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Abstract
In the present paper, we shall give necessary and sufficient conditions for the strong
and weak boundedness of the Riesz potential operator Iα on Orlicz spaces. Cianchi
(J. Lond. Math. Soc. 60(1):247-286, 2011) found necessary and sufficient conditions on
general Young functions � and � ensuring that this operator is of weak or strong
type from L� into L� . Our characterizations for the boundedness of the
above-mentioned operator are different from the ones in (Cianchi in J. Lond. Math.
Soc. 60(1):247-286, 2011). As an application of these results, we consider the
boundedness of the commutators of Riesz potential operator [b, Iα ] on Orlicz spaces
when b belongs to the BMO and Lipschitz spaces, respectively.
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1 Introduction
Norm inequalities for several classical operators of harmonic analysis have been widely
studied in the context of Orlicz spaces. It is well known that many of such operators fail to
have continuity properties when they act between certain Lebesgue spaces and, in some
situations, the Orlicz spaces appear as adequate substitutes.

The Hardy-Littlewood maximal operator M and the Riesz potential operator Iα ( < α <
n) are defined by

Mf (x) = sup
t>

∣
∣B(x, t)

∣
∣
–

∫

B(x,t)

∣
∣f (y)

∣
∣dy, Iαf (x) =

∫

Rn

f (y)
|x – y|n–α

dy.

Here and everywhere in the sequel B(x, r) is the ball in R
n of radius r centered at x and

|B(x, r)| = vnrn is its Lebesgue measure, where vn is the volume of the unit ball in R
n.

The commutators generated by a suitable function b and the operator Iα are formally
defined by

[b, Iα]f = Iα(bf ) – bIα(f ),

respectively.
Given a measurable function b the operators Mb and |b, Iα| are defined by

Mb(f )(x) = sup
t>

∣
∣B(x, t)

∣
∣
–

∫

B(x,t)

∣
∣b(x) – b(y)

∣
∣
∣
∣f (y)

∣
∣dy
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and

|b, Iα|f (x) =
∫

Rn

|b(x) – b(y)|
|x – y|n–α

f (y) dy.

In [], Cianchi found necessary and sufficient conditions on general Young functions � and
� ensuring that the operator Iα is of weak or strong type from L� into L� . Another bound-
edness statement with only sufficient conditions for the operator Iα on Orlicz spaces was
given by Nakai []. Note that in [] a more general case of generalized fractional integrals
was studied. Commutators of classical operators of harmonic analysis play an important
role in various topics of analysis and PDE; see for instance [, ], and the references therein.
In [], Fu et al. gave the sufficient conditions for the boundedness of the commutator [b, Iα]
on Orlicz spaces.

The main purpose of this paper is to give characterizations for the strong and weak
boundedness of the Riesz potential on Orlicz spaces. Our characterizations for the bound-
edness of the operator Iα are different from the ones in []. As an application of these
results, we consider the boundedness of the commutators of Riesz potential operator on
Orlicz spaces when b belongs to the BMO and Lipschitz spaces, respectively.

We use the notation A � B, which means that A ≤ CB with some positive constant C
independent of appropriate quantities. If A � B and B � A, we write A ≈ B and say that A
and B are equivalent.

2 Preliminaries; on Young functions and Orlicz spaces
We recall the definition of Young functions.

Definition . A function � : [,∞) → [,∞] is called a Young function if � is convex
and left-continuous, limr→+ �(r) = �() =  and limr→∞ �(r) = ∞.

From the convexity and �() =  it follows that any Young function is increasing.
The set of Young functions such that

 < �(r) < ∞ for  < r < ∞

is denoted by Y . If � ∈ Y , then � is absolutely continuous on every closed interval in
[,∞) and bijective from [,∞) to itself.

For a Young function � and  ≤ s ≤ ∞, let

�–(s) = inf
{

r ≥  : �(r) > s
}

.

If � ∈ Y , then �– is the usual inverse function of �.
It is well known that

r ≤ �–(r)�̃–(r) ≤ r for r ≥ , (.)

where �̃(r) is defined by

�̃(r) =

⎧

⎨

⎩

sup{rs – �(s) : s ∈ [,∞)}, r ∈ [,∞),

∞, r = ∞.
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A Young function � is said to satisfy the �-condition, denoted also as � ∈ �, if

�(r) ≤ C�(r), r > ,

for some C > . If � ∈ �, then � ∈ Y . A Young function � is said to satisfy the ∇-
condition, denoted also by � ∈ ∇, if

�(r) ≤ 
C

�(Cr), r ≥ ,

for some C > .

Definition . (Orlicz space) For a Young function �, the set

L�
(

R
n) =

{

f ∈ L
loc

(

R
n) :

∫

Rn
�

(

k
∣
∣f (x)

∣
∣
)

dx < ∞ for some k > 
}

is called Orlicz space. If �(r) = rp,  ≤ p < ∞, then L�(Rn) = Lp(Rn). If �(r) = , ( ≤ r ≤ )
and �(r) = ∞, (r > ), then L�(Rn) = L∞(Rn). The space L�

loc(Rn) is defined as the set of all
functions f such that f χB ∈ L�(Rn) for all balls B ⊂R

n.

L�(Rn) is a Banach space with respect to the norm

‖f ‖L� = inf

{

λ >  :
∫

Rn
�

( |f (x)|
λ

)

dx ≤ 
}

.

For a measurable set � ⊂ R
n, a measurable function f and t > , let m(�, f , t) = |{x ∈ � :

|f (x)| > t}|. In the case � = R
n, we for brevity denote it by m(f , t).

Definition . The weak Orlicz space

WL�
(

R
n) =

{

f ∈ L
loc

(

R
n) : ‖f ‖WL� < ∞}

is defined by the norm

‖f ‖WL� = inf

{

λ >  : sup
t>

�(t)m
(

f
λ

, t
)

≤ 
}

.

We note that ‖f ‖WL� ≤ ‖f ‖L� ,

sup
t>

�(t)m(�, f , t) = sup
t>

tm
(

�, f ,�–(t)
)

= sup
t>

tm
(

�,�
(|f |), t

)

and

∫

�

�

( |f (x)|
‖f ‖L�(�)

)

dx ≤ , sup
t>

�(t)m
(

�,
f

‖f ‖WL�(�)
, t

)

≤ , (.)

where ‖f ‖L�(�) = ‖f χ�‖L� and ‖f ‖WL�(�) = ‖f χ�‖WL� .
The following analogue of the Hölder inequality is well known (see, for example, []).
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Theorem . Let � ⊂R
n be a measurable set and functions f and g measurable on �. For

a Young function � and its complementary function �̃, the following inequality is valid:

∫

�

∣
∣f (x)g(x)

∣
∣dx ≤ ‖f ‖L�(�)‖g‖L�̃(�).

By elementary calculations we have the following property.

Lemma . Let � be a Young function and B be a set in R
n with finite Lebesgue measure.

Then

‖χB‖L� = ‖χB‖WL� =


�–(|B|–)
.

By Theorem ., Lemma . and (.) we get the following estimate.

Lemma . For a Young function � and B = B(x, r), the following inequality is valid:

∫

B

∣
∣f (y)

∣
∣dy ≤ |B|�–(|B|–)‖f ‖L�(B).

In the next section, where we prove our main estimates, we use the following theorem.

Theorem . ([]) Let � be a Young function.
(i) The operator M is bounded from L�(Rn) to WL�(Rn), and the inequality

‖Mf ‖WL� ≤ C‖f ‖L� (.)

holds with constant C independent of f .
(ii) The operator M is bounded on L�(Rn), and the inequality

‖Mf ‖L� ≤ C‖f ‖L� (.)

holds with constant C independent of f if and only if � ∈ ∇.

3 Riesz potential in Orlicz spaces
In this section we find necessary and sufficient conditions for the strong/weak bounded-
ness of the Riesz potential operator on Orlicz spaces.

We recall that, for functions � and � from [,∞) into [,∞], the function � is said
to dominate � globally if there exists a positive constant c such that �(s) ≤ �(cs) for all
s ≥ .

In the theorem below we also use the notation

�̃P(s) =
∫ s


rP′–(B–

P
(

rP′))P′
dr, (.)

where  < P ≤ ∞ and �̃P(s) is the Young conjugate function to �P(s), and

�P(s) =
∫ s


rP′–(A–

P
(

rP′))P′
dr, (.)
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where B–
P (s) and A–

P (s) are inverses to

BP(s) =
∫ s



�(t)
t+P′ dt and AP(s) =

∫ s



�̃(t)
t+P′ dt,

respectively. These functions �P(s) and �P(s) are used below with P = n
α

.
In [], Cianchi found the necessary and sufficient conditions for the boundedness of Iα

on Orlicz spaces.

Theorem . ([]) Let  < α < n. Let � and � Young functions and let �n/α and �n/α be
the Young functions defined as in (.) and (.), respectively. Then

(i) Iα is bounded from L�(Rn) to WL� (Rn) if and only if

∫ 


�̃(t)/t+n/(n–α) dt < ∞ and �n/α dominates � globally. (.)

(ii) Iα is bounded from L�(Rn) to L� (Rn) if and only if

∫ 


�̃(t)/t+n/(n–α) dt < ∞,

∫ 


�(t)/t+n/(n–α) dt < ∞, (.)

� dominates �n/α globally and �n/α dominates � globally.

For proving our main results, we need the following estimate.

Lemma . If B := B(x, r), then rα
 ≤ CIαχB (x) for every x ∈ B.

Proof If x, y ∈ B, then |x – y| ≤ |x – x| + |y – x| < r. Since  < α < n, we get rα–n
 ≤

C|x – y|α–n. Therefore

IαχB (x) =
∫

Rn
χB (y)|x – y|α–n dy =

∫

B

|x – y|α–n dy ≥ Crα–n
 |B| = Crα

 . �

The following theorem gives necessary and sufficient conditions for the boundedness of
the operator Iα from L�(Rn) to WL� (Rn) and from L�(Rn) to L� (Rn).

Theorem . Let  < α < n and �,� ∈ Y .
() The condition

rα�–(r–n) +
∫ ∞

r
�–(t–n)tα dt

t
≤ C�–(r–n) (.)

for all r > , where C >  does not depend on r, is sufficient for the boundedness of Iα
from L�(Rn) to WL� (Rn). Moreover, if � ∈ ∇, the condition (.) is sufficient for the
boundedness of Iα from L�(Rn) to L� (Rn).

() The condition

rα�–(r–n) ≤ C�–(r–n) (.)

for all r > , where C >  does not depend on r, is necessary for the boundedness of Iα
from L�(Rn) to WL� (Rn) and from L�(Rn) to L� (Rn).
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() If the regularity condition

∫ ∞

r
�–(t–n)tα dt

t
≤ Crα�–(r–n) (.)

holds for all r > , where C >  does not depend on r, then the condition (.) is
necessary and sufficient for the boundedness of Iα from L�(Rn) to WL� (Rn).
Moreover, if � ∈ ∇, the condition (.) is necessary and sufficient for the
boundedness of Iα from L�(Rn) to L� (Rn).

Proof () For an arbitrary ball B = B(x, r) we represent f as

f = f + f, f(y) = f (y)χB(y), f(y) = f (y)χ�B(y),

and have

Iαf (x) = Iαf(x) + Iαf(x).

For Iαf(x), following Hedberg’s trick, see [], we obtain |Iαf(x)|� rαMf (x). For Iαf(x) by
Lemma . we have

∫

�B

|f (y)|
|x – y|n–α

dy ≈
∫

�B

∣
∣f (y)

∣
∣

∫ ∞

|x–y|
dt

tn+–α
dy

≈

∫ ∞

r

∫

r≤|x–y|<t

∣
∣f (y)

∣
∣dy

dt
tn+–α

�
∫ ∞

r
�–(∣∣B(x, t)

∣
∣
–)tα–‖f ‖L�(B(x,t)) dt.

Consequently we have

∣
∣Iαf (x)

∣
∣� rαMf (x) + ‖f ‖L�

∫ ∞

r
tα�–(t–n)dt

t
.

Thus, by (.) we obtain

∣
∣Iαf (x)

∣
∣� Mf (x)

�–(r–n)
�–(r–n)

+ ‖f ‖L��–(r–n).

Choose r >  so that �–(r–n) = Mf (x)
C‖f ‖L�

. Then

�–(r–n)
�–(r–n)

=
(�– ◦ �)( Mf (x)

C‖f ‖L�
)

Mf (x)
C‖f ‖L�

.

Therefore, we get

∣
∣Iαf (x)

∣
∣ ≤ C‖f ‖L�

(

�– ◦ �
)
(

Mf (x)
C‖f ‖L�

)

. (.)
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Let C be as in (.). Then by Theorem .,

sup
r>

�(r)m
( |Iαf (x)|

C‖f ‖L�

, r
)

= sup
r>

rm
(

�

( |Iαf (x)|
C‖f ‖L�

)

, r
)

≤ sup
r>

rm
(

�

(
Mf (x)

C‖f ‖L�

)

, r
)

≤ sup
r>

�(r)m
(

Mf (x)
‖Mf ‖WL�

, r
)

≤ ,

i.e.

‖Iαf ‖WL� � ‖f ‖L� .

Let C be as in (.). Since � ∈ ∇, by Theorem ., we have

∫

Rn
�

( |Iαf (x)|
C‖f ‖L�

)

dx ≤
∫

Rn
�

(
Mf (x)

C‖f ‖L�

)

dx ≤
∫

Rn
�

(
Mf (x)

‖Mf ‖L�

)

dx ≤ ,

i.e.

‖Iαf ‖L� � ‖f ‖L� .

() We shall now prove the second part. Let B = B(x, r) and x ∈ B. By Lemma ., we
have rα

 ≤ CIαχB (x). Therefore, by Lemma ., we have

rα
 ��–(|B|–)‖IαχB‖WL� (B) � �–(|B|–)‖IαχB‖WL�

��–(|B|–)‖χB‖L� � �–(r–n
 )

�–(r–n
 )

and

rα
 ��–(|B|–)‖IαχB‖L� (B) � �–(|B|–)‖IαχB‖L�

��–(|B|–)‖χB‖L� � �–(r–n
 )

�–(r–n
 )

.

Since this is true for every r > , we are done.
() The third statement of the theorem follows from the first and second parts of the

theorem. �

From Theorems . and . we have the following corollary.

Corollary . Let  < α < n, �,� ∈ Y and the regularity condition (.) holds, then:
() Condition (.) holds if and only if condition (.) holds.
() Moreover, if � ∈ ∇, then condition (.) holds if and only if (.) holds.

The following result is due to Nakai [].
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Theorem . ([]) Let  < α < n and �,� ∈ Y . Assume that the conditions (.) and (.)
hold. Then the operator Iα is bounded from L�(Rn) to WL� (Rn). Moreover, if � ∈ ∇, then
Iα is bounded from L�(Rn) to L� (Rn).

Remark . Note that in Theorem . Nakai found the sufficient conditions which en-
sures the boundedness of the operator Iα from L�(Rn) to L� (Rn), including weak version.
Theorem . improves Theorem . by adding the necessity. Theorems . and . are
different characterizations for the boundedness of the operator Iα from L�(Rn) to L� (Rn),
including a weak version.

4 Maximal commutator in Orlicz spaces
In this section we investigate the boundedness of the maximal commutator Mb in Orlicz
spaces.

We recall the definition of the space of BMO(Rn).

Definition . Suppose that f ∈ L
loc(Rn), let

‖f ‖∗ = sup
x∈Rn ,r>


|B(x, r)|

∫

B(x,r)

∣
∣f (y) – fB(x,r)

∣
∣dy,

where

fB(x,r) =


|B(x, r)|
∫

B(x,r)
f (y) dy.

Define

BMO
(

R
n) =

{

f ∈ L
loc

(

R
n) : ‖f ‖∗ < ∞}

.

Modulo constants, the space BMO(Rn) is a Banach space with respect to the norm ‖ ·‖∗.
Before proving our theorems, we need the following lemmas and theorem.

Lemma . ([]) Let b ∈ BMO(Rn). Then there is a constant C >  such that

|bB(x,r) – bB(x,t)| ≤ C‖b‖∗ ln
t
r

for  < r < t, (.)

where C is independent of b, x, r, and t.

Lemma . ([]) Let f ∈ BMO(Rn) and � be a Young function with � ∈ �, then

‖f ‖∗ ≈ sup
x∈Rn ,r>

�–(∣∣B(x, r)
∣
∣
–)∥

∥f (·) – fB(x,r)
∥
∥

L�(B(x,r)). (.)

Theorem . ([]) Let b ∈ BMO(Rn) and � ∈ ∇ ∩Y .
Then the operator Mb is bounded on L�(Rn), and the inequality

‖Mbf ‖L� ≤ C‖b‖∗‖f ‖L� (.)

holds with constant C independent of f .
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The following theorem is valid.

Theorem . Let b ∈ BMO(Rn) and � be a Young function. Then the condition � ∈ ∇ is
necessary for the boundedness of Mb on L�(Rn).

Proof Assume that (.) holds. For the particular symbol b(x) = log |x| ∈ BMO(Rn) and
f (x) = χBr (x), (.) becomes

‖MbχBr ‖L� ≤ C‖χBr ‖L� , (.)

where r = (auv)–/n, Br = B(, r), ar = |Br|, u >  and v > . By Lemma . and (.), we have

‖χBr ‖L� =


�–(/|Br|) =


�–(/(rn|B|)) =


�–(uv)
≤ 

uv
�̃–(uv).

On the other hand, if x /∈ Br then Br ⊂ B(x, |x|) since for y ∈ Br we have

|x – y| ≤ |x| + |y| ≤ |x| + r ≤ |x|.

Also for each y ∈ Br , we have

b(x) – b(y) ≥ log

( |x|
r

)

.

Therefore

MbχBr (x) ≥ 
|B(x, |x|)|

∫

B(x,|x|)∩Br

∣
∣b(x) – b(y)

∣
∣dy ≥

(
r

|x|
)n

log

( |x|
r

)

.

Following the ideas of [], for g = �̃–(u)χBs with s = (au)–/n we obtain

∫

Rn
�̃

(∣
∣g(x)

∣
∣
)

dx ≤ u|Bs| = usn|B| = .

Since the Luxemburg-Nakano norm is equivalent to the Orlicz norm

‖f ‖∗
� := sup

{∫

Rn

∣
∣f (x)g(x)

∣
∣dx : ‖g‖L�̃ ≤ 

}

(more precisely, ‖f ‖L� ≤ ‖f ‖∗
� ≤ ‖f ‖L� ), it follows that

‖MbχBr ‖∗
L� = sup

{∫

Rn

∣
∣MbχBr (x)g(x)

∣
∣dx :

∫

Rn
�̃

(∣
∣g(x)

∣
∣
)

dx ≤ 
}

≥ �̃–(u)
∫

Bs

MbχBr (x) dx ≥ �̃–(u)
∫

Bs\Br

(
r

|x|
)n

log

( |x|
r

)

dx

=
�̃–(u)
nauv

∫

r<|x|<s


|x|n log

( |x|
r

)

dx

=
�̃–(u)

n+auv
na

(

log
s
r

)

=
�̃–(u)
n+nuv

(log v).
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Hence (.) implies that

�̃–(u)
n+nuv

(log v) ≤ C


uv
�̃–(uv)

for u >  and v > . Thus, taking v = exp(
√

nC ·  n+
 ) we obtain �̃–(u) ≤

�̃–(u exp(
√

nC ·  n+
 )) for u >  or �̃(t) ≤ exp(

√
nC ·  n+

 )�̃(t) for every t > , and
so �̃ satisfies the � condition. �

By Theorems . and . we have the following result.

Corollary . Let b ∈ BMO(Rn) and � ∈ Y . Then the condition � ∈ ∇ is necessary and
sufficient for the boundedness of Mb on L�(Rn).

Theorem . b ∈ L
loc(Rn) and � be a Young function. The condition b ∈ BMO(Rn) is

necessary for the boundedness of Mb on L�(Rn).

Proof Suppose that Mb is bounded from L�(Rn) to L�(Rn). Choose any ball B = B(x, r) in
R

n, by (.)


|B|

∫

B

∣
∣b(y) – bB

∣
∣dy ≤ 

|B|
∫

B


|B|

∫

B

∣
∣b(y) – b(z)

∣
∣χB(z) dz dy

≤ 
|B|

∫

B
Mb(χB)(y) dy

≤ 
|B|

∥
∥Mb(χB)

∥
∥

L�(B)‖‖L�̃(B)

≤ 
|B| ‖χB‖L�‖χB‖L�̃ ≤ C.

Thus b ∈ BMO(Rn). �

By Theorems . and . we have the following result.

Corollary . Let � be a Young function with � ∈ ∇. Then the condition b ∈ BMO(Rn)
is necessary and sufficient for the boundedness of Mb on L�(Rn).

5 Commutators of Riesz potential in Orlicz spaces
In this section we find necessary and sufficient conditions for the boundedness of the com-
mutators of Riesz potential on Orlicz spaces with the help of the previous section.

In [], Fu et al. found the sufficient conditions for the boundedness of the commutator
[b, Iα] on Orlicz spaces as follows.

Theorem . ([]) Let  < α < n and b ∈ BMO(Rn). Let � be a Young function and �

defined, via its inverse, by setting, for all t ∈ (,∞), �–(t) := �–(t)t–α/n. If �,� ∈ � ∩∇,
then [b, Iα] is bounded from L�(Rn) to L� (Rn).

The following lemma is the analogue of the Hedberg trick for [b, Iα].
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Lemma . If  < α < n and f , b ∈ L
loc(Rn), then for all x ∈R

n and r >  we get

∫

B(x,r)

|f (y)|
|x – y|n–α

∣
∣b(x) – b(y)

∣
∣dy � rαMbf (x).

Proof We have

∫

B(x,r)

|f (y)|
|x – y|n–α

∣
∣b(x) – b(y)

∣
∣dy

=
∞

∑

j=

∫

–j–r≤|x–y|<–jr

|f (y)|
|x – y|n–α

∣
∣b(x) – b(y)

∣
∣dy

�
∞

∑

j=

(

–jr
)α(

–jr
)–n

∫

|x–y|<–jr

∣
∣f (y)

∣
∣
∣
∣b(x) – b(y)

∣
∣dy � rαMbf (x).

�

Lemma . If b ∈ L
loc(Rn) and B := B(x, r), then

rα

∣
∣b(x) – bB

∣
∣ ≤ C|b, Iα|χB (x)

for every x ∈ B, where bB = 
|B|

∫

B
b(y) dy.

Proof If x, y ∈ B, then |x – y| ≤ |x – x| + |y – x| < r. Since  < α < n, we get rα–n
 ≤

C|x – y|α–n. Therefore

|b, Iα|χB (x) =
∫

B

∣
∣b(x) – b(y)

∣
∣|x – y|α–n dy ≥ Crα–n



∫

B

∣
∣b(x) – b(y)

∣
∣dy

≥ Crα–n


∣
∣
∣
∣

∫

B

(

b(x) – b(y)
)

dy
∣
∣
∣
∣

= Crα

∣
∣b(x) – bB

∣
∣. �

The following theorem gives necessary and sufficient conditions for the boundedness of
the operator |b, Iα| from L�(Rn) to L� (Rn).

Theorem . Let  < α < n, b ∈ BMO(Rn) and �,� ∈ Y .
() If � ∈ ∇ and � ∈ �, then the condition

rα�–(r–n) +
∫ ∞

r

(

 + ln
t
r

)

�–(t–n)tα dt
t

≤ C�–(r–n) (.)

for all r > , where C >  does not depend on r, is sufficient for the boundedness of
[b, Iα] from L�(Rn) to L� (Rn).

() If � ∈ �, then the condition (.) is necessary for the boundedness of |b, Iα| from
L�(Rn) to L� (Rn).

() Let � ∈ ∇ and � ∈ �. If the condition

∫ ∞

r

(

 + ln
t
r

)

�–(t–n)tα dt
t

≤ Crα�–(r–n) (.)

holds for all r > , where C >  does not depend on r, then the condition (.) is
necessary and sufficient for the boundedness of |b, Iα| from L�(Rn) to L� (Rn).
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Proof () For arbitrary x ∈ R
n, set B = B(x, r) for the ball centered at x and of radius r.

Write f = f + f with f = f χB and f = f χ�(B).
For x ∈ B we have

∣
∣[b, Iα]f(x)

∣
∣�

∫

Rn

|b(y) – b(x)|
|x – y|n–α

∣
∣f(y)

∣
∣dy ≈

∫

�(B)

|b(y) – b(x)|
|x – y|n–α

∣
∣f (y)

∣
∣dy

�
∫

�(B)

|b(y) – bB|
|x – y|n–α

∣
∣f (y)

∣
∣dy +

∫

�(B)

|b(x) – bB|
|x – y|n–α

∣
∣f (y)

∣
∣dy = J + J(x),

since x ∈ B and y ∈ �(B) implies |x – y|≈ |x – y|.
Let us estimate J.

J =
∫

�(B)

|b(y) – bB|
|x – y|n–α

∣
∣f (y)

∣
∣dy ≈

∫

�(B)

∣
∣b(y) – bB

∣
∣
∣
∣f (y)

∣
∣

∫ ∞

|x–y|
dt

tn+–α
dy

≈

∫ ∞

r

∫

r≤|x–y|≤t

∣
∣b(y) – bB

∣
∣
∣
∣f (y)

∣
∣dy

dt
tn+–α

�
∫ ∞

r

∫

B(x,t)

∣
∣b(y) – bB

∣
∣
∣
∣f (y)

∣
∣dy

dt
tn+–α

.

Applying Hölder’s inequality, by (.), (.), (.) and Lemma . we get

J �
∫ ∞

r

∫

B(x,t)

∣
∣b(y) – bB(x,t)

∣
∣
∣
∣f (y)

∣
∣dy

dt
tn+–α

+
∫ ∞

r
|bB(x,r) – bB(x,t)|

∫

B(x,t)

∣
∣f (y)

∣
∣dy

dt
tn+–α

�
∫ ∞

r

∥
∥b(·) – bB(x,t)

∥
∥

L�̃(B(x,t))‖f ‖L�(B(x,t))
dt

tn+–α

+
∫ ∞

r
|bB(x,r) – bB(x,t)|‖f ‖L�(B(x,t))�

–(∣∣B(x, t)
∣
∣
–) dt

t–α

� ‖b‖∗
∫ ∞

r

(

 + ln
t
r

)

‖f ‖L�(B(x,t))�
–(∣∣B(x, t)

∣
∣
–) dt

t–α

� ‖b‖∗‖f ‖L�

∫ ∞

r

(

 + ln
t
r

)

�–(t–n)tα dt
t

.

A geometric observation shows B ⊂ B(x, r) for all x ∈ B. Using Lemma ., we get

J(x) :=
∣
∣[b, Iα]f(x)

∣
∣�

∫

B

|b(y) – b(x)|
|x – y|n–α

∣
∣f (y)

∣
∣dy

�
∫

B(x,r)

|b(y) – b(x)|
|x – y|n–α

∣
∣f (y)

∣
∣dy � rαMbf (x).

Consequently, we have

J(x) + J � ‖b‖∗rαMbf (x) + ‖b‖∗‖f ‖L�

∫ ∞

r

(

 + ln
t
r

)

�–(t–n)tα dt
t

.

Thus, by (.) we obtain

J(x) + J � ‖b‖∗
(

Mbf (x)
�–(r–n)
�–(r–n)

+ �–(r–n)‖f ‖L�

)

.
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Choose r >  so that �–(r–n) = Mbf (x)
C‖b‖∗‖f ‖L�

. Then

�–(r–n)
�–(r–n)

=
(�– ◦ �)( Mbf (x)

C‖b‖∗‖f ‖L�
)

Mbf (x)
C‖b‖∗‖f ‖L�

.

Therefore, we get

J(x) + J ≤ C‖b‖∗‖f ‖L�

(

�– ◦ �
)
(

Mbf (x)
C‖b‖∗‖f ‖L�

)

.

Let C be as in (.). Consequently by Theorem . we have

∫

B
�

(
J(x) + J

C‖b‖∗‖f ‖L�

)

dx ≤
∫

B
�

(
Mbf (x)

C‖b‖∗‖f ‖L�

)

dx ≤
∫

Rn
�

(
Mbf (x)

‖Mbf ‖L�

)

dx ≤ ,

i.e.

∥
∥J(·) + J

∥
∥

L� (B) � ‖b‖∗‖f ‖L� . (.)

In order to estimate J, by (.), Lemma . and condition (.), we also get

‖J‖L� (B) =
∥
∥
∥
∥

∫

�(B)

|b(·) – bB|
|x – y|n–α

∣
∣f (y)

∣
∣dy

∥
∥
∥
∥

L� (B)

≈
∥
∥b(·) – bB

∥
∥

L� (B)

∫

�(B)

|f (y)|
|x – y|n–α

dy

� ‖b‖∗


�–(|B|–)

∫

�(B)

|f (y)|
|x – y|n–α

dy

≈ ‖b‖∗


�–(|B|–)

∫

�(B)

∣
∣f (y)

∣
∣

∫ ∞

|x–y|
dt

tn+–α
dy

≈ ‖b‖∗


�–(|B|–)

∫ ∞

r

∫

r≤|x–y|<t

∣
∣f (y)

∣
∣dy

dt
tn+–α

� ‖b‖∗


�–(|B|–)

∫ ∞

r

∫

B(x,t)

∣
∣f (y)

∣
∣dy

dt
tn+–α

� ‖b‖∗


�–(|B|–)

∫ ∞

r
‖f ‖L�(B(x,t))�

–(∣∣B(x, t)
∣
∣
–)tα– dt

� ‖b‖∗


�–(|B|–)
‖f ‖L�

∫ ∞

r
tα�–(t–n)dt

t

� ‖b‖∗‖f ‖L� .

Consequently, we have

‖J‖L� (B) � ‖b‖∗‖f ‖L� . (.)

Combining (.) and (.), we get

∥
∥[b, Iα]f

∥
∥

L� (B) � ‖b‖∗‖f ‖L� . (.)
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By taking the supremum over B in (.), we get

∥
∥[b, Iα]f

∥
∥

L� � ‖b‖∗‖f ‖L� ,

since the constants in (.) do not depend on x and r.
() We shall now prove the second part. Let B = B(x, r) and x ∈ B. By Lemma ., we

have rα
 |b(x) – bB | ≤ C|b, Iα|χB (x). Therefore, by Lemmas . and .

rα
 �

‖|b, Iα|χB‖L� (B)

‖b(·) – bB‖L� (B)
� �–(|B|–)∥∥|b, Iα|χB

∥
∥

L� (B)

��–(|B|–)∥∥|b, Iα|χB

∥
∥

L� � �–(|B|–)‖χB‖L� � �–(r–n
 )

�–(r–n
 )

.

Since this is true for every r > , we are done.
() The third statement of the theorem follows from the first and second parts of the

theorem. �

Remark . Theorems . and . give different sufficient conditions for the boundedness
of the operator [b, Iα] from L�(Rn) to L� (Rn). But in Theorem . we also have necessary
conditions for the boundedness of the operator |b, Iα| from L�(Rn) to L� (Rn).

The following theorem is valid.

Theorem . Let  < α < n, b ∈ L
loc(Rn) and �,� ∈ Y .

() If � ∈ ∇, � ∈ � and the condition (.) holds, then the condition b ∈ BMO(Rn) is
sufficient for the boundedness of [b, Iα] from L�(Rn) to L� (Rn).

() If �–(t) � �–(t)t–α/n, then the condition b ∈ BMO(Rn) is necessary for the
boundedness of |b, Iα| from L�(Rn) to L� (Rn).

() If � ∈ ∇, � ∈ �, �–(t) ≈ �–(t)t–α/n and the condition (.) holds, then the
condition b ∈ BMO(Rn) is necessary and sufficient for the boundedness of |b, Iα| from
L�(Rn) to L� (Rn).

Proof () The first statement of the theorem follows from the first part of Theorem ..
() We shall now prove the second part. Choose any ball B = B(x, r) in R

n, by Lemmas
. and .


|B|

∫

B

∣
∣b(y) – bB

∣
∣dy =


|B|

∫

B

∣
∣
∣
∣


|B|

∫

B

(

b(y) – b(z)
)

dz
∣
∣
∣
∣
dy

≤ 
|B|+ α

n

∫

B


|B|– α

n

∫

B

∣
∣b(y) – b(z)

∣
∣χB(z) dz dy

≤ C
|B|+ α

n

∫

B

∫

B

|b(y) – b(z)|
|y – z|n–α

χB(z) dz dy

≤ C
|B|+ α

n

∫

B
|b, Iα|(χB)(y) dy

≤ C
|B| α

n

�–(|B|–)
�–(|B|–)

≤ C.

Thus b ∈ BMO(Rn).
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() The third statement of the theorem follows from the first and second parts of the
theorem. �

6 Characterization of Lipschitz spaces via commutators
In this section, as an application of Theorem . we consider the boundedness of [b, Iα] on
Orlicz spaces when b belongs to the Lipschitz space, by which some new characterizations
of the Lipschitz spaces are given. Such a characterization was given in [] as an application
of the boundedness of Mb on Lebesgue spaces.

Definition . Let  < β < , we say a function b belongs to the Lipschitz space 
̇β (Rn) if
there exists a constant C such that, for all x, y ∈ R

n,

∣
∣b(x) – b(y)

∣
∣ ≤ C|x – y|β .

The smallest such constant C is called the 
̇β (Rn) norm of b and is denoted by ‖b‖
̇β (Rn).

To prove the theorems, we need auxiliary results. The first one is the following charac-
terization of Lipschitz space, which is due to DeVore and Sharply [].

Lemma . Let  < β < , we have

‖f ‖
̇β (Rn) ≈ sup
B


|B|+β/n

∫

B

∣
∣f (x) – fB

∣
∣dx,

where fB = 
|B|

∫

B f (y) dy.

Lemma . Let  < β < ,  < α < n,  < α + β < n and b ∈ 
̇β (Rn), then the following
pointwise estimate holds:

|b, Iα|(|f |)(x) � ‖b‖
̇β (Rn)Iα+β

(|f |)(x).

Proof If b ∈ 
̇β (Rn), then

|b, Iα|(|f |)(x) =
∫

Rn

|b(x) – b(y)|
|x – y|n–α

∣
∣f (y)

∣
∣dy

� ‖b‖
̇β (Rn)Iα+β

(|f |)(x). �

The following theorem is valid.

Theorem . Let  < β < ,  < α < n,  < α + β < n, b ∈ L
loc(Rn), �,� ∈ Y .

() If � ∈ ∇ and the conditions

∫ ∞

t
�–(r–n)rα+β dr

r
≤ Ctα+β�–(t–n), (.)

t– α+β
n �–(t) ≤ C�–(t), (.)

hold for all t > , where C >  does not depend on t, then the condition b ∈ 
̇β (Rn) is
sufficient for the boundedness of [b, Iα] from L�(Rn) to L� (Rn).
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() If the condition

�–(t) ≤ C�–(t)t– α+β
n , (.)

holds for all t > , where C >  does not depend on t, then the condition b ∈ 
̇β (Rn) is
necessary for the boundedness of |b, Iα| from L�(Rn) to L� (Rn).

. If � ∈ ∇, condition (.) holds and �–(t) ≈ �–(t)t– α+β
n , then the condition

b ∈ 
̇β (Rn) is necessary and sufficient for the boundedness of |b, Iα| from L�(Rn) to
L� (Rn).

Proof () The first statement of the theorem follows from Theorem . and Lemma ..
() We shall now prove the second part. Suppose that �–(t) � �–(t)t–(α+β)/n and

|b, Iα| is bounded from L�(Rn) to L� (Rn). Choose any ball B in R
n, by Lemmas . and

.



|B|+ β
n

∫

B

∣
∣b(y) – bB

∣
∣dy =



|B|+ α+β
n

∫

B

∣
∣
∣
∣


|B|– α

n

∫

B

(

b(y) – b(z)
)

dz
∣
∣
∣
∣
dy

≤ C

|B|+ α+β
n

∫

B

∫

B

|b(y) – b(z)|
|y – z|n–α

χB(z) dz dy

≤ C

|B|+ α+β
n

∫

B
|b, Iα|(χB)(y) dy

≤ C�–(|B|–)

|B| α+β
n

∥
∥|b, Iα|(χB)

∥
∥

L� (B)

≤ C

|B| α+β
n

�–(|B|–)
�–(|B|–)

≤ C.

Thus by Lemma . we get b ∈ 
̇β (Rn).
() The third statement of the theorem follows from the first and second parts of the

theorem. �

The following theorem is valid.

Theorem . Let  < β < ,  < α < n,  < α + β < n, b ∈ L
loc(Rn), �,� ∈ Y .

() If the conditions (.) and (.) are satisfied, then the condition b ∈ 
̇β (Rn) is
sufficient for the boundedness of [b, Iα] from L�(Rn) to WL� (Rn).

() If the condition (.) holds and t+ε

�(t) is almost decreasing for some ε > , then the
condition b ∈ 
̇β (Rn) is necessary for the boundedness of |b, Iα| from L�(Rn) to
WL� (Rn).

() If �–(t) ≈�–(t)t– α+β
n , condition (.) holds and t+ε

�(t) is almost decreasing for some
ε > , then the condition b ∈ 
̇β (Rn) is necessary and sufficient for the boundedness of
|b, Iα| from L�(Rn) to WL� (Rn).

Proof () The first statement of the theorem follows from Theorem . and Lemma ..
() For any fixed ball B such that x ∈ B by Lemma . we have |B|α/n|b(x) – bB | �

|b, Iα|χB (x). Thus, together with the boundedness of |b, Iα| from L�(Rn) to WL� (Rn) and
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Lemma .,

∣
∣
{

x ∈ B : |B|α/n∣∣b(x) – bB

∣
∣> λ

}∣
∣ ≤ ∣

∣
{

x ∈ B : |b, Iα|χB (x) > λ
}∣
∣

≤ 
�( λ

C‖χB ‖L�
)

=


�( λ�–(|B|–)
C )

.

Let t >  be a constant to be determined later, then
∫

B

∣
∣b(x) – bB

∣
∣dx = |B|–α/n

∫ ∞



∣
∣
{

x ∈ B :
∣
∣b(x) – bB

∣
∣ > |B|–α/nλ

}∣
∣dλ

= |B|–α/n
∫ t



∣
∣
{

x ∈ B :
∣
∣b(x) – bB

∣
∣ > |B|–α/nλ

}∣
∣dλ

+ |B|–α/n
∫ ∞

t

∣
∣
{

x ∈ B :
∣
∣b(x) – bB

∣
∣ > |B|–α/nλ

}∣
∣dλ

≤ t|B|–α/n + |B|–α/n
∫ ∞

t


�( λ�–(|B|–)

C )
dλ

� t|B|–α/n +
|B|–α/nt

�( t�–(|B|–)
C )

,

where we use t+ε

�(t) being almost decreasing in the last step.

Set t = C|B| α+β
n in the above estimate, we have

∫

B

∣
∣b(x) – bB

∣
∣dx � |B|+β/n.

Thus by Lemma . we get b ∈ 
̇β (Rn) since B is an arbitrary ball in R
n.

() The third statement of the theorem follows from the first and second parts of the
theorem. �

7 Conclusions
We have obtained necessary and sufficient conditions for the boundedness of the Riesz
potential and its commutators on Orlicz spaces. We have also compared our results with
the existing results. Lastly, we conclude this paper by remarking that some new character-
izations of the Lipschitz spaces have been given as an application of the above-mentioned
results.
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