

β
> ε

εL(T+θ ) ,
εLT

β
< .

(.)

We know these ε, ε and β exist. For example, one can take ε = (+α)
α

, ε = , and β =
εLT(T+θ )

(T+θ )+T , where α = Tθ+θ

T . For this β , we see that � is a contraction and that there
exists a fixed point, which is the unique solution of BSDE (.).

By the same method used in Step  of Theorem ., we can show that (.) holds. That
completes the proof. �

4 Conclusions
In this paper, we consider a stochastic Fubini theorem with two time variables. In that Fu-
bini theorem, one time variable is related to the Lebesgue integral, and the other is related
to the Itô integral, in which the adapted property is crucial. We prove the result by solving
a BSDE which is different from the existing method. As an application, we apply the theo-
rem to study the well-posedness of two special BSDEs under subtle Lipschitz conditions.
Besides this, we provide two examples to state that aforementioned Lipschitz conditions
cannot be improved.
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