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Abstract
In this paper, we suggest and analyze a new system of extended regularized
nonconvex variational inequalities and prove the equivalence between the aforesaid
system and a fixed point problem. We introduce a new perturbed projection iterative
algorithm with mixed errors to find the solution of the system of extended regularized
nonconvex variational inequalities. Furthermore, under moderate assumptions, we
research the convergence analysis of the suggested iterative algorithm.
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1 Introduction
Variational inequality was introduced and studied by Stampacchia [] in . It has been
recognized as a suitable mathematical model to deal with many problems arising in differ-
ent fields, such as optimization theory, game theory, partial differential equations, and
economic equilibrium mechanics; see [–] and the references therein. Because of its
importance and active impact in the nonlinear analysis and optimization, variational in-
equality has been explosively growing in both theory and applications; see, for example,
[–]. Specially, one of the significant generalizations of variational inequality is the gen-
eral variational inequality which was introduced and investigated by Noor []. Subse-
quently, Balooee et al. [, ] introduced an algorithm for solving the extended general
mixed variational inequalities. However, most of the results related to the existence of so-
lutions and iterative methods for variational inequality problems have been investigated
and considered so far to the case where the underlying set is convex.

It is worth to mention that in many of the alluded applications, the set involved is not
convex. To overcome the difficulty caused by the nonconvexity of the set, Clarke et al. []
introduced a new class of nonconvex sets, that is, proximally smooth sets. Moreover, they
were introduced by Poliquin et al. [] but called the uniformly prox-regular sets. These
kinds of sets are used in many nonconvex applications, such as differential inclusions,
dynamical systems, and optimization; see [, ] and the references therein. It is well
known that the uniformly prox-regular sets are nonconvex and include the convex sets as
special cases. In , Noor [] considered a new class of variational inequalities, called
the general nonconvex variational inequalities, and introduced the convergence analysis
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of the suggested iterative algorithms underlying the uniformly prox-regular sets. For more
numerical methods for solving the variational inequalities and their generalizations in the
context of nonconvexity, we refer the reader to [–] and the references therein.

The projection technique was introduced by Lions and Stampacchia []. It is one of
the most widely used methods to study the variational inequalities, and this technique is
devoted to establishing the equivalence between the variational inequalities and a fixed
point problem which uses the concept of projection.

Inspired and motivated by the above works, in this paper, we introduce a new system of
extended regularized nonconvex variational inequalities (SERNVI) and prove the equiva-
lence between the SERNVI and a fixed point problem. Using this equivalent formulation,
we consider a new perturbed projection iterative algorithm with mixed errors for finding
the solution of the SERNVI. Under some moderate assumptions, we research the conver-
gence analysis of the suggested iterative algorithm.

2 Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let K be a nonempty closed subset of H , the usual distance function to the
subset K is denoted by d(·, K), i.e., d(u, K) = infv∈K ‖u – v‖. Now we recall the following
basic definitions and results from nonsmooth analysis and nonlinear convex analysis.

Definition . ([]) Let u ∈ H be a point not lying in K . Let v ∈ K be a point whose
distance to u is minimal, i.e., d(u, K) = ‖u–v‖, then v is called a closest point or a projection
of u onto K . The set of all such closest points is denoted by PK , that is,

PK (u) :=
{

v ∈ K : d(u, K) = ‖u – v‖}.

Definition . ([]) The proximal normal cone of K at a point u ∈ K is given by

NP
K (u) :=

{
ζ ∈ K : ∃α >  such that u ∈ PK (u + αζ )

}
.

Clarke et al. [] gave the following characterization of the proximal normal cone NP
K (x).

Lemma . Let K be a nonempty closed subset in H . Then a vector ζ ∈ NP
K (u) if and only

if there exists a constant α = α(ζ , u) >  such that

〈ζ , v – u〉 ≤ α‖v – u‖, ∀v ∈ K . (.)

Inequality (.) is called the proximal normal inequality. Clarke et al. [] considered the
special case of the proximal normal cone NP

K (u), in which K is closed and convex; this case
is an important one.

Lemma . Let K be a nonempty, closed and convex subset in H . Then ζ ∈ NP
K (u) if and

only if 〈ζ , v – u〉 ≤  for all v ∈ K .

Definition . The Clarke normal cone of C at a point u ∈ K is defined as

NC
K (u) = co

[
NP

K (u)
]
,

where co means the closure of the convex hull.
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Clearly, NP
K (u) ⊂ NC

K (u), but the converse is not true. NP
K (u) is always closed and convex,

whereas NC
K (u) is convex, but may not be closed.

To overcome the difficulty caused by the nonconvexity of the set, Clarke et al. [] in-
troduced a new class of nonconvex sets, which are said to be proximally smooth sets.
Subsequently, Poliquin et al. [] considered the aforementioned set under the name of
uniformly prox-regular sets. We take the following characterization verified in [] as a
definition of the uniformly prox-regular sets.

Definition . For any r ∈ (, +∞], a subset Kr of H is said to be normalized uniformly
prox-regular (or uniformly r-prox-regular) if every nonzero proximal normal to Kr can be
realized by an r-ball. This means that, for all ū ∈ Kr and all  �= ζ ∈ NP

K (ū) with ‖ζ‖ = ,

〈
ζ

‖ζ‖ , u – ū
〉
≤ 

r
‖u – ū‖, ∀u ∈ Kr .

It is obvious that a closed subset of a Hilbert space is convex if and only if it is proximally
smooth of radius r > . In view of Definition ., if r = +∞, the uniform r-prox-regularity
of Kr is equivalent to the convexity of Kr . So, we set Kr = K , when r = +∞. Moreover, a
class of uniformly prox-regular sets is sufficiently large to include the class of convex sets,
P-convex sets, C, submanifolds of H , the images under a C, diffeomorphism of convex
sets and many other nonconvex sets.

We now recall the following well-known proposition which summarizes some signifi-
cant consequences of the uniform prox-regularity. The proof of this result can be found
in [, ].

Proposition . Let r ∈ (,∞] and U(r) = {u ∈ H : d(u, Kr) < r}, and let Kr be a nonempty
closed and uniformly r-prox-regular subset of H . Then the following results hold:

(i) For all x ∈ Kr , set PKr (x) �= ∅;
(ii) For all r′ ∈ (, r), PKr is Lipschitz continuous with constant r

r–r′ on U(r′);
(iii) The proximal normal cone is closed as a set-valued mapping.

3 System of extended regularized nonconvex variational inequalities
In this section, we introduce a new system of extended regularized nonconvex variational
inequalities and prove the equivalence between the aforesaid system and a fixed point
problem.

Let Kr be a uniformly r-prox-regular subset of H , and let gi : H → Kr , hi : H → H
(i = , . . . , N ) be nonlinear single-valued mappings such that gi(H) ∈ Kr . Let Ti : H × H →
CB(H) (i = , . . . , N ) (CB(H) means a nonempty closed and bounded subset of H) be non-
linear set-valued mappings, let Qi : H → H (i = , . . . , N ) be single-valued mappings. For
any given constants ρi >  (i = , . . . , N ) and for all x ∈ H , gi(x) ∈ Kr , the following prob-
lem of finding x∗

i ∈ H (i = , . . . , N ) with hi(x∗
i ) ∈ Kr (i = , . . . , N ) and u∗

i ∈ Ti(x∗
i+, x∗

i )
(i = , . . . , N – ), u∗

N ∈ TN (x∗
 , x∗

N ) such that

⎧
⎪⎪⎨

⎪⎪⎩

〈ρiQi(u∗
i ) + hi(x∗

i ) – gi(x∗
i+), gi(x) – hi(x∗

i )〉 + λi
r ‖gi(x) – hi(x∗

i )‖ ≥ 

(i = , . . . , N – ),

〈ρN QN (u∗
N ) + hN (x∗

N ) – gN (x∗
 ), gN (x) – hN (x∗

N )〉 + λN
r ‖gN (x) – hN (x∗

N )‖ ≥ ,

(.)
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is called the system of extended regularized nonconvex variational inequalities (SERNVI),
where λi = ‖ρiQi(u∗

i ) + hi(x∗
i ) – gi(x∗

i+)‖ (i = , . . . , N – ), λN = ‖ρN QN (u∗
N ) + hN (x∗

N ) –
gN (x∗

 )‖.
We note that if i = , , then problem (.) is equivalent to finding (x∗

 , x∗
) ∈ H × H with

(h(x∗
 ), h(x∗

)) ∈ Kr × Kr and u∗
 ∈ T(x∗

, x∗
 ), u∗

 ∈ T(x∗
 , x∗

) such that

⎧
⎨

⎩
〈ρQ(u∗

 ) + h(x∗
 ) – g(x∗

), g(x) – h(x∗
 )〉 + λ

r ‖g(x) – h(x∗
 )‖ ≥ ,

〈ρQ(u∗
) + h(x∗

) – g(x∗
 ), g(x) – h(x∗

)〉 + λ
r ‖g(x) – h(x∗

)‖ ≥ ,
(.)

where λ = ‖ρQ(u∗
 ) + h(x∗

 ) – g(x∗
)‖, λ = ‖ρQ(u∗

) + h(x∗
) – g(x∗

 )‖, which was in-
troduced by Ansari et al. [] in .

If for each i = , , gi = hi = g , Qi ≡ I , the identity operator Ti = T : H → H is an univariate
nonlinear operator, then problem (.) reduces to the problem of finding (x∗

 , x∗
) ∈ H × H

such that

⎧
⎨

⎩
〈ρT(x∗

 ) + g(x∗
 ) – g(x∗

), g(x) – g(x∗
 )〉 + λ

r ‖g(x) – g(x∗
 )‖ ≥ ,

〈ρT(x∗
) + g(x∗

) – g(x∗
 ), g(x) – g(x∗

)〉 + λ
r ‖g(x) – g(x∗

)‖ ≥ ,
(.)

where λ = ‖ρT(x∗
 ) + g(x∗

 ) – g(x∗
)‖, λ = ‖ρT(x∗

) + g(x∗
) – g(x∗

 )‖. Problem (.) is called
the system of general nonconvex variational inequalities and was introduced by Noor [].

It is worth to mention that if Ti = T : H → H is an univariate nonlinear operator, x∗
i = u

(i = , . . . , N ), gi = g , Qi = hi ≡ I , the identity operator, then problem (.) changes into the
problem of finding u ∈ Kr such that

〈
ρTu + u – g(u), g(v) – u

〉
+

‖ρTu + u – g(u)‖
r

∥∥g(v) – u
∥∥ ≥ , ∀v ∈ Kr , (.)

which is called the general nonconvex variational inequality, introduced and investigated
by Noor [].

Moreover, if gi = hi ≡ I , the identity operator, then problem (.) is equivalent to finding
u ∈ Kr such that

〈ρTu, v – u〉 +
‖ρTu‖

r
‖v – u‖ ≥ , ∀v ∈ Kr , (.)

which is called the nonconvex variational inequality. For more details about the nonconvex
variational inequality, we refer the reader to [, ] and the references therein.

We note that if Kr ≡ K , the convex set in H , then problem (.) is equivalent to finding
u ∈ K such that

〈Tu, v – u〉 ≥ , ∀v ∈ K . (.)

An inequality of type (.), called the classical variational inequality, has been explosively
growing in both theory and applications. For more formulation and numerical information
about the methods, see [–].
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We now establish the equivalence between the system of extended regularized noncon-
vex variational inequalities (.) and a system of nonconvex variational inclusions.

Proposition . Let Qi, Ti, hi, gi, and ρi (i = , . . . , N ) be the same as system (.) such that
gi(H) ∈ Kr (i = , . . . , N ). Then x∗

i ∈ H (i = , . . . , N ) with hi(x∗
i ) ∈ Kr and u∗

i ∈ Ti(x∗
i+, x∗

i )
(i = , . . . , N – ), u∗

N ∈ TN (x∗
 , x∗

N ) is a solution of system (.) if and only if

⎧
⎨

⎩
gi(x∗

i+) – hi(x∗
i ) – ρiQi(u∗

i ) ∈ NP
Kr (hi(x∗

i )) (i = , . . . , N – ),

gN (x∗
 ) – hN (x∗

N ) – ρN QN (u∗
N ) ∈ NP

Kr (hN (x∗
N )),

(.)

where NP
Kr (s) denotes the P-normal cone of Kr at s in the sense of nonconvex analysis.

Proof Let x∗
i ∈ H with hi(x∗

i ) ∈ Kr (i = , . . . , N ) and u∗
i ∈ Ti(x∗

i+, x∗
i ) (i = , . . . , N – ), u∗

N ∈
TN (x∗

 , x∗
N ) be a solution of system (.).

If gi(x∗
i+) – hi(x∗

i ) –ρiQi(u∗
i ) = , since the vector zero always belongs to any normal cone,

it follows that

gi
(
x∗

i+
)

– hi
(
x∗

i
)

– ρiQi
(
u∗

i
) ∈ NP

Kr

(
hi

(
x∗

i
))

.

If gi(x∗
i+) – hi(x∗

i ) – ρiQi(u∗
i ) �= , for all x ∈ H , we observe that

〈
gi

(
x∗

i+
)

– hi
(
x∗

i
)

– ρiQi
(
u∗

i
)
, gi(x) – hi

(
x∗

i
)〉 ≤ λi

r
∥∥gi(x) – hi

(
x∗

i
)∥∥, (.)

where λi = ‖ρiQi(u∗
i ) + hi(x∗

i ) – gi(x∗
i+)‖ (i = , . . . , N – ). It follows from Lemma . and

(.) that

gi
(
x∗

i+
)

– hi
(
x∗

i
)

– ρiQi
(
u∗

i
) ∈ NP

Kr

(
hi

(
x∗

i
))

(i = , . . . , N – ).

Similarly,

gN
(
x∗


)

– hN
(
x∗

N
)

– ρN QN
(
u∗

N
) ∈ NP

Kr

(
hN

(
x∗

N
))

.

On the contrary, if x∗
i ∈ H with hi(x∗

i ) ∈ Kr (i = , . . . , N ) and u∗
i ∈ Ti(x∗

i+, x∗
i ) (i = , . . . , N –

), u∗
N ∈ TN (x∗

 , x∗
N ) is a solution of system (.). Using Definition ., we can get that x∗

i ∈ H
with hi(x∗

i ) ∈ Kr (i = , . . . , N ) and u∗
i ∈ Ti(x∗

i+, x∗
i ) (i = , . . . , N – ), u∗

N ∈ TN (x∗
 , x∗

N ) is a
solution of system (.). This completes the proof. �

Note that problem (.) is called a system of general nonconvex variational inclusions
(SGNVI) associated with a system of extended regularized nonconvex variational inequal-
ities.

Now, we establish the equivalence between SERNVI (.) and a fixed point prob-
lem, which is very useful for our analysis. It is worth to mention that several fixed
point methods, such as (hybrid) projection algorithm and Mann iterative algorithm,
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have been developed for solving the nonlinear problem; see [–] and the references
therein.

Theorem . Suppose that Kr , Qi, Ti, hi, gi, and ρi (i = , . . . , N ) are the same as system
(.) such that gi(H) ∈ Kr (i = , . . . , N ). Then x∗

i ∈ H with hi(x∗
i ) ∈ Kr (i = , . . . , N ) and

u∗
i ∈ Ti(x∗

i+, x∗
i ) (i = , . . . , N – ), u∗

N ∈ TN (x∗
 , x∗

N ) is a solution of system (.) if and only
if

⎧
⎨

⎩
hi(x∗

i ) = PKr [gi(x∗
i+) – ρiQi(u∗

i )] (i = , . . . , N – ),

hN (x∗
N ) = PKr [gN (x∗

 ) – ρN QN (u∗
N )],

(.)

with ρi < r′
+‖Qi(u∗

i )‖ (i = , . . . , N – ), ρN < r′
+‖QN (u∗

N )‖ , for some r′ ∈ (, r), where PKr is the
projection of H onto Kr .

Proof Suppose x∗
i ∈ H with hi(x∗

i ) ∈ Kr (i = , . . . , N ) and u∗
i ∈ Ti(x∗

i+, x∗
i ) (i = , . . . , N –

), u∗
N ∈ TN (x∗

 , x∗
N ) is a solution of system (.). Since gi(x∗

i ) ∈ Kr (i = , . . . , N ), and for
some r′ ∈ (, r), ρi < r′

+‖Qi(u∗
i )‖ (i = , . . . , N – ), ρN < r′

+‖QN (u∗
N )‖ , we can check that gi(x∗

i+) –
ρiQi(u∗

i ) and gN (x∗
 ) – ρN QN (u∗

N ) belong to U(r′), which implies that equations (.) are
well defined.

From Theorem . and the above mentioned works, we can get

⎧
⎨

⎩
gi(x∗

i+) – hi(x∗
i ) – ρiQi(u∗

i ) ∈ NP
Kr (hi(x∗

i )) (i = , . . . , N – ),

gN (x∗
 ) – hN (x∗

N ) – ρN QN (u∗
N ) ∈ NP

Kr (hN (x∗
N ))

⇐⇒
⎧
⎨

⎩
gi(x∗

i+) – ρiQi(u∗
i ) ∈ (I + NP

Kr )(hi(x∗
i )) (i = , . . . , N – ),

gN (x∗
 ) – ρN QN (u∗

N ) ∈ (I + NP
Kr )(hN (x∗

N ))

⇐⇒
⎧
⎨

⎩
hi(x∗

i ) = PKr [gi(x∗
i+) – ρiQi(u∗

i )] (i = , . . . , N – ),

hN (x∗
N ) = PKr [gN (x∗

 ) – ρN QN (u∗
N )],

where I is an identity mapping and PKr = (I + NP
Kr )–. This completes the proof. �

4 Main result
In this section, we use the foregoing equivalent alternative formulation (.) to consider
new perturbed projection iterative algorithms with mixed errors for finding the solution of
SERNVI (.). For convenience, we now recall some definitions, and they will be powerful
tools in our analysis.

Definition . An operator g : H → H is called
(i) monotone if

〈
g(x) – g(y), x – y

〉 ≥ , ∀x, y ∈ H ;

(ii) strongly monotone if there exists a constant η >  such that

〈
g(x) – g(y), x – y

〉 ≥ η‖x – y‖, ∀x, y ∈ H ;
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(iii) Lipschitz continuous if there exists a constant σ >  such that

∥∥g(x) – g(y)
∥∥ ≤ σ‖x – y‖, ∀x, y ∈ H .

Definition . Let T : H × H → H be a set-valued mapping, a nonlinear single-valued
mapping Q : H → H is called

(i) monotone if for any u ∈ T(x, y), v ∈ T(y, x) such that

〈
Q(u) – Q(v), x – y

〉 ≥ , ∀x, y ∈ H ;

(ii) relaxed (κ ,λ) cocoercive if for any u ∈ T(x, y), v ∈ T(y, x), there exist constants
κ >  and λ >  such that

〈
Q(u) – Q(v), x – y

〉 ≥ –κ
∥∥Q(u) – Q(v)

∥∥ + λ‖x – y‖, ∀x, y ∈ H ;

(iii) μ-Lipschitz continuous if there exists a constant μ >  such that

∥∥Q(x) – Q(x)
∥∥ ≥ μ‖x – x‖, ∀x, x ∈ H .

Note that the notion of the cocoercivity is applied in several directions, especially to
solving the variational inequality problems using the auxiliary problem principle and the
projection methods, see []; while the notion of the relaxed cocoercivity is more general
than the strong monotonicity as well as cocoercivity. For more details about the relaxed
cocoercive variational inequalities and variational inclusions, see, for example, [].

Definition . A two-variable set-valued mapping T : H × H → H is said to be π-D̂-
Lipschitz continuous in the first variable if for all x, x′, y, y′ ∈ H , there exists a constant
π >  such that

D̂
(
T(x, y), T

(
x′, y′)) ≤ π

∥∥x – x′∥∥,

where D̂ is the Hausdorff pseudo-metric, that is, for any two nonempty subsets A and B
of H ,

D̂(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

.

In what follows, we introduce a new perturbed projection iterative algorithm with mixed
errors to find the solution of SERNVI (.). For convenience, we assume that Kr is a uni-
formly r-prox-regular subset of H with r > , also let r′ ∈ (, r) and set δ = r

r–r′ .

Algorithm . Suppose Qi, Ti, hi, gi, and ρi (i = , . . . , N ) are the same as system (.) such
that gi(H) ∈ Kr (i = , . . . , N ), the iterative sequence {(xn

 , . . . , xn
N )}∞n= in H × · · · × H︸ ︷︷ ︸

N-times

for an
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arbitrarily chosen initial point (x
 , . . . , x

N ) ∈ H × · · · × H︸ ︷︷ ︸
N-times

is given as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+
i = ( – αn)xn

i + αn(xn
i – hi(xn

i ) + Pkr (gi(xn
i+) – ρiQi(un

i )))

+ αnen
i + qn

i (i = , . . . , N – ),

xn+
N = ( – αn)xn

N + αn(xn
N – hN (xn

N ) + Pkr (gN (xn
 ) – ρN QN (un

N )))

+ αnen
N + qn

N ,

(.)

where {αn}∞n= is a sequence in [, ] such that
∑∞

n= αn = ∞, and {en
i }∞n=, {qn

i }∞n= (i =
, . . . , N ) are sequences in H to consider a possible inexact point of the resolvent operator
satisfying the following conditions:

⎧
⎪⎪⎨

⎪⎪⎩

en
i = en

i′ + en
i′′ (i = , . . . , N),

limn→∞ ‖en
′ , . . . , en

N ′ ‖∗ = ,
∑∞

n= ‖en
′′ , . . . , en

N ′′ ‖∗ < ∞,
∑∞

n= ‖qn
 , . . . , qn

N‖∗ < ∞.

(.)

Moreover, by Nadler theorem [], there exist

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un
i ∈ Tn

i (xn
i+, xn

i ) (i = , . . . , N – ),

‖un
i – un+

i ‖ ≤ ( + 
i )D̂(Ti(xn

i+, xn
i ), Ti(xn+

i+ , xn+
i )),

un
N ∈ TN (xn

 , xn
N ),

‖un
N – un+

N ‖ ≤ ( + 
N )D̂(TN (xn

 , xn
N ), TN (xn+

 , xn+
N )).

Before establishing the convergence analysis of the aforesaid algorithm, we review the
well-known property, which provides the main mathematical results of this section.

Lemma . ([]) Let an, bn and cn be three nonnegative real sequences satisfying the fol-
lowing condition. There exists a natural number n such that

an+ ≤ ( – tn)an + bntn + cn, ∀n ≥ n,

where tn ∈ [, ],
∑∞

n= tn = ∞, limn→∞ bn =  and
∑∞

n= cn < ∞. Then limn→∞ an = .

Next, the convergence of the iterative sequence generated by Algorithm . to a solution
of SERNVI (.) is demonstrated.

Theorem . Suppose Qi, Ti, hi, gi, and ρi (i = , . . . , N ) are the same as system (.) such
that gi(H) ∈ Kr (i = , . . . , N ). Furthermore, for each i = , . . . , N ,

(i) Qi is (κi,λi)-relaxed cocoercive with constants κi > , λi > ;
(ii) Qi is μi-Lipschitz continuous with a constant μi > ;

(iii) Ti is πi – D̂-Lipschitz continuous in the first variable with a constant πi > ;
(iv) gi is ηi-strongly monotone and σi-Lipschitzian with constants ηi > , σi > ;
(v) hi is ξi-strongly monotone and ζi-Lipschitzian with constants ξi > , ζi > .

If the constants ρi (i = , . . . , N ) satisfy the following conditions:

ρi <
r′

 + ‖Qi(ui)‖ , (.)
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for some r′ ∈ (, r) and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ρi – λi–κiμ

i (+ 

i )π
i

μ
i (+ 

i )π
i

|

<
√

δ(λi–κiμ

i (+ 

i )π
i )–μ

i (+ 
i )π

i {δ–(–θi+–δ
√

–ηi+σ
i )}

δμ
i (+ 

i )π
i

(i = , . . . , N – ),

|ρN – λN –κN μ
N (+ 

N )π
N

μ
N (+ 

N )π
N

|

<
√

δ(λN –κN μ
N (+ 

N )π
N )–μ

N (+ 
N )π

N {δ–(–θ–δ
√

–ηN +σ
N )}

δμ
N (+ 

N )π
N

,

δ(λi – κiμ

i ( + 

i )π
i )

> μi( + 
i )πi

√

δ – ( – θi+ – δ

√
 – ηi + σ 

i ) (i = , . . . , N – ),

δ(λN – κNμ
N ( + 

N )π
N ) > μN ( + 

N )πN

√

δ – ( – θ – δ

√
 – ηN + σ 

N ),

δ >  – θi+ – δ

√
 – ηi + σ 

i (i = , . . . , N – ),

δ >  – θ – δ

√
 – ηN + σ 

N ,

θi =
√

 – ξi + ζ 
i (i = , . . . , N),

ξi <  + ζ 
i (i = , . . . , N).

(.)

Then the iterative sequence {xn
i }∞n= (i = , . . . , N ) generated by Algorithm . strongly con-

verges to (x∗
 , . . . , x∗

N ).

Proof Since gi(x∗
i ) ∈ Kr (i = , . . . , N ), ρi < r′

+‖Qi(u∗
i )‖ (i = , . . . , N – ) and ρN < r′

+‖QN (u∗
N )‖ , it

follows from Theorem . that x∗
i ∈ H satisfies equation (.). Moreover, since the solution

of the system of extended regularized nonconvex variational inequalities is a singleton set,
hence, for each positive integer n, we obtain

⎧
⎪⎪⎨

⎪⎪⎩

x∗
i = ( – αn)x∗

i + αn(x∗
i – hi(x∗

i ) + Pkr (gi(x∗
i+) – ρiQi(u∗

i )))

(i = , . . . , N),

x∗
N = ( – αn)x∗

N + αn(x∗
N – hN (x∗

N ) + Pkr (gN (x∗
 ) – ρN QN (u∗

N ))),

(.)

where the sequence {αn} is the same as in Algorithm ..
Let xn+

i , x∗
i ∈ H be given, by Proposition ., (.) and (.), we observe that

∥∥xn+
i – x∗

i
∥∥

≤ ( – αn)
∥∥xn

i – x∗
i
∥∥ + αn

∥∥{
xn

i – hi
(
xn

i
)

+ Pkr

(
gi

(
xn

i+
)

– ρiQi
(
un

i
))}

–
{

x∗
i – hi

(
x∗

i
)

+ Pkr

(
gi

(
x∗

i+
)

– ρiQi
(
u∗

i
))}∥∥ + αn

∥∥en
i
∥∥ +

∥∥qn
i
∥∥

≤ ( – αn)
∥∥xn

i – x∗
i
∥∥ + αn

(∥∥xn
i – x∗

i –
(
hi

(
xn

i
)

– hi
(
x∗

i
))∥∥

+ δ
∥∥gi

(
xn

i+
)

– gi
(
x∗

i+
)

–
(
ρiQi

(
un

i
)

– ρiQi
(
u∗

i
))∥∥)

+ αn
∥∥en

i
∥∥ +

∥∥qn
i
∥∥

≤ ( – αn)
∥∥xn

i – x∗
i
∥∥ + αn

(∥∥xn
i – x∗

i –
(
hi

(
xn

i
)

– hi
(
x∗

i
))∥∥

+ δ
{∥∥xn

i+ – x∗
i+ –

(
gi

(
xn

i+
)

– gi
(
x∗

i+
))∥∥ +

∥∥xn
i+ – x∗

i+ – ρi
(
Qi

(
un

i
)

– Qi
(
u∗

i
))∥∥})

+ αn
(∥∥en

i′
∥∥ +

∥∥en
i′′
∥∥)

+
∥
∥qn

i
∥∥. (.)



Zhao et al. Journal of Inequalities and Applications  (2017) 2017:87 Page 10 of 13

From the fact that hi is ξi-strongly monotone and ζi-Lipschitzian, we can get that

∥∥xn
i – x∗

i –
(
hi

(
xn

i
)

– hi
(
x∗

i
))∥∥

=
∥∥xn

i – x∗
i
∥∥ – 

〈
hi

(
xn

i
)

– hi
(
x∗

i
)
, xn

i – x∗
i
〉
+

∥∥hi
(
xn

i
)

– hi
(
x∗

i
)∥∥

≤ ∥∥xn
i – x∗

i
∥∥ – ξi

∥∥xn
i – x∗

i
∥∥ + ζ 

i
∥∥xn

i – x∗
i
∥∥

=
(
 – ξi + ζ 

i
)∥∥xn

i – x∗
i
∥∥. (.)

Using the fact that gi is ηi-strongly monotone and σi-Lipschitzian, we obtain

∥∥xn
i+ – x∗

i+ –
(
gi

(
xn

i+
)

– gi
(
x∗

i+
))∥∥

=
∥∥xn

i+ – x∗
i+

∥∥ – 
〈
gi

(
xn

i+
)

– gi
(
x∗

i+
)
, xn

i+ – x∗
i+

〉
+

∥∥gi
(
xn

i+
)

– gi
(
x∗

i+
)∥∥

≤ (
 – ηi + σ 

i
)∥∥xn

i+ – x∗
i+

∥∥. (.)

Since Qi is μi-Lipschitz continuous and Ti is πi – D̂-Lipschitz continuous in the first
variable, it follows that

∥∥Qi
(
un

i
)

– Qi
(
u∗

i
)∥∥ ≤ μi

∥∥un
i – u∗

i
∥∥

≤ μi

(
 +


i

)
D̂

(
Ti

(
xn

i+, xn
i
)
, Ti

(
x∗

i+, x∗
i
))

≤ μi

(
 +


i

)
πi

∥∥xn
i+ – x∗

i+
∥∥. (.)

From (.) and Qi is (κi,λi)-relaxed cocoercive with respect to Qi and Ti, it is easy to see
that

∥∥xn
i+ – x∗

i+ – ρi
(
Qi

(
un

i
)

– Qi
(
u∗

i
))∥∥

=
∥∥xn

i+ – x∗
i+

∥∥ – ρi
〈
Qi

(
un

i
)

– Qi
(
u∗

i
)
, xn

i+ – x∗
i+

〉

+ ρ
i
∥∥Qi

(
un

i
)

– Qi
(
u∗

i
)∥∥

≤ ∥∥xn
i+ – x∗

i+
∥∥ – ρi

(
–κi

∥∥Qi
(
un

i
)

– Qi
(
u∗

i
)∥∥

+ λi
∥∥xn

i+ – x∗
i+

∥∥) + ρ
i μ

i
∥∥un

i – u∗
i
∥∥

≤ ∥∥xn
i+ – x∗

i+
∥∥ – ρi

(
–κiμ


i

(
 +


i

)

π
i
∥∥xn

i+ – x∗
i+

∥∥

+ λi
∥∥xn

i+ – x∗
i+

∥∥
)

+ ρ
i μ

i

(
 +


i

)

π
i
∥∥xn

i+ – x∗
i+

∥∥

=
(

 – ρi

(
λi – κiμ


i

(
 +


i

)

π
i

)
+ ρ

i μ
i

(
 +


i

)

π
i

)∥∥xn
i+ – x∗

i+
∥∥. (.)

Substituting (.), (.) and (.) in (.), we deduce that

∥∥xn+
i – x∗

i
∥∥

≤ ( – αn)
∥∥xn

i – x∗
i
∥∥ + αn

(
θi

∥∥xn
i – x∗

i
∥∥ + φi

∥∥xn
i+ – x∗

i+
∥∥)
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+ αn
∥∥en

i′
∥∥ +

∥∥en
i′′
∥∥ +

∥∥qn
i
∥∥

=
(
 – αn( – θi)

)∥∥xn
i – x∗

i
∥∥ + αnφi

∥∥xn
i+ – x∗

i+
∥∥

+ αn
∥∥en

i′
∥∥ +

∥∥en
i′′
∥∥ +

∥∥qn
i
∥∥, (.)

where φi = δ{
√

( – ηi + σ 
i ) +

√
( – ρi(λi – κiμ


i ( + 

i )π
i ) + ρ

i μ
i ( + 

i )π
i )}, and θi =

√
( – ξi + ζ 

i ).
Now we define ‖ · ‖∗ on H × · · · × H︸ ︷︷ ︸

N-times

as follows:

∥∥(x, . . . , xN )
∥∥∗ = ‖x‖ + · · · + ‖xN‖, for all (x, . . . , xN ) ∈ H × · · · × H︸ ︷︷ ︸

N-times

.

It is obvious that (H × · · · × H︸ ︷︷ ︸
N-times

,‖ · ‖∗) is a Banach space. We derive from the definition of

‖ · ‖∗ and (.) that

∥∥(
xn+

 , xn+
 , . . . , xn+

N
)

–
(
x∗

 , x∗
, . . . , x∗

N
)∥∥∗

≤ (
 – αn( – θ)

)∥∥xn
 – x∗


∥∥ + αnφ

∥∥xn
 – x∗


∥∥ + αn

∥∥en
′
∥∥

+
∥∥en

′′
∥∥ +

∥∥qn

∥∥ +

(
 – αn( – θ)

)∥∥xn
 – x∗


∥∥ + αnφ

∥∥xn
 – x∗


∥∥

+ αn
∥∥en

′
∥∥ +

∥∥en
′′

∥∥ +
∥∥qn


∥∥ + · · · +

(
 – αn( – θN )

)∥∥xn
N – x∗

N
∥∥

+ αnφN
∥∥xn

 – x∗

∥∥ + αn

∥∥en
N ′

∥∥ +
∥∥en

N ′′
∥∥ +

∥∥qn
N
∥∥

≤ (
 – αn( – ϑ)

)∥∥(
xn

 , xn
, . . . , xn

N
)

–
(
x∗

 , x∗
, . . . , x∗

N
)∥∥∗

+ αn
∥∥(

en
′ , . . . , en

N ′
)∥∥∗ +

∥∥(
en

′′ , . . . , en
N ′′

)∥∥∗ +
∥∥(

qn
 , . . . , qn

N
)∥∥∗

≤ (
 – αn( – ϑ)

)∥∥(
xn

 , xn
, . . . , xn

N
)

–
(
x∗

 , x∗
, . . . , x∗

N
)∥∥∗

+ αn( – ϑ)
‖(en

′ , . . . , en
N ′ )‖∗

 – ϑ
+

∥∥(
en

′′ , . . . , en
N ′′

)∥∥∗ +
∥∥(

qn
 , . . . , qn

N
)∥∥∗, (.)

where ϑ = � + �, � = {θ, . . . , θN } and � = {φ, . . . ,φN }. From condition (.), we get that
 < ϑ < . Since all conditions in (.) hold, one can easily find that all the conditions of
Lemma . are satisfied. It follows from Lemma . and (.) that

(
xn+

 , xn+
 , . . . , xn+

N
) → (

x∗
 , x∗

, . . . , x∗
N
)
, as n → ∞. (.)

Using the definition of ‖ · ‖∗ and (.), one can easily show that

∥∥((
x

, . . . , x
N
)
, . . . ,

(
xn

 , . . . , xn
N
))

–
((

x∗
 , . . . , x∗

N
)
, . . . ,

(
x∗

 , . . . , x∗
N
))∥∥∗

=
n–∑

j=

∥∥(
xj+

 , . . . , xj+
N

)
–

(
x∗

 , . . . , x∗
N
)∥∥∗ +

∥∥(
x

, . . . , x
N
)

–
(
x∗

 , . . . , x∗
N
)∥∥∗

≤
n–∑

j=

(
 – αj( – ϑ)

)∥∥(
xj

, xj
, . . . , xj

N
)

–
(
x∗

 , x∗
, . . . , x∗

N
)∥∥∗

+
n–∑

j=

αj
∥∥(

ej
′ , . . . , ej

N ′
)∥∥∗ +

n–∑

j=

αj
∥∥(

ej
′′ , . . . , ej

N ′′
)∥∥∗
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+
n–∑

j=

∥∥(
qj

, . . . , qj
N
)∥∥∗ +

(
 – α( – ϑ)

)∥∥(
x

 , x
, . . . , x

N
)

–
(
x∗

 , x∗
, . . . , x∗

N
)∥∥∗ + α

∥∥(
e

′ , . . . , e
N ′

)∥∥∗

+
∥∥(

e
′′ , . . . , e

N ′′
)∥∥∗ +

∥∥(
q

 , . . . , q
N
)∥∥∗

=
n–∑

j=

(
 – αj( – ϑ)

)∥∥(
xj

, xj
, . . . , xj

N
)

–
(
x∗

 , x∗
, . . . , x∗

N
)∥∥∗

+
n–∑

j=

αj
∥∥(

ej
′ , . . . , ej

N ′
)∥∥∗ +

n–∑

j=

∥∥(
eN

′′ , . . . , eN
N ′′

)∥∥∗ +
n–∑

j=

∥∥(
qj

, . . . , qj
N
)∥∥∗

=
n–∑

j=

{(
 – αj( – ϑ)

)∥∥(
xj

, xj
, . . . , xj

N
)

–
(
x∗

 , x∗
, . . . , x∗

N
)∥∥∗

+ αj
∥∥(

ej
′ , . . . , ej

N ′
)∥∥∗ +

∥∥(
ej

′′ , . . . , ej
N ′′

)∥∥∗ +
∥∥(

qj
, . . . , qj

N
)∥∥∗

}
. (.)

It follows from (.) and (.) that

∥∥((
x

, . . . , x
N
)
, . . . ,

(
xn

 , . . . , xn
N
))

–
((

x∗
 , . . . , x∗

N
)
, . . . ,

(
x∗

 , . . . , x∗
N
))∥∥∗ → , as n → ∞.

Consequently, {xn
i }∞n= (i = , . . . , N ) are Cauchy sequences in H . Hence, there exists x∗

i (i =
, . . . , N) ∈ H such that xn

i → x∗
i (i = , . . . , N) ∈ H as n → ∞. This completes the proof.

�

Remark Equation (.) is the key condition for the convergence analysis in our algorithm.
Moreover, the problem which we are solving has n elements. So, we consider the special
case for one element. If we choose θ = 

 , δ = , λ = ., κ = , π = , μ = , it follows
that ρ ∈ ( +

√


 , –
√


 ), which implies that the algorithm introduced in our paper is feasible.
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