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Abstract
In this paper, we give sufficient conditions for the boundedness, uniform asymptotic
stability and square integrability of the solutions to a certain fourth order
non-autonomous differential equations with delay by using Lyapunov’s second
method. The results obtained essentially improve, include and complement the
results in the literature.
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1 Introduction
In mathematical literature, ordinary differential equations have been studied for more
than  years since the seventeenth century after the concepts of differentiation and
integration were formulated by Newton and Leibniz. By means of ordinary differential
equations, researchers can explain many natural phenomena like gravity, projectiles, wave,
vibration, nuclear physics, and so on. In addition, in Newtonian mechanics, the system’s
state variable changes over time, and the law that governs the change of the system’s state
is normally described by an ordinary differential equation. The question concerning the
stability of ordinary differential equations has been originally raised by the general prob-
lem of the stability of motion [].

However, thereafter along with the development of technology, it have been seen that
the ordinary differential equations cannot respond to the needs arising in sciences and
engineering. For example, in many applications, it can be seen that physical or biological
background of a modeling system shows that the change rate of the system’s current status
often depends not only on the current state but also on the history of the system. This
usually leads to the so-called retarded functional differential equations [].

In particular, for more results on the stability, boundedness, convergence, etc. of ordi-
nary or functional differential equations of fourth order, see the book of Reissig et al. []
as a good survey for the works done by  and the papers of Burton [], Cartwright
[], Ezeilo [–], Harrow [, ], Tunç [–], Remili et al. [–], Wu [] and others
and the references therein. This information indicates the importance of investigating the
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qualitative properties of solutions of retarded functional differential equations of fourth
order.

In this paper, we study the uniform asymptotic stability of the solutions for p(t, x, x′, x′′,
x′′′) ≡  and also square integrability and boundedness of solutions to the fourth order
nonlinear differential equation with delay

x() + a(t)
(
g
(
x(t)

)
x′′(t)

)′ + b(t)
(
q
(
x(t)

)
x′(t)

)′ + c(t)f
(
x(t)

)
x′(t)

+ d(t)h
(
x(t – r)

)
= p

(
t, x, x′, x′′, x′′′). ()

For convenience, we get

θ(t) = g ′(x(t)
)
x′(t), θ(t) = q′(x(t)

)
x′(t), θ(t) = f ′(x(t)

)
x′(t).

We write () in the system form

x′ = y,

y′ = z,

z′ = w,

w′ = –a(t)g(x)w –
(
b(t)q(x) + a(t)θ

)
z –

(
b(t)θ + c(t)f (x)

)
y – d(t)h(x)

+ d(t)
∫ t

t–r
h′(x)y dη + p(t, x, y, z, w),

()

where r is a positive constant to be determined later, the functions a, b, c, d are contin-
uously differentiable functions and the functions f , h, g , q, p are continuous functions
depending only on the arguments shown. Also derivatives g ′(x), q′(x), f ′(x) and h′(x) exist
and are continuous. The continuity of the functions a, b, c, d, p, g , g ′, q, q′, f and h guar-
antees the existence of the solutions of equation (). If the right-hand side of system ()
satisfies a Lipschitz condition in x(t), y(t), z(t), w(t) and x(t – r), and there exist solutions
of system (), then it is the unique solution of system ().

Assume that there are positive constants a, b, c, d, f, g, q, a, b, c, d, f, g, q,
m, M, δ and η such that the following assumptions hold:

(A)  < a ≤ a(t) ≤ a;  < b ≤ b(t) ≤ b;  < c ≤ c(t) ≤ c;  < d ≤ d(t) ≤ d for
t ≥ .

(A)  < f ≤ f (x) ≤ f;  < g ≤ g(x) ≤ g;  < q ≤ q(x) ≤ q for x ∈ R and
 < m < min{f, g, }, M > max{f, g, }.

(A) h(x)
x ≥ δ >  for x �= , h() = .

(A)
∫ ∞

 (|a′(t)| + |b′(t)| + |c′(t)| + |d′(t)|) dt < η.
(A) |p(t, x, y, z, w)| ≤ |e(t)|.
Motivated by the results of references, we obtain some new results on the uniform

asymptotic stability and boundedness of the solutions by means of Lyapunov’s functional
approach. Our results differ from those obtained in the literature (see, [–] and the ref-
erences therein). By this way, we mean that this paper has a contribution to the subject in
the literature, and it may be useful for researchers working on the qualitative behaviors of
solutions of functional differential equations of higher order. In view of all the mentioned
information, the novelty and originality of the current paper can be checked.
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2 Preliminaries
We also consider the functional differential equation

.
x = f (t, xt), xt(θ ) = x(t + θ ), –r ≤ θ ≤ , t ≥ , ()

where f : I × CH → R
n is a continuous mapping, f (t, ) = , CH := {φ ∈ (C[–r, ],Rn) :

‖φ‖ ≤ H}, and for H < H , there exists L(H) >  with |f (t,φ)| < L(H) when ‖φ‖ < H.

Lemma  ([]) Let V (t,φ) : I × CH → R be a continuous functional satisfying a local
Lipschitz condition, V (t, ) = , and wedges Wi such that

(i) W(‖φ‖) ≤ V (t,φ) ≤ W(‖φ‖).
(ii) V ′

()(t,φ) ≤ –W(‖φ‖).
Then the zero solution of equation () is uniformly asymptotically stable.

3 The main results
Lemma  ([]) Let h() = , xh(x) >  (x �= ) and δ(t) – h′(x) ≥  (δ(t) > ), then
δ(t)H(x) ≥ h(x), where H(x) =

∫ x
 h(s) ds.

Theorem  In addition to the basic assumptions imposed on the functions a, b, c, d, p,
f , h, g and q, suppose that there are positive constants h, δ, δ, η and η such that the
following conditions are satisfied:

(i) h – amδ
d

≤ h′(x) ≤ h
 for x ∈ R.

(ii) δ = dhaM
cm + cM+δ

am < bq.
(iii)

∫ +∞
–∞ (|g ′(s)| + |q′(s)| + |f ′(s)|) ds < η.

(iv)
∫ ∞

 |e(t)|dt < η.
Then any solution x(t) of equation () and its derivatives x′(t), x′′(t) and x′′′(t) are

bounded and satisfy

∫ ∞



(
x′(s) + x′′(s) + x′′′(s)

)
ds < ∞,

provided that

r <


dh
min

{
εcm

α + β + 
,
[
bq – δ – εM(a + c)

]
,
ε

α

}
.

Proof To prove the theorem, we define a Lyapunov functional

W = W (t, x, y, z, w) = e
–
η

∫ t
 γ (s) dsV , ()

where

γ (t) =
∣∣a′(t)

∣∣ +
∣∣b′(t)

∣∣ +
∣∣c′(t)

∣∣ +
∣∣d′(t)

∣∣ +
∣∣θ(t)

∣∣ +
∣∣θ(t)

∣∣ +
∣∣θ(t)

∣∣,
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and

V = βd(t)H(x) + c(t)f (x)y + αb(t)q(x)z + a(t)g(x)z + βa(t)g(x)yz

+
[
βb(t)q(x) – αhd(t)

]
y – βz + αw + d(t)h(x)y + αd(t)h(x)z

+ αc(t)f (x)yz + βyw + zw + σ

∫ 

–r

∫ t

t+s
y(γ ) dγ ds

with H(x) =
∫ x

 h(s) ds, α = 
am + ε, β = dh

cm + ε, and η are positive constants to be deter-
mined later in the proof. We can rearrange V as

V = a(t)g(x)
[

w
a(t)g(x)

+ z + βy
]

+ c(t)f (x)
[

d(t)h(x)
c(t)f (x)

+ y + αz
]

+
d(t)h(x)

c(t)f (x)
+ d(t)H(x) + σ

∫ 

–r

∫ t

t+s
y(γ ) dγ ds + V + V + V,

where

V = d(t)
∫ x


h(s)

[
dh

cm
– 

d(t)
c(t)f (x)

h′(s)
]

ds,

V =
[
αb(t)q(x) – β – αc(t)f (x)

]
z,

V =
[
βb(t)q(x) – αhd(t) – βa(t)g(x)

]
y +

[
α –


a(t)g(x)

]
w.

Let

ε < min

{


am
,

dh

cm
,

bq – δ

M(a + c)

}
, ()

then


am

< α <


am
,

dh

cm
< β < 

dh

cm
. ()

By using conditions (A)-(A), (i)-(ii) and inequalities (), (), we have

V ≥ d(t)
d

cm

∫ x


h(s)

[
h


– h′(s)

]
ds ≥ ,

V =
(
α
(
b(t)q(x) – βa(t) – αc(t)f (x)

)
+ β

(
αa(t) – 

))
z

≥ α

(
bq –

dha

cm
–

cM
am

– (a + cM)
)

z + β

(

m

– 
)

z

≥ α
(
bq – δ – M(a + c)

)
z ≥ ,
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and

V ≥ β

(
bq –

α

β
hd – βaM

)
y +

(
α –


am

)
w

≥ β

(
bq –

c

a
– a

dhM
cm

– (cm + aM)
)

y + w

≥ β
(
bq – δ – M(c + a)

)
y + w ≥ .

Thus, it is clear from the above inequalities that there exists a positive constant D such
that

V ≥ D
(
y + z + w + H(x)

)
. ()

From Lemma , (A) and (i), it follows that there is a positive constant D such that

V ≥ D
(
x + y + z + w). ()

In this way, V is positive definite. From (A)-(A), it is clear that there is a positive constant
U such that

V ≤ U
(
x + y + z + w). ()

From (iii), we have

∫ t



(∣∣θ(s)
∣
∣ +

∣
∣θ(s)

∣
∣ +

∣
∣θ(s)

∣
∣)ds

=
∫ α(t)

α(t)

(∣∣g ′(u)
∣
∣ +

∣
∣q′(u)

∣
∣ +

∣
∣f ′(u)

∣
∣)du

≤
∫ +∞

–∞

(∣∣g ′(u)
∣∣ +

∣∣q′(u)
∣∣ +

∣∣f ′(u)
∣∣)du < η < ∞, ()

where α(t) = min{x(), x(t)} and α(t) = max{x(), x(t)}. From inequalities (), () and (),
it follows that

W ≥ D
(
x + y + z + w), ()

where D = D
 e– η+η

η . Also, it is easy to see that there is a positive constant U such that

W ≤ U
(
x + y + z + w) ()

for all x, y, z, w and all t ≥ .
Now, we show that

.
W is a negative definite function. The derivative of the function V

along any solution (x(t), y(t), z(t), w(t)) of system (), with respect to t, is after simplifying


.

V () = –εc(t)f (x)y + V + V + V + V + V + V + (βy + z + αw)p(t, x, y, z, w),
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where

V = –
(

dh

cm
c(t)f (x) – d(t)h′(x)

)
y – αd(t)

(
h – h′(x)

)
yz,

V = –
(
b(t)q(x) – αc(t)f (x) – βa(t)g(x)

)
z,

V = –
(
αa(t)g(x) – 

)
w,

V = αd(t)w
∫ t

t–r
h′(x(η)

)
x′(η) dη + βd(t)y(t)

∫ t

t–r
h′(x(η)

)
x′(η) dη

+ d(t)z(t)
∫ t

t–r
h′(x(η)

)
x′(η) dη + σ ry(t) – σ

∫ t

t–r
y(η) dη,

V = –a(t)θ
(
z + αzw

)
– b(t)θ

(
αz + αzw + βy + yz

)

+ c(t)θ
(
y + αyz

)
,

V = d′(t)
[
βH(x) – αhy + h(x)y + αh(x)z

]

+ c′(t)
[
f (x)y + αf (x)yz

]
+ b′(t)

[
αq(x)z + βq(x)y]

+ a′(t)
[
g(x)z + βg(x)yz

]
.

By regarding conditions (A), (A), (i), (ii) and inequality (), (), we have the following:

V ≤ –
[
d(t)h – d(t)h′(x)

]
y – αd(t)

[
h – h′(x)

]
yz

≤ –d(t)
[
h – h′(x)

]
y – αd(t)

[
h – h′(x)

]
yz

≤ d(t)
[
h – h′(x)

][(
y +

α


z
)

–
(

α


z
)]

≤ α


d(t)

[
h – h′(x)

]
z.

In that case,

V + V ≤ –
[

b(t)q(x) – αc(t)f (x) – βa(t)g(x) –
α


d(t)

[
h – h′(x)

]]
z

≤ –
[

bq –
(


am

+ ε

)
cM –

(
dh

cm
+ ε

)
aM –

α


(amδ)

]
z

≤ –
[

bq –
M

am
c –

dhaM
cm

–
δ

am
– εM(a + c)

]
z

≤ –
[
bq – δ – εM(a + c)

]
z ≤ ,

and

V ≤ –[αam – ]w = –εw ≤ .

By taking h = max{|h – amδ
d

|, h
 }, we get

V ≤ dhr
(
αw + βy + z) + σ ry +

[
dh(α + β + ) – σ

]∫ t

t–r
y(s) ds.
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If we choose σ = dh(α + β + ), we have

V ≤ dhr
[
αw + (α + β + )y + z].

Thus, there exists a positive constant D such that

–εc(t)f (x)y + V + V + V + V ≤ –D
(
y + z + w).

From (), and the Cauchy-Schwarz inequality, we obtain

V ≤ a(t)|θ|
(
z + α

(
z + w)) + b(t)|θ|

(
αz + α

(
z + w) + βy + y + z)

+ c(t)|θ|
(
y + α

(
y + z))

≤ λ
(|θ| + |θ| + |θ|

)(
y + z + w + H(x)

)

≤ 
λ

D

(|θ| + |θ| + |θ|
)
V ,

where λ = max{a( + α), b( + α + β), c( + α)}. Using condition (iii) and Lemma , we
can write

h(x) ≤ hH(x),

hereby,

|V| ≤ ∣∣d′(t)
∣∣[βH(x) + αhy + h(x) + y + α

(
h(x) + z)]

+
∣∣c′(t)

∣∣[y + α
(
y + z)] +

∣∣b′(t)
∣∣[αz + βy]

+
∣∣a′(t)

∣∣[z + β
(
y + z)]

≤ λ
[∣∣a′(t)

∣∣ +
∣∣b′(t)

∣∣ +
∣∣c′(t)

∣∣ +
∣∣d′(t)

∣∣](y + z + w + H(x)
)

≤ 
λ

D

[∣∣a′(t)
∣
∣ +

∣
∣b′(t)

∣
∣ +

∣
∣c′(t)

∣
∣ +

∣
∣d′(t)

∣
∣]V ,

such that λ = max{β + (α + )h,αh + ,α + }. By taking 
η

= 
D

max{λ,λ}, we obtain

.
V () ≤ –D

(
y + z + w) + (βy + z + αw)p(t, x, y, z, w)

+

η

(∣∣a′(t)
∣∣ +

∣∣b′(t)
∣∣ +

∣∣c′(t)
∣∣ +

∣∣d′(t)
∣∣ + |θ| + |θ| + |θ|

)
V . ()

From (A), (A),(iii), (), (), () and the Cauchy-Schwarz inequality, we get

.
W () =

(
.

V () –

η
γ (t)V

)
e– 

η

∫ t
 γ (s) ds

≤ (
–D

(
y + z + w) + (βy + z + αw)p(t, x, y, z, w)

)
e– 

η

∫ t
 γ (s) ds ()

≤ (
β|y| + |z| + α|w|)∣∣p(t, x, y, z, w)

∣∣

≤ D
(|y| + |z| + |w|)∣∣e(t)

∣∣
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≤ D
(
 + y + z + w)∣∣e(t)

∣∣

≤ D

(
 +


D

W
)∣

∣e(t)
∣
∣

≤ D
∣
∣e(t)

∣
∣ +

D

D
W

∣
∣e(t)

∣
∣, ()

where D = max{α,β , }. Integrating () from  to t and using condition (iv) and the Gron-
wall inequality, we have

W ≤ W
(
, x(), y(), z(), w()

)
+ Dη

+
D

D

∫ t


W

(
s, x(s), y(s), z(s), w(s)

)∣∣e(s)
∣∣ds

≤ (
W

(
, x(), y(), z(), w()

)
+ Dη

)
e

D
D

∫ t
 |e(s)|ds

≤ (
W

(
, x(), y(), z(), w()

)
+ Dη

)
e

D
D

η = K < ∞. ()

Because of inequalities () and (), we write

(
x + y + z + w) ≤ 

D
W ≤ K, ()

where K = K
D

. Clearly, () implies that

∣
∣x(t)

∣
∣ ≤ √

K,
∣
∣y(t)

∣
∣ ≤ √

K,
∣
∣z(t)

∣
∣ ≤ √

K,
∣
∣w(t)

∣
∣ ≤ √

K for all t ≥ .

Hence

∣
∣x(t)

∣
∣ ≤ √

K,
∣
∣x′(t)

∣
∣ ≤ √

K,
∣
∣x′′(t)

∣
∣ ≤ √

K,
∣
∣x′′′(t)

∣
∣ ≤ √

K for all t ≥ .
()

Now, we prove the square integrability of solutions and their derivatives. We define Ft =
F(t, x(t), y(t), z(t), w(t)) as

Ft = W + ρ

∫ t



(
y(s) + z(s) + w(s)

)
ds,

where ρ > . It is easy to see that Ft is positive definite since W = W (t, x, y, z, w) is already
positive definite. Using the estimate

e– η+η
η ≤ e– 

η

∫ t
 γ (s) ds ≤ 

by (), we have the following:

.
Ft () ≤ –D

(
y(t) + z(t) + w(t)

)
e– η+η

η

+ D
(∣∣y(t)

∣∣ +
∣∣z(t)

∣∣ +
∣∣w(t)

∣∣)∣∣e(t)
∣∣

+ ρ
(
y(t) + z(t) + w(t)

)
. ()



Korkmaz Journal of Inequalities and Applications  (2017) 2017:134 Page 9 of 13

By choosing ρ = De– η+η
η , we obtain

.
Ft () ≤ D

(
 + y(t) + z(t) + w(t)

)∣∣e(t)
∣
∣

≤ D

(
 +


D

W
)∣

∣e(t)
∣
∣

≤ D
∣∣e(t)

∣∣ +
D

D
Ft

∣∣e(t)
∣∣. ()

Integrating inequality () from  to t and using again the Gronwall inequality and con-
dition (iv), we get

Ft ≤ F + Dη +
D

D

∫ t


Fs|e(s)|ds

≤ (F + Dη)e
D
D

∫ t
 |e(s)|ds

≤ (F + Dη)e
D
D

η = K < ∞. ()

Therefore,

∫ ∞


y(s) ds < K,

∫ ∞


z(s) ds < K,

∫ ∞


w(s) ds < K,

which implies that

∫ ∞



[
x′(s)

] ds < K,
∫ ∞



[
x′′(s)

] ds < K,
∫ ∞



[
x′′′(s)

] ds < K, ()

which completes the proof of the theorem. �

Remark  If p(t, x, y, z, w) ≡ , similarly to the above proof, inequality () becomes

.
W() =

(
.

V () –

η
γ (t)V

)
e– 

η

∫ t
 γ (s) ds

≤ –D
(
y + z + w)e– 

η

∫ t
 γ (s) ds

≤ –μ
(
y + z + w),

where μ = De– η+η
η . It can also be observed that the only solution of system () for which

.
W()(t, x, y, z, w) =  is the solution x = y = z = w = . The above discussion guarantees that
the trivial solution of equation () is uniformly asymptotically stable, and the same con-
clusion as in the proof of the theorem can be drawn for square integrability of solutions
of equation ().
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Example  We consider the following fourth order nonlinear differential equation with
delay:

x() +
(
e–t sin t + 

)((
x + ex + e–x

ex + e–x

)
x′′

)′

+
(

sin t + t + 
t + 

)((
sin x + ex + e–x

ex + e–x

)
x′

)′

+
(
e–t sin t + 

)(x cos x + x + 
x + 

)
x′ +

(
sin t + t + 

t + 

)( x(t – 
 )

x(t – 
 ) + 

)

=
 sin t

t +  + (x′x′′) + (xx′′′) ()

by taking g(x) = x+ex+e–x

ex+e–x , q(x) = sin x+ex+e–x

ex+e–x , f (x) = x cos x+x+
x+ , h(x) = x

x+ , a(t) =
e–t sin t + , b(t) = sin t+t+

t+ , c(t) = e–t sin t + , d(t) = sin t+t+
t+ , r = 

 and p(t, x, x′x′′,
x′′′) =  sin t

t++(x′x′′)+(xx′′′) .
We obtain easily the following: g = ., g = ., f = ., f = ., q = ., q = .,

a = , a = , b = , b = , c = , c = , d = ., d = ., m = ., M = ., h = ,
α = 

 , β = 
 , δ = 

 and δ = .. Also we have

∫ ∞

–∞

∣
∣g ′(x)

∣
∣dx = 

∫ ∞

–∞

∣∣
∣∣


ex + e–x + x

e–x – ex

(ex + e–x)

∣∣
∣∣dx

≤ 
∫ 

–∞

∣
∣∣
∣


ex + e–x – x

e–x – ex

(ex + e–x)

∣
∣∣
∣dx

+ 
∫ ∞



∣∣∣
∣


ex + e–x – x

e–x – ex

(ex + e–x)

∣∣∣
∣dx

= π ,
∫ ∞

–∞

∣∣q′(x)
∣∣dx =

∫ ∞

–∞

∣
∣∣∣
(ex + e–x) cos x – (ex – e–x) sin x

(ex + e–x)

∣
∣∣∣dx

≤
∫ ∞

–∞

∣
∣∣
∣


ex + e–x + x

ex – e–x

(ex + e–x)

∣
∣∣
∣dx

= π ,
∫ ∞

–∞

∣
∣f ′(x)

∣
∣dx =

∫ ∞

–∞

∣∣
∣∣

cos x
x + 

– x cos x
(x + ) + –x

sin x
x + 

∣∣
∣∣dx

≤
∫ ∞

–∞

∣∣
∣∣


x + 

+
x

x + 

∣∣
∣∣dx

= 
√

π ,
∫ ∞



∣∣p
(
t, x, x′, x′′, x′′′)∣∣dt =

∫ ∞



∣∣∣
∣

 sin t
t +  + (x′x′′) + (xx′′′)

∣∣∣
∣dt

≤
∫ ∞



∣∣
∣∣
 sin t
t + 

∣∣
∣∣dt

≤
∫ ∞




t + 

dt

= π ,
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∫ ∞



∣∣a′(t)
∣∣dt =

∫ ∞



∣∣–e–t sin t + e–t cos t
∣∣dt

≤
∫ ∞


e–t dt

=



,
∫ ∞



∣∣b′(t)
∣∣dt =

∫ ∞



∣∣∣
∣
 cos t
t + 

– t
sin t

(t + )

∣∣∣
∣dt

≤
∫ ∞




t + 

dt

=
π


,

∫ ∞



∣
∣c′(t)

∣
∣dt =

∫ ∞



∣
∣–e–t sin t + e–t cos t

∣
∣dt

≤
∫ ∞


e–t dt

= ,
∫ ∞



∣
∣d′(t)

∣
∣dt =

∫ ∞



∣∣
∣∣
 sin t cos t

t + 
– t

sin t
(t + )

∣∣
∣∣dt

≤ 


∫ ∞




t + 

dt

=
π


.

Consequently,

∫ +∞

–∞

(∣∣g ′(s)
∣∣ +

∣∣q′(s)
∣∣ +

∣∣f ′(s)
∣∣)ds < ∞,

∫ ∞



(∣∣a′(t)
∣
∣ +

∣
∣b′(t)

∣
∣ +

∣
∣c′(t)

∣
∣ +

∣
∣d′(t)

∣
∣)dt < ∞.

Thus all the assumptions of Theorem  hold. This shows that every solution of equation
() is bounded and square integrable.

4 Conclusion
A class of nonlinear retarded functional differential equations of fourth order is consid-
ered. Sufficient conditions are established guaranteeing the uniform asymptotic stability
of the solutions for p(t, x, x′, x′′, x′′′) ≡  and also square integrability and boundedness of
solutions of equation () with delay. In the proofs of the main results, we benefit from
Lyapunov’s functional approach. The results obtained essentially improve, include and
complement the results in the literature.
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