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Abstract
Under some assumptions on the nonlinearity f , we will study the nonexistence of
nontrivial stable solutions or solutions which are stable outside a compact set of Rn

for the following semilinear higher-order problem:

(–�)ku = f (u) in R
n,

with k = 1, 2, 3, 4. The main methods used are the integral estimates and the Pohozaev
identity. Many classes of nonlinearity will be considered; even the sign-changing
nonlinearity, which has an adequate subcritical growth at zero as for example
f (u) = –mu + λ|u|θ–1u –μ|u|p–1u, wherem ≥ 0, λ > 0, μ > 0, p,θ > 1. More precisely,
we shall revise the nonexistence theorem of Berestycki and Lions (Arch. Ration. Mech.
Anal. 82:313-345, 1983) in the class of smooth finite Morse index solutions as the well
known work of Bahri and Lions (Commun. Pure Appl. Math. 45:1205-1215, 1992). Also,
the case when f (u)u is a nonnegative function will be studied under a large subcritical
growth assumption at zero, for example f (u) = |u|θ–1u(1 + |u|q) or f (u) = |u|θ–1ue|u|q ,
θ > 1 and q > 0. Extensions to solutions which are merely stable are discussed in the
case of supercritical growth with k = 1.

PACS Codes: Primary 35J55; 35J65; secondary 35B33; 35B65

Keywords: higher-order equation; Liouville theorems; finite Morse index; Pohozaev
identity

1 Introduction
This paper is devoted to the study of solutions, possibly unbounded and sign-changing,
of the semilinear partial differential equation,

(–�)ku = f (u) in R
n, (.)

where k = , , , , n ≥  and f ∈ C(R). Under some assumptions on the nonlinearity f ,
we will show that this problem does not possess a nontrivial solution with finite Morse
index.

In the last decades, problems related to the nonexistence of finite Morse index solutions
for second-, fourth- and sixth-order Lane-Emden equation on unbounded domains of Rn

have received a lot of attention (see [–]).
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We now list some known results. We start with the second-order Lane-Emden equation

–�u = |u|p–u, in R
n, p > , (.)

Farina [] proved that nontrivial finite Morse index solutions of (.) exist if and only if
p ≥ pc(n) and n ≥ , or p = n+

n– and n ≥ , where pc(n) is the so-called Joseph-Lundgren
exponent. Also, in [] several Liouville-type theorems are presented for stable solutions,
where f >  is a general convex, nondecreasing function. Extensions to solutions which
are merely stable outside a compact set are discussed.

For the fourth-order Lane-Emden problem

�u = |u|p–u, in R
n, p > , (.)

the subcritical case has been studied by Ramos and Rodriguez for finite Morse index sign-
changing solutions (see []). The supercritical case is more complicated and there are
several new approaches dealing with (.). The first approach is to use the test function
v = –�u. To this end, one has to use Souplet’s inequality [], this will give an exponent

n
n– + εn for some εn > ; see []. These results were improved in [] by adapting Farina’s
approach with the restriction on the power q < 

 . The second approach was obtained
by Cowan and Ghoussoub [], Dupaigne et al. [] and further exploited by Hajlaoui, Ye
and one of the authors []. This approach improves the first upper bound n

n– + εn, but
it again fails to catch the fourth-order Joseph-Lundgren exponent computed by Gazzola
and Grunau []. It should be remarked that by combining these two approaches one can
show that stable positive solutions to (.) do not exist when n ≤  and p > ; see [].
Finally in [], Dávila et al. employed a monotonicity formula-based approach and gave
a complete classification of stable and finite Morse index (positive or sign-changing) so-
lutions to (.). A remarkable outcome of this third approach is that it gives the optimal
exponent. The main tool of [] is a monotonicity formula, used to perform a blow-down
analysis and reduce the nonexistence of nontrivial entire solutions for the problem (.),
to that of nontrivial homogeneous solutions.

Thanks to the Liouville-type theorem with finite Morse index in [], the authors proved
the nonexistence result of sign-changing solutions for the sixth-order problem

–�u = |u|p–u, in R
n, p > . (.)

Let us give a brief sketch of their method. They proved various classification theorems
and Liouville-type results for C-solutions belonging to one of the following classes: sta-
ble solutions, solutions which are stable outside a compact set of Rn. These results apply
to the subcritical case using the Pohozaev identity. In the supercritical case, motivated
by the monotonicity formula established in [], they reduced the nonexistence of non-
trivial entire solutions for the problem (.), to that of nontrivial homogeneous solutions.
Through this approach, they gave a complete classification of stable solutions and those
finite Morse indices, whether positive or sign-changing. Also, this analysis reveals the ex-
istence of a new critical exponent called the sixth-order Joseph-Lundgren exponent, also
they gave the explicit value of this exponent.

In this work, we are concerned with Liouville-type theorems for the nonlinear elliptic
equation (.) for k = , , , . We prove Liouville-type theorems for solutions (whether
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positive or sign-changing) belonging to one of the following classes: stable solutions and
solutions which are stable outside a compact set. Our proof is based on a combination of
the integral estimates and the Pohozaev-type identity.

The paper is organized as follows. In Section  we state our main results, which are then
proved in Section . Section  contains some important auxiliary tools, which are used in
the proofs of the main theorems.

2 Statement of the main results
In order to state our results, we present first some assumptions on the nonlinearity f :

H: There exists a constant θ >  such that

f ′(s)s – θ f (s)s ≥ , ∀s ∈R.

H: There exist constants s > , θ >  and C >  such that

C|s|θ+ ≤ f (s)s, ∀|s| ≤ s.

H: There exists a constant  < α <  such that

n
n – k

F(s) – ( + α)f (s)s ≥ , ∀s ∈R,

where F(s) =
∫ s

 f (t) dt.

Remark . () H implies H ′
: There exist constants s > , θ >  and C >  such that

C|s|θ+ ≤ f (s)s, ∀|s| ≥ s.

Indeed, by H, we have f
|s|θ is nondecreasing function for all |s| ≥ s. This implies that

C|s|θ+ ≤ f (s)s, ∀|s| ≥ s.

() H implies the Ambrosetti-Rabinowitz condition (A-R): there exist constants θ̃ >  and
s >  such that

f (s)s ≥ θ̃F(s) > , for |s| > s.

Examples We easily verify that the following functions satisfy H and H.
. f (s) = C( + |s|q)|s|θ–s, θ > , q >  and C > .
. f (s) = |s|θ–se|s|q , θ >  and q > .
. f (s) =

∑i=i
i= ci|s|θi–s, with θi >  ∀i = , , . . . , i and ci >  ∀i = , , . . . , i. In this

example we choose θ = min≤i≤i (θi).

The examples () and () show that f can have an exponential growth at infinity. There-
fore, clearly an adequate behavior of f at zero is needed to obtain the Liouville the-
orem. The unique and important nonexistence result for stable solutions of the non-
homogeneous second-order equation (.) has been recently obtained in []. It is shown
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there, among other things, that (.) does not admit nontrivial stable or stable outside a
compact set solution provided that f is regular, positive, nondecreasing and convex func-
tion in (, +∞). More precisely, under a mere nonnegativity assumption on the nonlin-
earity, the authors begin this work by stating that up to space dimension n = , bounded
stable solutions of (.) are trivial. For the next series of results, they restricted themselves
to the following class of nonlinearities:

f ∈ C(R+) ∩ C(
R

∗
+
)
, f >  is nondecreasing and convex in R

∗
+. (.)

In order to relate the nonlinearity f and the below exponents (.) and (.), they intro-
duced a quantity q defined for u ∈R

∗
+ by q(u) = f ′

ff ′′ (u), whenever ff ′′(u) 
=  and q(u) = +∞
otherwise. They assumed that q(u) converges as u → + and denote its limit by

q = lim
u→+

q(u) ∈R. (.)

Define now p ∈R the conjugate exponent of q, by 
p

+ 
q

= . The exponent p must be
understood as a measure of the ’flatness’ of f at . However, we establish their following
theorem.

Theorem A [] Assume that f satisfies (.) and (.). Assume that u ∈ C(Rn) is stable
solution of (.) with k = . Then u ≡  if any one of the following conditions holds:

.  ≤ n ≤  and  < p∞,
. n = , p < +∞ and  < p∞,
. n ≥ , p < pc(n) and  < p∞ < pc(n),

where p∞ ∈R be defined by q∞ = lim supu→+∞q(u), 
p∞ + 

q∞ = .

A typical example of nonlinearity function f satisfying the above conditions (.) and
(.) is f (u) = |u|θ–u+ |u|p–u, where p ≥ θ . A simple calculation, we get p = θ and p∞ = p.
We use this nonlinearity function to establish some new Liouville-type theorems. Our
method is different from (and complementary to) the one used in []. It exploits the at-
tractive character of the difference between f ′(u)u –θ f (u)u ≥ , if p ≥ θ , that is, f satisfies
H and H. It will be shown in Theorem . that problem (.) does not possess nontrivial
stable solutions if and only if  < θ < pc(n), ∀p ≥ θ . Also, we may consider nonlineari-
ties with exponential growth at infinity, i.e. p∞ = ∞ satisfying H and H, as for example
f (u) = |u|θ–ue|u|q , θ >  and q > ; therefore, in view again of Theorem ., one has u ≡ .
Furthermore, the present paper is motivated by the interesting work [], we shall revise
the nonexistence theorem of Berestycki and Lions [] if one substitutes their assumption,
which is

∫

Rn
|∇u| +

∫

Rn
f (u)u < +∞,

by assuming that u is stable or stable outside a compact set. Therefore sign-changing non-
linearities will also be considered and we do not require that f ′() =  as the instructive
example given by Berestycki and Lions [] is f (u) = –mu + λ|u|θ–u – μ|u|p–u, where λ,μ
are positive constants, m ≥  and  < θ , p. Observe that the above nonlinearity satisfies
(H), thus we shall prove that equation (.) does not possess a nontrivial stable solution
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provided  < p ≤ n+k
n–k and p < θ , also if u is bounded solution to (.) and m > , then u ≡ ,

for any θ ≥ p. If p ≤ n+k
n–k ≤ θ and m > , it follows from the Pohozaev identity that there

cannot exist a nontrivial solution of (.) which is stable outside a compact set. This result
is similar to [] for k = . To conclude, this work completes the study of Dupaigne and Fa-
rina [] since here we do not assume that f is positive and convex function. Therefore, to
be more concrete in our analysis of nonexistence, we will distinguish between stable and
stable outside a compact set. We provide some elliptic decay estimates that we use fre-
quently later in the proofs. Deriving the right decay estimates for solutions of (.) plays a
fundamental role in most our proofs. On the other hand, we shall also consider the ques-
tion of the nonexistence of stable solutions (positive or sign-changing) in the supercritical
case of a second-order equation.

In order to state our results we need to recall the following.

Definition . A solution u of (.) belonging to Ck(Rn)
• is said to be stable if

Qu(ψ) :=
∫

Rn

∣
∣Dkψ

∣
∣ dx –

∫

Rn
f ′(u)ψ dx ≥ , ∀ψ ∈ Ck

c
(
R

n),

where

Dk =

⎧
⎨

⎩

�
k
 for k = , ,

∇�
k–

 for k = , ,

• is stable outside a compact set K ⊂R
n, if Qu(ψ) ≥  for any ψ ∈ Ck

c (Rn\K).
More generally, the Morse index of a solution is defined as the maximal dimension

of all subspaces E of Ck
c (Rn) such that Qu(ψ) <  in E\{}. Clearly, a solution is stable

if and only if its Morse index is equal to zero.

Remark . It is well known that any finite Morse index solution u is stable outside a
compact set K ⊂ R

n. Indeed, there exist K ≥  and XK := Span{φ, . . . ,φK } ⊂ Ck
c (Rn) such

that Qu(φ) <  for any φ ∈ XK\{}. Hence, Qu(ψ) ≥  for every ψ ∈ Ck
c (Rn\K), where

K :=
⋃K

j= supp(φj).

To state the following result we need to introduce some notation. Let two critical expo-
nents play an important role, namely the classical Sobolev exponent

ps(n, k) =

⎧
⎨

⎩

+∞ if n ≤ k,
n+k
n–k if n > k,

(.)

and the Joseph-Lundgren exponent

pc(n) =

⎧
⎨

⎩

+∞ if n ≤ ,
(n–)–n+

√
n–

(n–)(n–) if n ≥ .
(.)

Note that the exponent pc(n) is larger than the classical critical Sobolev exponent ps(n, ),
n ≥ .

Now we can state our main nonexistence results.
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Theorem . Let u ∈ Ck(Rn) be a stable solution of (.). Assume that f satisfies H

and H. If  < θ ≤ ps(n, k), then u ≡ .

Theorem . Let u ∈ Ck(Rn) be a solution of (.) which is stable outside a compact set.
Assume that f satisfies H, H and H. If  < θ < ps(n, k), then u ≡ .

The next result concerns the complete classification of entire stable solutions of the
second-order equation (.) in the supercritical case.

Theorem . Let u ∈ C(Rn) be a stable solution of (.) with k = . Assume that f satisfies
H and H. If n+

n– < θ < pc(n), then u ≡ .

2.1 Berestycki and Lions Liouville-type theorem
Now, we fix in this subsection

f (u) = –mu + λ|u|θ–u – μ|u|p–u, (.)

where λ,μ are positive constants, m ≥  and  < θ , p. We will show that u =  is the unique
solution of equation (.) under some assumptions on the parameter m, θ and p. Also, we
observe that f is neither convex nor positive function in R

n. Then we have the following.

Theorem . Let u ∈ Ck(Rn) be a stable solution of (.) with f satisfies (.).
. If u is bounded and m > , then u ≡ , for any θ ≥ p > .
. If  < p < θ and  < p ≤ ps(n, k), then u ≡ .

Remark . Clearly, if u is unbounded stable solution to (.) with f (u) = –mu+λ|u|θ–u–
μ|u|p–u and m > , then u ≡ , for any θ ≥ p >  and n < k.

Also, we will show, with very few restrictions, that there exists a necessary and sufficient
condition for the nonexistence solutions which are stable outside a compact set of problem
like (.).

Theorem . Let u ∈ Ck(Rn) be a solution of (.) which is stable outside a compact set
with f satisfies (.).

. If m >  and  < p ≤ n+k
n–k ≤ θ , then u ≡ .

. If m = ,  < p ≤ n+k
n–k ≤ θ and (p, θ ) 
= ( n+k

n–k , n+k
n–k ), then u ≡ .

3 Auxiliary results
In this section we prove the following lemmas and propositions, which will have a crucial
role in the proof of Theorems ., ., ., . and .. Denote BR = {x ∈ R

n : |x| < R}. The
letter C will be used throughout to denote a generic positive constant, which may vary
from line to line and only depends on arguments inside the parentheses or arguments
which are otherwise clear from the context.

First, define a cut-off function ϕR ∈ C
c (Rn) such that ϕR ≡  in BR, ϕR ≡  in R

n\{BR},
 ≤ ϕR ≤  in R

n and |∇τ ϕR| ≤ CR–τ for τ ≤  in AR = {x ∈R
n, R ≤ |x| ≤ R}.

Lemma . For any v ∈ C(Rn), m >  and ε >  arbitrary small number, there exists a con-
stant Cε,m >  such that
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. R– ∫
BR

|�v|ϕm–
R dx ≤ ε ∫

BR
(�v)ϕm

R dx + εR–∫
BR

|∇(�v)|ϕm–
R dx +

Cε,mR– ∫
BR

vϕm–
R dx,

. R–∫
BR

|∇(�v)|ϕm–
R dx ≤ ε

∫
BR

(�v)ϕm
R dx + Cε,mR–∫

BR
vϕm–

R dx,
. R–∫

BR
|∇v|ϕm–

R dx ≤ ε∫
BR

(�v)ϕm
R dx + Cε,mR–∫

BR
vϕm–

R dx,
. R–∫

BR
|∇v|ϕm–

R dx ≤ ε∫
BR

(�v)ϕm
R dx + Cε,mR–∫

BR
vϕm–

R dx,
. R– ∫

BR
|∇v|ϕm–

R dx ≤ ε∫
BR

(�v)ϕm
R dx + Cε,mR–∫

BR
vϕm–

R dx.

Proof Fix m > . Let v ∈ C(Rn) and ϕR ∈ C
c (Rn) defined as above.

Proof of . Integrating by parts, we get

R–
∫

BR

(�v)ϕm–
R dx

= R–
∫

BR

v
(
�vϕm–

R + �v�
(
ϕm–

R
)

+ ∇(�v)∇(
ϕm–

R
))

dx. (.)

An application of Young’s inequality yields

R–
∫

BR

v
(
�vϕm–

R + �v�
(
ϕm–

R
)

+ ∇(�v)∇(
ϕm–

R
))

dx

≤ ε
∫

BR

(
�v

)
ϕm

R dx + εR–
∫

BR

∣
∣∇(�v)

∣
∣

ϕm–
R dx

+
R–



∫

BR

(�v)ϕm–
R dx + Cε,mR–

∫

BR

vϕm–
R dx.

Inserting the latter inequality into (.), we obtain

R–
∫

BR

(�v)ϕm–
R dx ≤ ε

∫

BR

(
�v

)
ϕm

R dx + εR–
∫

BR

∣
∣∇(�v)

∣
∣

ϕm–
R dx

+ Cε,mR–
∫

BR

vϕm–
R dx. (.)

Proof of . Integrating by parts and using again Young’s inequality, we obtain

R–
∫

BR

∣
∣∇(�v)

∣
∣

ϕm–
R dx

= –R–
∫

BR

�v�vϕm–
R dx – R–

∫

BR

�v∇(�v)∇(
ϕm–

R
)

dx

≤ ε

∫

BR

(
�v

)
ϕm

R dx +
R–

ε

∫

BR

(�v)ϕm–
R dx + CεR–

∫

BR

∣
∣∇(�v)

∣
∣

ϕm–
R dx.

Inserting (.) into the latter, we derive

R–
∫

BR

∣
∣∇(�v)

∣
∣

ϕm–
R dx ≤ ε

∫

BR

(
�v

)
ϕm

R dx + Cε,mR–
∫

BR

vϕm–
R dx. (.)

Proof of . Integrating by parts, we obtain
∫

BR

|∇v|ϕm–
R dx =

R–



∫

BR

�
(
v)ϕm–

R dx – R–
∫

BR

v�vϕm–
R dx

≤ εR–
∫

BR

(�v)ϕm–
R dx + Cε,mR–

∫

BR

vϕm–
R dx.
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From (.) and (.), we deduce

R–
∫

BR

|∇v|ϕm–
R dx ≤ ε

∫

BR

(
�v

)
ϕm

R dx + Cε,mR–
∫

BR

vϕm–
R dx. (.)

Proof of . Integrating by parts, we obtain

R–
∫

BR

∣
∣∇v

∣
∣

ϕm–
R dx

= –R–
∫

BR

∇v∇(�v)ϕm–
R dx +

R–



∫

BR

|∇v|�(
ϕm–

R
)

dx. (.)

Using Young’s inequality and from (.) and (.), we obtain

R–
∫

BR

∣
∣∇v

∣
∣

ϕm–
R dx ≤ R–

∫

BR

∣
∣∇(�v)

∣
∣

ϕm–
R dx + CR–

∫

BR

|∇v|ϕm–
R dx

≤ ε
∫

BR

(
�v

)
ϕm

R + Cε,mR–
∫

BR

vϕm–
R .

Proof of . Integrating by parts, we get

R–
∫

BR

∣
∣∇v

∣
∣

ϕm–
R dx

= R–
∫

BR

(∣
∣∇(�v)

∣
∣

ϕm–
R + vij�vi

(
ϕm–

R
)

j +


∣
∣∇v

∣
∣

�
(
ϕm–

R
)
)

dx,

where fi = ∂f
∂xi

, fij = ∂f
∂xj∂xi

and fijk = ∂f
∂xk∂xj∂xi

. (Here and in the sequel, we use the Einstein
summation convention: an index occurring twice in a product is to be summed from  up
to the space dimension.)

Using Young’s inequality of the above, we deduce

R–
∫

BR

∣
∣∇v

∣
∣

ϕm–
R dx

≤ CR–
∫

BR

∣
∣∇(�v)

∣
∣

ϕm–
R dx + CR–

∫

BR

∣
∣∇v

∣
∣

ϕm–
R dx, (.)

which gives the desired conclusion. �

Lemma . For any m >  and ε >  arbitrary small number, there exists a constant
Cε,m >  such that

(
�(uϕm

R
)) ≤ ( + ε)

(
ϕm

R �u
) + Cε,mB(u,ϕR, m), (.)

where B(u,ϕR, m) = (R–|�u|ϕm–
R + R–|∇(�u)|ϕm–

R + R–|∇u|ϕm–
R + R–uϕm–

R +
R–|∇u|ϕm–

R ).

Proof Let ϕR ∈ C
c (Rn) be defined as above and m > . Direct calculation yields

�(uϕm
R

)
= ϕm

R �u + A
(
u,ϕm

R
)
, (.)

where A(u,ϕm
R ) = �u�ϕm

R + ∇u∇(�ϕm
R ) + u�ϕm

R + ∇(�u)∇(ϕm
R ) + uij(ϕm

R )ij.
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Thus,

(
�(uϕm

R
)) =

(
ϕm

R �u
) + A(u,ϕm

R
)

+ A
(
u,ϕm

R
)
ϕm

R �u.

Now by the Young inequality, for any ε > , there exists Cε a constant such that

(
�(uϕm

R
)) ≤ ( + ε)

(
ϕm

R �u
) + CεA(u,ϕm

R
)
. (.)

For the second term on the right hand side of inequality (.), one obtains

A(u,ϕm
R

) ≤ Cε

(|�u|∣∣�ϕm
R

∣
∣ + |∇u|∣∣∇(

�ϕm
R

)∣
∣ + |u|∣∣�ϕm

R
∣
∣

+
∣
∣∇(�u)

∣
∣∣∣∇(

ϕm
R

)∣
∣ + |uij|

∣
∣
(
ϕm

R
)

ij

∣
∣)

≤ Cε,m
(
R–|�u|ϕm–

R + R–∣∣∇(�u)
∣
∣

ϕm–
R + R–|∇u|ϕm–

R

+ R–uϕm–
R + R–∣∣∇u

∣
∣

ϕm–
R

)
,

which gives the desired inequality (.). �

Using the previous lemmas, we obtain the following results.

Proposition . Let u ∈ Ck(Rn) be a stable solution of (.). Assume that f satisfies H

and H. Then there exists a constant C >  such that, for any R > , we have

∫

BR

(|u|θ+ +
∣
∣Dku

∣
∣)dx ≤ CRn–k θ+

θ– and
∫

BR

f (u)u dx ≤ CRn–k θ+
θ– .

When attempting to prove the nonexistence of the nontrivial solution which is stable
outside a compact set of (.) in the subcritical case, we need first to establish the following
proposition.

Proposition . Let u ∈ Ck(Rn) be a solution of (.) which is stable outside a compact
set. Assume that f satisfies H and H. Then there exists a constant C >  such that, for any
R > , we have

∫

BR

(|u|θ+ +
∣
∣Dku

∣
∣)dx ≤ C

(
 + Rn–k θ+

θ–
)

and
∫

BR

f (u)u dx ≤ C
(
 + Rn–k θ+

θ–
)
.

Proof of Proposition . The proof of the case k = , , , bears resemblance to an argument
found in [, , ]. For more details, please see the proof of proposition  in [] for the case
k = , the proof of Lemma . in [] for the case k =  and the proof of Proposition . in
[] for the case k = . For this reason, we omit the details.

Proof of the case k = . Let ϕR ∈ C
c (Rn) defined as above, let u be a solution of equation

(.). The function uϕm
R belongs to C

c (Rn), and thus it can be used as a test function in the
quadratic form Qu. Hence, the stability assumption on u gives

∫

BR

f ′(u)uϕm
R dx ≤

∫

BR

∣
∣�(uϕm

R
)∣∣ dx.
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Applying Lemma ., we obtain

∫

BR

f ′(u)uϕm
R dx ≤ ( + ε)

∫

BR

(
ϕm

R �u
) dx + Cε

∫

BR

B(u,ϕR, m) dx. (.)

In view of Lemma ., we get

∫

BR

f ′(u)uϕm
R dx ≤ ( + ε)

∫

BR

(
ϕm

R �u
) + CεR–

∫

BR

uϕm–
R dx. (.)

Multiplying equation (.) by uϕm
R and integrating by parts, we get

∫

BR

�u�(uϕm
R

)
dx =

∫

BR

f (u)uϕm
R dx.

From (.), we derive
∫

BR

�u�(uϕm
R

)
dx

=
∫

BR

�u
{(

�u
)
ϕm

R + �u�
(
ϕm

R
)

+ uij
(
ϕm

R
)

ij

+ ∇(�u)∇(
ϕm

R
)

+ ∇u∇(
�

(
ϕm

R
))

+ u�(ϕm
R

)}
dx,

therefore
∫

BR

((
�u

)
ϕm

R – f (u)uϕm
R

)
dx = –

∫

BR

�uA
(
u,ϕm

R
)

dx. (.)

Then, using Young’s inequality, we derive

∫

BR

((
�u

)
ϕm

R – f (u)uϕm
R

)
dx ≤ ε

∫

BR

(
�u

)
ϕm

R dx + Cε,m

∫

BR

B(u,ϕR, m) dx.

Applying again Lemma ., we have

∫

BR

(
�u

)
ϕm

R dx –
∫

BR

f (u)uϕm
R dx

≤ ε

∫

BR

(
�u

)
ϕm

R dx + Cε,mR–
∫

BR

uϕm–
R dx. (.)

Multiplying (.) by θ and combining it with (.), we derive

∫

BR

[
f ′(u)u – θ f (u)u

]
ϕm

R dx +
[
θ ( – ε) – ( + ε)

]
∫

BR

(
�u

)
ϕm

R dx

≤ CR–
∫

BR

uϕm–
R dx.

From (H) and for ε sufficiently small such that ε < θ–
θ+ , we deduce

∫

BR

(
�u

)
ϕm

R dx ≤ CR–
∫

BR

uϕm–
R dx. (.)
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By Young’s inequality, we have

∫

BR

(
�u

)
ϕm

R dx ≤ 
θ + 

∫

BR

|u|θ+ϕ
(θ+)(m–)
R dx + CRn– θ+

θ– . (.)

As above, we find from (.) that

∫

BR

f (u)uϕm
R dx ≤ ( + ε)

∫

BR

(
�u

)
ϕm

R dx + Cε,mR–
∫

BR

uϕm–
R dx.

Using (.) in the latter, we obtain

∫

BR

f (u)uϕm
R dx ≤ CεR–

∫

BR

uϕm–
R dx

≤ 
θ + 

∫

BR

|u|θ+ϕ
(θ+)(m–)
R dx + CRn– θ+

θ– . (.)

From (H ′
) and (H), we get

C

∫

BR

|u|θ+ϕm
R dx ≤

∫

BR

f (u)uϕm
R dx

≤ 
θ + 

∫

BR

|u|θ+ϕ
(θ+)(m–)
R dx + CRn– θ+

θ– ,

if (θ + )(m – ) = m, then

∫

BR

|u|θ+ϕm
R dx ≤ CRn– θ+

θ– . (.)

From (.), (.) and (.), we deduce that

∫

BR

(
�u

)
ϕm

R dx ≤ CRn– θ+
θ– , and

∫

BR

f (u)uϕm
R dx ≤ CRn– θ+

θ– .

Since ϕR ≡  in BR, we have

∫

BR

(|u|θ+ +
(
�u

))dx ≤ CRn– θ+
θ– , and

∫

BR

f (u)u dx ≤ CRn– θ+
θ– . �

Proof of Proposition . The proof of the case k = , , , bears resemblance to an argument
found in [, , ]. Now, we prove the case k = . The proof is the same as the proof of
Proposition .. We need only to replace ϕR by ϕa,R, where ϕa,R ∈ C

c (Rn) satisfies  ≤
ϕa,R ≤  everywhere on R

n such that ϕa,R(x) =  for |x| < a or |x| > R, ϕa,R(x) =  for a <
|x| < R and |∇τ ϕa,R| ≤ CR–τ , τ ≤ , for R < |x| < R. By the stability assumption on u,
there exists a >  such that Qu(uϕm

a,R) ≥  for any R > a. Hence, by the choice of the
test function ϕa,R, the constant Ca depending on a, ε, m and u appears and the rest of
the proof is unchanged. Thus Proposition . follows. �

As in [], we shall employ a cut-off function with compact support to derive a variant
of the Pohozaev identity. This device allows us to avoid the spherical integrals raised in
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[], which are very difficult to control, especially for the polyharmonic situations. For
k = , , , the Pohozaev identity is similar to [, , , ].

Proposition . Let u ∈ C(Rn) be a solution of (.) and ψ ∈ C
c (BR), then

n – 


∫

BR

(
�u

)
ψ dx – n

∫

BR

F(u)ψ dx =
∫

BR

B(u,ψ) dx, (.)

where

B(u,ψ) = F(u)〈x,∇ψ〉 –


(
�u

)〈x,∇ψ〉 + �u∇(〈
x,∇(�u)

〉)∇ψ

+ �u
{〈

x,∇(�u)
〉
�ψ + �u�ψ

}
+ �u

{
∇(�u)∇ψ + �ψ〈x,∇u〉}

+ �u
{
�ψ�

(〈x,∇u〉) + ∇(�ψ)∇(〈x,∇u〉) + �
[∇(〈x,∇u〉)∇ψ

]}
.

Thanks to Propositions . and ., we derive the following.

Proposition . Let u ∈ Ck(Rn) be a solution of (.) which is stable outside a compact
set. Assume that f satisfies H and H. If  < θ < ps(n, k), then

∫

Rn

∣
∣Dku

∣
∣ dx =

n
n – k

∫

Rn
F(u) dx (.)

and
∫

Rn

∣
∣Dku

∣
∣ dx =

∫

Rn
f (u)u dx < ∞. (.)

Proof of Proposition . Let u ∈ C(Rn) be a solution of (.) and ψ ∈ C
c (BR), we have

�
(〈x,∇u〉ψ)

=
〈
x,∇(�u)

〉
ψ + �uψ + 〈x,∇u〉�ψ + ∇(〈x,∇u〉)∇ψ .

Multiplying equation (.) by 〈x,∇u〉ψ and integrating by parts in BR, we obtain
∫

BR

f (u)〈x,∇u〉ψ dx =
∫

BR

�u�
(〈x,∇u〉ψ)

dx. (.)

For the right hand side of (.), we integrate by parts to get
∫

BR

�u�
(〈x,∇u〉ψ)

dx

=
∫

BR

�u
(〈

x,∇(�u)
〉
ψ + �uψ + 〈x,∇u〉�ψ + ∇(〈x,∇u〉)∇ψ

)
dx

=
∫

BR

�u�
[〈

x,∇(�u)
〉]
ψ dx + 

∫

BR

�u∇[〈
x,∇(�u)

〉]∇ψ dx + 
∫

BR

(
�u

)
ψ dx

+
∫

BR

�u
{〈

x,∇(�u)
〉
�ψ + �u�ψ + ∇(�u)∇ψ + 〈x,∇u〉�ψ

}
dx

+
∫

BR

�u
{
�

[〈x,∇u〉]�ψ + ∇[〈x,∇u〉]∇(�ψ)
}

dx

+ 
∫

BR

�u�
[∇(〈x,∇u〉)∇ψ

]
dx. (.)
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For the first term on the right hand side of (.), we integrate by parts to find

∫

BR

�u�
[〈

x,∇(�u)
〉]
ψ dx =

 – n


∫

BR

(
�u

)
ψ dx –




∫

BR

(
�u

)〈x,∇ψ〉dx. (.)

For the term on the left hand side of (.), by integrating by parts, we derive

∫

BR

f (u)〈x,∇u〉ψ dx =
∫

BR

〈
x,∇[

F(u)
]〉
ψ dx

= –n
∫

BR

F(u)ψ dx –
∫

BR

F(u)〈x,∇ψ〉dx. (.)

Therefore, the claim follows from (.)-(.). �

Here, we are concerned with the proof of Proposition ..

Proof of Proposition . To simplify the proof, we will concentrate on the case k =  which
is the most delicate case; even we believe that the results should hold true for k = , , , for
more details, see for example [, , , ]. Let R > . Assume that u is stable outside BR .
Let  < α < β . We begin by defining some smooth compactly supported functions which
will be used several times in the sequel. More precisely, we choose φR ∈ C

c (Rn) satisfies
 ≤ φR ≤  everywhere on R

n such that

φR(x) =

⎧
⎪⎪⎨

⎪⎪⎩

 for αR < |x| < βR,

 for |x| < α
 R or |x| > βR,

|∇kφR| ≤ CR–k on { α
 R < |x| < βR}, k = , , , .

For R large enough such that α
 R > R, then BR ∩ { α

 R ≤ |x| ≤ βR} = ∅. Then u is stable
in AβR

α
 R := { α

 R < |x| < βR}. By Proposition ., there exists a constant C >  such that

∫

AβR
αR

(|u|θ+ +
(
�u

))dx ≤ CRn– θ+
θ– and

∫

AβR
αR

f (u)u dx ≤ CRn– θ+
θ– . (.)

Let ψR ∈ C
c (Rn) satisfies  ≤ ψR ≤  on R

n defined by

ψR(x) =

⎧
⎪⎪⎨

⎪⎪⎩

 for |x| < αR,

 for |x| > βR,

|∇kψR| ≤ CR–k on {αR < |x| < βR}, k = , , , .

In view of Lemma . and Proposition ., we have

∫

BβR

(|u|θ+ψm
R +

(
�u

)
ψm

R
)

dx ≤ CRn– θ+
θ– , (.)

∫

BβR

(
B(u,ψR, m) + R–∣∣∇u

∣
∣

ψm–
R

)
dx ≤ CRn– θ+

θ– . (.)

Now, we estimate all terms on the right hand side of (.). Take ψ = ψm
R in (.), m > .
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The second term on the right hand side of (.) can be estimated as
∣
∣
∣
∣–




∫

BβR

(
�u

)〈x,∇ψm
R

〉
dx

∣
∣
∣
∣ =

∣
∣
∣
∣–




∫

AβR
αR

(
�u

)〈x,∇ψm
R

〉
dx

∣
∣
∣
∣

≤ Cm

∫

AβR
αR

(
�u

)
ψm–

R dx ≤ CRn– θ+
θ– . (.)

Next
∣
∣
∣
∣

∫

BβR

[
�u

(〈
x,∇(�u)

〉
�ψm

R + �u�ψm
R + ∇(�u)∇ψm

R + �ψm
R 〈x,∇u〉)]dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

AβR
αR

[
�u

(〈
x,∇(�u)

〉
�ψm

R + �u�ψm
R + ∇(�u)∇ψm

R + �ψm
R 〈x,∇u〉)]dx

∣
∣
∣
∣

≤ Cm

∫

AβR
αR

∣
∣�u

∣
∣
(
R–∣∣∇(�u)

∣
∣ψm–

R + R–|�u|ψm–
R + R–|∇u|ψm–

R
)

dx

≤ Cm

∫

AβR
αR

∣
∣�u

∣
∣
(
R–∣∣∇(�u)

∣
∣ψm–

R + R–|�u|ψm–
R + R–|∇u|ψm–

R
)

dx, (.)

the last line comes from the fact that  ≤ ψR ≤ , hence ψ s
R ≤ ψ t

R, for any t ≤ s.
By applying the Hölder inequality and the Young inequality to (.), we have

∣
∣
∣
∣

∫

BβR

[
�u

(〈
x,∇(�u)

〉
�ψm

R + �u�ψm
R + ∇(�u)∇ψm

R + �ψm
R 〈x,∇u〉)]dx

∣
∣
∣
∣

≤
∫

AβR
αR

∣
∣�u

∣
∣
(
R–∣∣∇(�u)

∣
∣ψm–

R + R–|�u|ψm–
R + R–|∇u|ψm–

R
)

dx

≤
(∫

AβR
αR

(
�u

) dx
) 


(∫

AβR
αR

(
R–∣∣∇(�u)

∣
∣ψm–

R + R–|�u|ψm–
R

+ R–|∇u|ψm–
R

) dx
) 



≤ C
(∫

AβR
αR

(
�u

) dx
) 


(∫

AβR
αR

(
R–∣∣∇(�u)

∣
∣

ψm–
R + R–|�u|ψm–

R

+ R–|∇u|ψm–
R

)
dx

) 


. (.)

Similarly, we also obtain
∣
∣
∣
∣

∫

BβR

�u∇(〈
x,∇(�u)

〉)∇ψm
R dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

BβR

�u
(∇(�u)∇ψm

R + xi(�u)ij
(
ψm

R
)

j

)
dx

∣
∣
∣
∣

≤ Cm

∫

AβR
αR

∣
∣�u

∣
∣
(
R–∣∣∇(�u)

∣
∣ψm–

R +
∣
∣(�u)ij

∣
∣ψm–

R
)

dx

≤ C
(∫

AβR
αR

(
�u

) dx
) 


(∫

AβR
αR

(
R–∣∣∇(�u)

∣
∣ψm–

R +
∣
∣(�u)ij

∣
∣ψm–

R
) dx

) 


≤ C
(∫

AβR
αR

(
�u

) dx
) 


(∫

AβR
αR

(
R–∣∣∇(�u)

∣
∣

ψm–
R +

(
(�u)ij

)
ψm–

R
)

dx
) 


. (.)



Harrabi et al. Journal of Inequalities and Applications  (2017) 2017:79 Page 15 of 21

Integrating by parts and using Young’s inequality, we obtain

∫

AβR
αR

[
R–∣∣∇(�u)

∣
∣

ψm–
R +

(
(�u)ij

)
ψm–

R
]

dx

≤
∫

BβR

[
R–∣∣∇(�u)

∣
∣

ψm–
R +

(
(�u)ij

)
ψm–

R
]

dx

=
∫

BβR

(
�u

)
ψm–

R dx +
∫

BβR

�u∇(�u)∇(
ψm–

R
)

dx

+
∫

BβR

∣
∣∇(�u)

∣
∣

[

R–ψm–
R +



�

(
ψm–

R
)
]

dx

≤ Cm

∫

BβR

(
�u

)
ψm

R dx + CmR–
∫

BβR

∣
∣∇(�u)

∣
∣

ψm–
R dx. (.)

From (.) and (.), we obtain

∣
∣
∣
∣

∫

BβR

�u∇(〈
x,∇(�u)

〉)∇ψm
R dx

∣
∣
∣
∣

≤ C
(∫

AβR
αR

(
�u

) dx
) 


(∫

BβR

((
�u

)
ψm

R + R–∣∣∇(�u)
∣
∣

ψm–
R

)
dx

) 


. (.)

The sixth term on the right hand side of (.) yields

∣
∣
∣
∣

∫

BβR

�u
(
�

(
ψm

R
)
�

(〈x,∇u〉) + ∇(
�

(
ψm

R
))∇(〈x,∇u〉))dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

BβR

�u
(〈

x,∇(�u)
〉
�

(
ψm

R
)

+ �u�
(
ψm

R
)

+ ∇u∇(
�

(
ψm

R
))

+ xiuij
(
�

(
ψm

R
))

j

)
dx

∣
∣
∣
∣

≤ C
(∫

AβR
αR

(
�u

) dx
) 


(∫

AβR
αR

(
R–∣∣∇(�u)

∣
∣

ψm–
R + R–(�u)ψm–

R

+ R–|∇u|ψm–
R + R–∣∣∇u

∣
∣

ψm–
R

)
dx

) 


. (.)

The last term on the right hand side of (.) can be estimated as

∫

BβR

�u�
(∇(〈x,∇u〉)∇(

ψm
R

))
dx

=
∫

BβR

�u
(
∇(�u)∇(

ψm
R

)
+ ∇u∇(

�
(
ψm

R
))

+  × ∇(ui) × ∇(
ψm

R
)

i

)
dx

+
∫

BβR

�u
(
xi × (�u)ij ×

(
ψm

R
)

j + uij ×
{

xi
(
�

(
ψm

R
))

j + 
(
ψm

R
)

ij

})
dx

+ 
∫

BβR

xi�
u × uijk × (

ψm
R

)
jk dx.
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By Hölder’s inequality and Young’s inequality, we get

∣
∣
∣
∣

∫

BβR

�u�
(∇(〈x,∇u〉)∇(

ψm
R

))
dx

∣
∣
∣
∣

≤ C
(∫

AβR
αR

(
�u

) dx
) 



×
(∫

BβR

(
R–∣∣∇(�u)

∣
∣

ψm–
R + R–|∇u|ψm–

R + (�u)
ij × ψm–

R

+ R–∣∣∇u
∣
∣ × ψm–

R + R–∣∣∇u
∣
∣ × ψm–

R
)

dx
) 



≤ C
(∫

AβR
αR

(
�u

) dx
) 


(∫

BβR

((
�u

)
ψm

R + B(u,ψR, m)

+ R–∣∣∇u
∣
∣

ψm–
R

)
dx

) 


. (.)

From hypothesis H, one has (θ + )F(s) ≤ f (s)s,∀s ∈ R. Using the latter inequality, (.)
and  < θ < ps(n, ), we get

∫

BβR

F(u)
〈∇ψm

R , x
〉
dx = o() as R → +∞. (.)

From (.), (.)-(.), and  < θ < ps(n, ), we obtain

∫

Rn

(
�u

) dx =
n

n – 

∫

Rn
F(u) dx.

Now, multiplying equation (.) by uψm
R and integrating by parts, we get

∫

BR

((
�u

)
ψm

R – f (u)uψm
R

)
dx

= –
∫

BR

�u
(
�u�

(
ψm

R
)

+ uij
(
ψm

R
)

ij + ∇(�u)∇(
ψm

R
)

+ ∇u∇(
�

(
ψ

Rm
))

+ u�(ψm
R

))
dx.

By the same reasoning as above, we find

∫

Rn

(
�u

) dx =
∫

Rn
f (u)u dx < ∞. �

4 Proof of Theorems 2.1, 2.2, 2.3, 2.4 and 2.5

Proof of Theorem . The proof of Theorem . for the case k = , ,  is exactly the same
as in [, , ]. Now, we prove the case k = . Let u be a stable solution to (.).

Subcritical case:  < θ < ps(n, ). By Proposition ., there exists C >  such that
∫

BR

|u|θ+ dx ≤ CRn– θ+
θ– , ∀R > .
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Note that

n – 
θ + 
θ – 

= n –  –


θ – 
< , ∀θ ∈ (

, ps(n, )
)
.

Then, if  < θ < ps(n, ), after sending R → ∞, we get u ≡  in R
n.

Critical case: θ = n+
n– . By Proposition ., we have

∫

Rn

((
�u

) + |u|θ+)dx < +∞.

So,

lim
R→+∞

∫

AR

((
�u

) + |u|θ+)dx = . (.)

Moreover, if we come back to the proof of Proposition ., we may improve the following
integral estimates:

∫

BR

((
�u

) + |u|θ+)dx ≤ C
∫

AR

(
�u

) dx + CR–
∫

AR

u dx.

By Hölder’s inequality, we have

∫

BR

((
�u

) + |u|θ+)dx ≤ C
∫

AR

(
�u

) dx + CRn θ–
θ+ – ×

(∫

AR

|u|θ+ dx
) 

θ+

≤ C
∫

AR

(
�u

) dx + C
(∫

AR

|u|θ+ dx
) 

θ+
.

Using (.), we get
∫

Rn
|u|θ+ dx = .

This implies that u ≡  in R
n. �

Proof of Theorem . We now collect (.) and (.). By assumption H, if u is not iden-
tically zero, then

∫

Rn

∣
∣Dku

∣
∣ dx =

n
n – k

∫

Rn
F(u) dx ≥ ( + α)

∫

Rn
f (u)u dx

>
∫

Rn
f (u)u dx =

∫

Rn

∣
∣Dku

∣
∣ dx.

This is a contradiction. Then u ≡ . The proof of Theorem . is thus completed. �

Proof of Theorem . The proof of Theorem . is similar to proof of Proposition  in [].
Let γ ∈ [, θ –  + 

√
θ (θ – )). Multiply equation (.) by |u|γ –uϕ

R and integrate by parts
to find

∫

BR

f (u)u|u|γ –ϕ
R dx

=
γ

(γ + )

∫

BR

∣
∣∇(|u| γ –

 u
)∣∣

ϕ
R dx –


γ + 

∫

BR

|u|γ +�
(
ϕ

R
)

dx. (.)
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The function |u| γ –
 uϕR ∈ C

c (Rn), and thus it can be used as a test function in the
quadratic form Qu. Hence, the stability assumption on u gives

∫

BR

f ′(u)|u|γ +ϕ
R dx

≤
∫

BR

∣
∣∇(|u| γ –

 u
)∣
∣

ϕ
R dx +

∫

BR

|u|γ +|∇ϕR| dx –



∫

BR

|u|γ +�
(
ϕ

R
)

dx.

Using (.) in the latter, we obtain

∫

BR

{
(
f ′(u)u – θ f (u)u

)|u|γ – +
(

γ θ

(γ + ) – 
)

∣
∣∇(|u| γ –

 u
)∣∣

}

ϕ
R dx

≤ C(γ , θ )
∫

BR

|u|γ +�
(
ϕ

R
)

dx +
∫

BR

|u|γ +|∇ϕR| dx,

where C(γ , θ ) = ( θ
γ + – 

 ). By hypothesis H, we obtain

(
γ θ

(γ + ) – 
)∫

BR

∣
∣∇(|u| γ –

 u
)∣
∣

ϕ
R dx

≤ C(γ , θ )
∫

BR

|u|γ +�
(
ϕ

R
)

dx +
∫

BR

|u|γ +|∇ϕR| dx.

Since θ >  and γ ∈ [, θ –  + 
√

θ (θ – )), we have γ θ

(γ +) –  >  and

∫

BR

∣
∣∇(|u| γ –

 u
)∣∣

ϕ
R dx ≤ C(γ , θ )

∫

BR

|u|γ +(∣∣�
(
ϕ

R
)∣∣ + |∇ϕR|)dx.

Using again (.), we get

∫

BR

f (u)u|u|γ –ϕ
R dx ≤ C′(γ , θ )

∫

BR

|u|γ +(|∇ϕR| +
∣
∣�

(
ϕ

R
)∣∣)dx.

First, we replace ϕR by ϕm
R in the latter inequality, for any m > , we derive

∫

BR

f (u)u|u|γ –ϕm
R dx ≤ C(γ , θ , m)

∫

BR

|u|γ +ϕm–
R

(|∇ϕR| + |�ϕR|)dx

≤ C
R

∫

BR

|u|γ +ϕm–
R dx.

By H and H, we get

∫

BR

|u|θ+γ ϕm
R dx ≤ C

R

∫

BR

|u|γ +ϕm–
R dx.

An application of Young’s inequality yields

∫

BR

|u|θ+γ ϕm
R dx ≤ CRn– θ+γ

θ– +
γ + 
γ + θ

∫

BR

|u|γ +θϕ
(m–) γ +θ

γ +
R dx.
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Thus
∫

BR

|u|θ+γ dx ≤ C′Rn– θ+γ
θ– .

As in Farina’s work we readily deduce, by letting R → +∞, that there is no nontrivial stable
solution of (.), in the special case  < θ < pc(n). �

Proof of Theorem . We proceed as in the proof of Proposition .. From (.) and (.),
we deduce by replacing f (u) by –mu + λ|u|θ–u – μ|u|p–u that

( – ε)
∫

BR

(
�u

)
ϕm

R dx –
∫

BR

(
–mu + λ|u|θ+ – μ|u|p+)ϕm

R dx

≤ CεR–
∫

BR

uϕm–
R dx (.)

and
∫

BR

(
–mu + θλ|u|θ+ – pμ|u|p+)ϕm

R dx

≤ ( + ε)
∫

BR

(
ϕm

R �u
) + CεR–

∫

BR

uϕm–
R dx. (.)

Multiplying (.) by θ and combining it with (.), we derive

m(θ – )
∫

BR

uϕm
R dx + μ(θ – p)

∫

BR

|u|p+ϕm
R dx

+
[
θ ( – ε) – ( + ε)

]
∫

BR

(
�u

)
ϕm

R dx

≤ CR–
∫

BR

uϕm–
R dx.

For ε sufficiently small, we deduce

m(θ – )
∫

BR

uϕm
R dx + μ(θ – p)

∫

BR

|u|p+ϕm
R dx +

∫

BR

(
�u

)
ϕm

R dx

≤ CR–
∫

BR

uϕm–
R dx. (.)

Proof of . If m >  and θ ≥ p, then from (.), we deduce that

∫

BR

u dx ≤ CR–
∫

BR

u dx.

Let J(R) :=
∫

BR
u dx. If we iterate the above inequality, then we get

J(R) ≤ CR–(k+)J
(
k+R

)
. (.)

We deduce from the boundedness of u that the right hand side of (.) is of order RM with
M = –(k + ) + n →  as k → +∞. Hence, we can choose k large enough such that M < .
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Then it follows from (.) that J(R) → , asR → +∞. So we get

∫

Rn
u dx = .

Then u ≡ .
Proof of . If θ > p, m ≥ , then from (.) and by Young’s inequality, we get

∫

BR

|u|p+ϕm
R dx +

∫

BR

(
�u

)
ϕm

R dx ≤ 
p + 

∫

BR

|u|p+ϕ
(p+)(m–)
R dx + CRn– p+

p– .

Choosing m = (p + )(m – ), thus

∫

BR

|u|p+ϕm
R dx +

∫

BR

(
�u

)
ϕm

R dx ≤ CRn– p+
p– .

Consequently

∫

BR

|u|p+ dx +
∫

BR

(
�u

) dx ≤ CRn– p+
p– .

The result then follows in a similar way to that in the proof of Theorem .. This completes
the proof of Theorem .. �

Proof of Theorem . We can proceed as in the proof of Proposition ., we get

∫

Rn

∣
∣Dku

∣
∣ =

n
n – k

∫

Rn

(

–
m


u +
λ

θ + 
|u|θ+ –

μ

p + 
|u|p+

)

and
∫

Rn

∣
∣Dku

∣
∣ =

∫

Rn

(
–mu + λ|u|θ+ – μ|u|p+).

Thus

mk
n – k

∫

Rn
u dx + λ

(

 –
n

(n – k)(θ + )

)∫

Rn
|u|θ+ dx

+ μ

(
n

(n – k)(p + )
– 

)∫

Rn
|u|p+ dx = .

This concludes the proof of Theorem .. �
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