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Abstract
StrongH-tensors play an important role in identifying the positive definiteness of
even-order real symmetric tensors. In this paper, some new iterative criteria for
identifying strongH-tensors are obtained. These criteria only depend on the
elements of the tensors, and it can be more effective to determine whether a given
tensor is a strongH-tensor or not by increasing the number of iterations. Some
numerical results show the feasibility and effectiveness of the algorithm.
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1 Introduction
A tensor can be regarded as a higher-order generalization of a matrix. Let C(R) denote the
set of all complex (real) numbers and N = {, , . . . , n}. We call A = (aii···im ) an mth-order
n-dimensional complex (real) tensor, if

aii···im ∈C(R),

where ij = , , . . . , n for j = , , . . . , m [, ]. Obviously, a vector is a tensor of order  and a
matrix is a tensor of order . A tensor A = (aii···im ) is called symmetric [], if

aii···im = aπ (ii···im), ∀π ∈ �m,

where �m is the permutation group of m indices. Furthermore, an mth-order n-dimen-
sional tensor I = (δii···im ) is called the unit tensor [], if its entries

δii···im =

⎧
⎨

⎩

, if i = · · · = im,

, otherwise.

Let A = (aii···im ) be an mth-order n-dimensional complex tensor. If there exist a number
λ ∈ C and a non-zero vector x = (x, x, . . . , xn)T ∈ Cn that are solutions of the following
homogeneous polynomial equations:

Axm– = λx[m–],
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then we call λ an eigenvalue of A and x the eigenvector of A associated with λ [, –],
where Axm– and λx[m–] are vectors, whose ith components are

(
Axm–)

i =
∑

i,i,...,im∈N

aii···im xi · · ·xim

and
(
x[m–])

i = xm–
i ,

respectively. In particular, if λ and x are restricted in the real field, then we call λ an H-
eigenvalue of A and x an H-eigenvector of A associated with λ [].

In addition, the spectral radius of a tensor A is defined as

ρ(A) = max
{|λ| : λ is an eigenvalue of A

}
.

Analogous with that of M-matrices, comparison matrices and H-matrices, the defini-
tions of M-tensors, comparison tensors and strong H-tensors are given by the following.

Definition . ([]) Let A = (aii···im ) be an mth-order n-dimensional complex tensor.
A is called an M-tensor if there exist a non-negative tensor B and a positive real number
η ≥ ρ(B) such that A = ηI – B. If η > ρ(B), then A is called a strong M-tensor.

Definition . ([]) Let A = (aii···im ) be an mth-order n-dimensional complex tensor.
We call another tensor M(A) = (mii···im ) as the comparison tensor of A if

mii···im =

⎧
⎨

⎩

|aii···im |, if (i, i, . . . , im) = (i, i, . . . , i);

–|aii···im |, if (i, i, . . . , im) �= (i, i, . . . , i).

Definition . ([]) Let A = (aii···im ) be an mth-order n-dimensional complex tensor.
A is called a strong H-tensor if there is a positive vector x = (x, x, . . . , xn)T ∈R

n such that

|aii···i|xm–
i >

∑

i,i,...,im∈N ,
δii ···im =

|aii···im |xi · · ·xim , ∀i ∈ N . (.)

Definition . ([]) Let A = (aii···im ) be an mth-order n-dimensional complex tensor.
A is called a diagonally dominant tensor if

|aii···i| ≥
∑

i,i,...,im∈N ,
δii ···im =

|aii···im |, ∀i ∈ N . (.)

We call A a strictly diagonally dominant tensor if all strict inequalities in (.) hold.

Definition . ([]) An mth-order n-dimensional complex tensor A = (aii···im ) is called
reducible, if there exists a nonempty proper index subset I ⊂ N such that

aii···im = , ∀i ∈ I,∀i, . . . , im /∈ I.

We call A irreducible if A is not reducible.
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Definition . ([]) Let A = (aii···im ) be an mth-order n-dimensional tensor and a n-by-n
matrix X = (xij) on mode-k is defined

(A×k X)i···jk ···im =
n∑

ik =

ai···ik ···im xik jk .

According to Definition ., we denote

(
AXm–) := A× X × · · · ×m X.

Particularly, for X = diag(x, x, . . . , xn), the product of the tensor A and the matrix X is
given by

B = (bii···im ) = AXm–, bii···im = aii···im xi xi · · ·xim , ij ∈ N , j ∈ {, , . . . , m}.

Definition . ([]) LetA = (aii···im ) be an mth-order n-dimensional complex tensor. For
some i, j ∈ N (i �= j), if there exist indices k, k, . . . , kr with

∑

i,i,...,im∈N ,
δksi ···im =,

ks+∈{i,i,...,im}

|aksi···im | �= , s = , , . . . , r,

where k = i, kr+ = j, we call there is a non-zero elements chain from i to j.

For an mth degree homogeneous polynomial of n variables f (x) is denoted as

f (x) =
∑

i,i,...,im∈N

aii···im xi xi · · ·xim , (.)

where x = (x, x, . . . , xn)T ∈R
n. When m is even, f (x) is called positive definite if

f (x) > , for any x ∈R
n, x �= .

The homogeneous polynomial f (x) in (.) is equivalent to the tensor product of an mth-
order n-dimensional symmetric tensor A and xm defined by []

f (x) = Axm =
∑

i,i,...,im∈N

aii···im xi xi · · ·xim , (.)

where x = (x, x, . . . , xn)T ∈R
n. It is well known that the positive definiteness of multivari-

ate polynomial f (x) plays an important role in the stability study of nonlinear autonomous
systems [, ]. For n ≤ , the positive definiteness of the multivariate polynomial form
can be checked by a method based on the Sturm theorem []. However, for n >  and
m ≥ , it is difficult to determine a given even-order multivariate polynomial f (x) is pos-
itive semi-definite or not because the problem is NP-hard. For solving this problem, Qi
[] pointed out that f (x) defined by (.) is positive definite if and only if the real symmet-
ric tensor A is positive definite, and provided an eigenvalue method to verify the positive
definiteness of A when m is even (see Lemma .).
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Lemma . ([]) Let A be an even-order real symmetric tensor, then A is positive definite
if and only if all of its H-eigenvalues are positive.

Although from Lemma . we can verify the positive definiteness of an even-order sym-
metric tensor A (the positive definiteness of the mth-degree homogeneous polynomial
f (x)) by computing the H-eigenvalues of A. In [–], for a non-negative tensor, some
algorithms are provided to compute its largest eigenvalue. And in [, ], based on semi-
definite programming approximation schemes, some algorithms are also given to compute
eigenvalues for general tensors with moderate sizes. However, it is difficult to compute all
these H-eigenvalues when m and n are large. Recently, by introducing the definition of
strong H-tensor [, ], Li et al. [] provided a practical sufficient condition for identify-
ing the positive definiteness of an even-order symmetric tensor (see Lemma .).

Lemma . ([]) Let A = (aii···im ) be an even-order real symmetric tensor with ak···k > 
for all k ∈ N . If A is a strong H-tensor, then A is positive definite.

As mentioned in [], it is still difficult to determine a strong H-tensor in practice by
using the definition of strong H-tensor because the conditions ‘there is a positive vector
x = (x, x, . . . , xn)T ∈R

n such that, for all i ∈ N , the Inequality (.) holds’ in Definition .
is unverifiable for there are an infinite number of positive vector in R

n. Therefore, much
literature has focused on researching how to determine that a given tensor is a strong H-
tensor by using the elements of the tensors without Definition . recently, consequently,
the corresponding even-order real symmetric tensor is positive definite. Therefore, the
main aim of this paper is to study some new iterative criteria for identifying strong H-
tensors only depending on the elements of the tensors.

Before presenting our results, we review the existing ones that relate to the criteria for
strong H-tensors. Let S be an arbitrary nonempty subset of N and let N\S be the com-
plement of S in N . Given an mth-order n-dimensional complex tensor A = (aii···im ), we
denote

Nm– = {ii · · · im : ij ∈ N , j = , , . . . , m};
Sm– = {ii · · · im : ij ∈ S, j = , , . . . , m};
Nm–\Sm– =

{
ii · · · im : ii · · · im ∈ Nm– and ii · · · im /∈ Sm–};

ri(A) =
∑

i,i,...,im∈N ,
δii ···im =

|aii···im | =
∑

i,i,...,im∈N

|aii···im | – |aii···i|;

rj
i(A) =

∑

δii ···im =,
δji ···im =

|aii···im | = ri(A) – |aij···j|;

N = N(A) =
{

i ∈ N : |aii···i| > ri(A)
}

;

N = N(A) =
{

i ∈ N :  < |aii···i| ≤ ri(A)
}

;

si =
|aii···i|
ri(A)

, ti =
ri(A)
|aii···i| , r = max

{
max
i∈N

si, max
i∈N

ti

}
;

r = max
i∈N

{ ∑
i,i,...,im∈Nm–\Nm–


|aii···im |

|aii···i| –
∑

i,i,...,im∈Nm–
 ,δii ···im =

|aii···im |
}

;
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R()
i (A) =

∑

i,i,...,im∈Nm–\Nm–


|aii···im | + r
∑

i,i,...,im∈Nm–
 ,

δii ···im =

|aii···im |, ∀i ∈ N.

In [], Li et al. obtained the following result.

Lemma . Let A = (aii···im ) be a complex tensor of order m dimension n. If there is an
index i ∈ N such that for all j ∈ N , j �= i,

|aii···i|
(|ajj···j| – ri

j (A)
)

> ri(A)|aji···i|,

then A is a strong H-tensor.

In [], Wang and Sun derived the following result.

Lemma . Let A = (aii···im ) be an order m dimension n complex tensor. If

|aii···i|si > r
∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im | +
∑

i,i,...,im∈N

max
j∈{i,i,...,im}

{tj}|aii···im |, ∀i ∈ N,

then A is a strong H-tensor.

Recently, Li et al. in [] showed the following.

Lemma . Let A = (aii···im ) be an order m dimension n complex tensor. If

|aii···i| >
∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im | +
∑

i,i,...,im∈N

max
j∈{i,i,...,im}

rj(A)
|ajj···j| |aii···im |, ∀i ∈ N,

then A is a strong H-tensor.

In the sequel, Wang et al. in [] proved the following result.

Lemma . Let A = (aii···im ) be a complex tensor with order m and dimension n. If for all
i ∈ N, j ∈ N,

(

R()
j (A) –

∑

j,j,...,jm∈Nm–
 ,

δjj ···jm =

max
k∈{j,j,...,jm}

R()
k (A)

|akk···k| |ajj···jm |
)

×
(

|aii···i| –
∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im |
)

>
∑

t,t,...,tm∈Nm–\Nm–


|ajt···tm |
∑

l,l,...,lm∈Nm–


max
l∈{l,l,...,lm}

R()
l (A)

|all···l| |ail···lm |,

then A is a strong H-tensor.
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In this paper, we continue this research on criteria for strong H-tensors; inspired by the
ideas of [], we obtain some new iterative criteria for strong H-tensors, which improve
the aforementioned Lemmas .-.. As applications of the new iterative criteria for strong
H-tensors, we establish some sufficient conditions of the positive definiteness for an even-
order real symmetric tensor. Numerical examples are implemented to illustrate these facts.

Now, some notations are given, which will be used throughout this paper. Let

Z = {, , , . . .}, h() = r, δ
()
i = , δ

()
i =

R()
i (A)

|aii···i| , ∀i ∈ N;

h() = max
i∈N

{ ∑
i,i,...,im∈Nm–\Nm–


|aii···im |

R()
i (A) –

∑
i,i,...,im∈Nm–

 ,
δii ···im =

maxj∈{i,i,...,im} δ()
j |aii···im |

}

;

R(l+)
i (A) =

∑

i,i,...,im∈Nm–\Nm–


|aii···im |

+ h(l)
∑

i,i,...,im∈Nm–
 ,

δii ···im =

max
j∈{i,i,...,im}

δ
(l)
j |aii···im |, ∀i ∈ N, l ∈ Z;

δ
(l+)
i =

R(l+)
i (A)
|aii···i| , ∀i ∈ N, l ∈ Z;

h(l+) = max
i∈N

{ ∑
i,i,...,im∈Nm–\Nm–


|aii···im |

R(l+)
i (A) –

∑
i,i,...,im∈Nm–

 ,
δii ···im =

maxj∈{i,i,...,im} δ(l+)
j |aii···im |

}

, l ∈ Z.

The remainder of the paper is organized as follows. In Section ., some criteria for iden-
tifying strong H-tensors are obtained; as an interesting application of these criteria, some
sufficient conditions of the positive definiteness for an even-order real symmetric tensor
are presented in Section .. Numerical examples are given to verify the corresponding
results. Finally, some conclusions are given to end this paper in Section .

We adopt the following notations throughout this paper. The calligraphy letters A,B,
H, . . . denote tensors; the capital letters A, B, D, . . . represent matrices; the lowercase letters
x, y, . . . refer to vectors.

2 Main results
2.1 Criteria for identifying strong H-tensors
In this subsection, we give some new criteria for identifying strong H-tensors by making
use of elements of tensors only. For the convenience of our discussion, we start with the
following lemmas, which will be useful in the next proofs.

Lemma . Let A = (aii···im ) be an mth-order n-dimensional complex tensor, then, for all
i ∈ N, l = , , . . . ,

(a)  ≥ h(l) ≥ ;
(b)  > δ

()
i ≥ h()δ

()
i ≥ δ

()
i ≥ · · · ≥ δ

(l)
i ≥ h(l)δ

(l)
i ≥ δ

(l+)
i ≥ · · · ≥ .
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Proof Since i ∈ N, we have  ≤ r < . Moreover, for i ∈ N, we get

r ≥
∑

i,i,...,im∈Nm–\Nm–


|aii···im |
|aii···i| –

∑
i,i,...,im∈Nm–

 ,
δii ···im =

|aii···im | , |aii···i| –
∑

i,i,...,im∈Nm–
 ,

δii ···im =

|aii···im | > ,

which implies

r|aii···i| ≥
∑

i,i,...,im∈Nm–\Nm–


|aii···im | + r
∑

i,i,...,im∈Nm–
 ,

δii ···im =

|aii···im | = R()
i (A).

From the above inequality, ∀i ∈ N, we obtain

 ≤ δ
()
i =

R()
i (A)

|aii···i| ≤ r < .

Together with the expression of R()
i (A), for ∀i ∈ N, we deduce that

∑
i,i,...,im∈Nm–\Nm–


|aii···im |

R()
i (A) –

∑
i,i,...,im∈Nm–

 ,
δii ···im =

maxj∈{i,i,...,im} δ()
j |aii···im |

=

R()
i (A) – r

∑
i,i,...,im∈Nm–,

δii ···im =
|aii···im |

R()
i (A) –

∑
i,i,...,im∈Nm–

 ,
δii ···im =

maxj∈{i,i,...,im} δ()
j |aii···im | ≤ .

Combining the expression of h() and the above inequality results in

 ≤ h() ≤ . (.)

Besides, for ∀i ∈ N,

R()
i (A) =

∑

i,i,...,im∈Nm–\Nm–


|aii···im | + r
∑

i,i,...,im∈Nm–
 ,

δii ···im =

|aii···im | ≤ ri(A) < |ai···i|,

that is,

δ
()
i =

R()
i (A)

|aii···i| ≤ ri(A)
|aii···i| < . (.)

Since

h() = max
i∈N

{ ∑
i,i,...,im∈Nm–\Nm–


|aii···im |

R()
i (A) –

∑
i,i,...,im∈Nm–

 ,
δii ···im =

maxj∈{i,i,...,im} δ()
j |aii···im |

}

,
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for ∀i ∈ N, we have

h() ≥
∑

i,i,...,im∈Nm–\Nm–


|aii···im |
R()

i (A) –
∑

i,i,...,im∈Nm–
 ,

δii ···im =
maxj∈{i,i,...,im} δ()

j |aii···im | ,

which entails

h()R()
i (A) ≥

∑

i,i,...,im∈Nm–\Nm–


|aii···im | + h()
∑

i,i,...,im∈Nm–
 ,

δii ···im =

max
j∈{i,i,...,im}

δ
()
j |aii···im |

= R()
i (A).

Dividing by |aii···i| on both sides of the above inequality yields

h()δ
()
i = h() R()

i (A)
|aii···i| ≥ R()

i (A)
|aii···i| = δ

()
i . (.)

For i ∈ N, it follows from (.)-(.) that

 > δ
()
i ≥ h()δ

()
i ≥ δ

()
i ≥ .

Furthermore, by the expression of R()
i (A) and the above inequality, for i ∈ N, we have

∑
i,i,...,im∈Nm–\Nm–


|aii···im |

R()
i (A) –

∑
i,i,...,im∈Nm–

 ,
δii ···im =

maxj∈{i,i,...,im} δ()
j |aii···im |

=

R()
i (A) – h() ∑

i,i,...,im∈Nm–
 ,

δii ···im =
maxj∈{i,i,...,im} δ()

j |aii···im |

R()
i (A) –

∑
i,i,...,im∈Nm–

 ,
δii ···im =

maxj∈{i,i,...,im} δ()
j |aii···im | ≤ .

Combining the expression of h() and the above inequality results in

 ≤ h() ≤ . (.)

In the same manner as applied in the proof of (.), for i ∈ N, we obtain

h()δ
()
i ≥ δ

()
i . (.)

For i ∈ N, it follows from inequalities (.) and (.) that

δ
()
i ≥ h()δ

()
i ≥ δ

()
i ≥ .

By an analogical proof as above, we can derive that, for i ∈ N, l = , , . . . ,

 ≥ h(l) ≥ ;
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δ
()
i ≥ h()δ

()
i ≥ δ

()
i ≥ h()δ

()
i ≥ · · · ≥ δ

(l+)
i ≥ h(l+)δ

(l+)
i ≥ δ

(l+)
i ≥ · · · ≥ .

The proof is completed. �

Lemma . ([]) IfA is a strictly diagonally dominant tensor, then A is a strongH-tensor.

Lemma . ([]) Let A = (aii···im ) be an mth-order n-dimensional complex tensor. If A
is a strong H-tensor, then N �= ∅.

By Lemma ., if N = ∅ (A is a strictly diagonally dominant tensor), then A is a strong
H-tensor; by Lemma ., if A is a strong H-tensor, then N �= ∅. Hence, we always assume
that N �= ∅, N �= ∅. In addition, we also assume that A satisfies aii···i �= , ri(A) �= ,∀i ∈ N .

Lemma . ([]) Let A = (aii···im ) be an mth-order n-dimensional complex tensor. If A
is irreducible,

|aii···i| ≥ ri(A), ∀i ∈ N ,

and strictly inequality holds for at least one i, then A is a strong H-tensor.

Lemma . ([]) Let A = (aii···im ) be an mth-order n-dimensional tensor. If there exists
a positive diagonal matrix X such that AXm– is a strong H-tensor, then A is a strong H-
tensor.

Lemma . ([]) Let A = (aii···im ) be an mth-order n-dimensional complex tensor. If
(i) |aii···i| ≥ ri(A), ∀i ∈ N ,

(ii) N = {i ∈ N : |aii···i| > ri(A)} �= ∅,
(iii) for any i /∈ N, there exists a non-zero elements chain from i to j such that j ∈ N,

then A is a strong H-tensor.

Theorem . Let A = (aii···im ) be an mth-order n-dimensional complex tensor. If there
exists l ∈ Z such that

|aii···i| > h(l+)
∑

i,i,...,im∈Nm–


max
j∈{i,i,...,im}

δ
(l+)
j |aii···im |

+
∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im |, ∀i ∈ N, (.)

then A is a strong H-tensor.

Proof By the expression of h(l+), it follows that

h(l+) ≥
∑

i,i,...,im∈Nm–\Nm–


|aii···im |
R(l+)

i (A) –
∑

i,i,...,im∈Nm–
 ,

δii ···im =
maxj∈{i,i,...,im} δ(l+)

j |aii···im | , ∀i ∈ N,
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equivalently,

h(l+)R(l+)
i (A) ≥

∑

i,i,...,im∈Nm–\Nm–


|aii···im |

+ h(l+)
∑

i,i,...,im∈Nm–
 ,

δii ···im =

max
j∈{i,i,...,im}

δ
(l+)
j |aii···im |. (.)

From Lemma ., we have

 ≤ h(l+)δ
(l+)
i < , ∀i ∈ N.

Together with Inequality (.), there exists a ε > , sufficiently small such that for all i ∈ N,

 < h(l+)δ
(l+)
i + ε < , (.)

and for all i ∈ N,

|aii···i| – h(l+)
∑

i,i,...,im∈Nm–


max
j∈{i,i,...,im}

δ
(l+)
j |aii···im | –

∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im |

> ε
∑

i,i,...,im∈Nm–


|aii···im |. (.)

Let the matrix X = diag(x, x, . . . , xn), where

xi =

⎧
⎨

⎩

(h(l+)δ
(l+)
i + ε) 

m– , i ∈ N;

, i ∈ N.

We see by Inequality (.) that (h(l+)δ
(l+)
i + ε) 

m– <  (∀i ∈ N), as ε �= ∞, xi �= ∞, which
shows that X is a diagonal matrix with positive entries. Let B = AXm–. Next, we will prove
that B is strictly diagonally dominant.

For any i ∈ N, it follows from (.) that

ri(B) ≤
∑

i,i,...,im∈Nm–
 ,

δii ···im =

|aii···im |(h(l+)δ
(l+)
i + ε

) 
m– · · · (h(l+)δ

(l+)
im + ε

) 
m–

+
∑

i,i,...,im∈Nm–\Nm–


|aii···im |

≤
∑

i,i,...,im∈Nm–
 ,

δii ···im =

|aii···im |
(

h(l+) max
j∈{i,i,...,im}

δ
(l+)
j + ε

)

+
∑

i,i,...,im∈Nm–\Nm–


|aii···im |

≤ ε
∑

i,i,...,im∈Nm–
 ,

δii ···im =

|aii···im | + h(l+)R(l+)
i (A)
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< ε|aii···i| + h(l+)R(l+)
i (A)

= |aii···i|
(
ε + h(l+)δ

(l+)
i

)

= |bii···i|.

For any i ∈ N, it follows from (.) that

ri(B) ≤
∑

i,i,...,im∈Nm–


|aii···im |(h(l+)δ
(l+)
i + ε

) 
m– · · · (h(l+)δ

(l+)
im + ε

) 
m–

+
∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im |

≤
∑

i,i,...,im∈Nm–


|aii···im |
(

h(l+) max
j∈{i,i,...,im}

δ
(l+)
j + ε

)

+
∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im |

< |aii···i| = |bii···i|.

Therefore, from the above inequalities, we conclude that |bii···i| > ri(B) for all i ∈ N , B
is strictly diagonally dominant, and by Lemma ., B is a strong H-tensor. Further, by
Lemma ., A is a strong H-tensor. �

Remark . If N contains only one element, then Theorem . reduces to Lemma .,
and if l = , then Theorem . reduces to Lemma ..

Theorem . Let A = (aii···im ) be an mth-order n-dimensional complex tensor. If A is
irreducible and there exists l ∈ Z such that for all i ∈ N

|aii···i| ≥ h(l+)
∑

i,i,...,im∈Nm–


max
j∈{i,i,...,im}

δ
(l+)
j |aii···im | +

∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im |, (.)

in addition, the strict inequality holds for at least one i ∈ N, then A is a strong H-tensor.

Proof Notice that A is irreducible; this implies

∑

i,i,...,im∈Nm–\Nm–


|aii···im | > , i ∈ N.

Let the matrix X = diag(x, x, . . . , xn), where

xi =

⎧
⎨

⎩

(h(l+)δ
(l+)
i ) 

m– , i ∈ N;

, i ∈ N.

Adopting the same procedure as in the proof of Theorem ., we conclude that |bi···i| ≥
ri(B) for all i ∈ N . Moreover, the strict inequality holds for at least one i ∈ N, thus, there
exists at least an i ∈ N such that |bii···i| > ri(B).
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On the other hand, since A is irreducible, and so is B. Then by Lemma ., we see that
B is a strong H-tensor. By Lemma ., A is also a strong H-tensor. �

Remark . If l = , then Theorem . reduces to Theorem . of [].

Let

J =
{

i ∈ N : |aii···i| > h(l+)
∑

i,i,...,im∈Nm–


max
j∈{i,i,...,im}

δ
(l+)
j |aii···im |

+
∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im |
}

.

Theorem . Let A = (aii···im ) be an mth-order n-dimensional tensor. If for all i ∈ N

|aii···i| ≥ h(l+)
∑

i,i,...,im∈Nm–


max
j∈{i,i,...,im}

δ
(l+)
j |aii···im | +

∑

i,i,...,im∈Nm–\Nm–
 ,

δii ···im =

|aii···im |,

and if ∀i ∈ N\J �= ∅, there exists a non-zero elements chain from i to j such that j ∈ J �= ∅,
then A is a strong H-tensor.

Proof Let the matrix X = diag(x, x, . . . , xn), where

xi =

⎧
⎨

⎩

(h(l+)δ
(l+)
i ) 

m– , i ∈ N;

, i ∈ N.

Similar to the proof of Theorem ., we can obtain |bii···i| ≥ ri(B) for all i ∈ N , and there
exists at least an i ∈ N such that |bii···i| > ri(B).

On the other hand, if |bii···i| = ri(B), then i ∈ N\J ; by the assumption, we know that there
exists a non-zero elements chain of A from i to j, such that j ∈ J . Then there exists a non-
zero elements chain of B from i to j, such that j satisfies |bjj···j| > rj(B).

Based on the above analysis, we conclude that the tensor B satisfies the conditions of
Lemma ., so B is a strong H-tensor. By Lemma ., A is a strong H-tensor. The proof
is completed. �

Remark . If l = , then Theorem . reduces to Theorem . of [].

Remark . From Lemma ., we can also obtain smaller iterative coefficients h(l+)δ
(l+)
i

by increasing l. Therefore, Theorem . in this paper can be more effective to determine
whether a given tensor is a strong H-tensor or not by increasing the number of iterations.

Example . Consider a tensor A = (aijk) with -order and -dimension defined as fol-
lows:

A =
[
A(, :, :), A(, :, :), A(, :, :), A(, :, :)

]
,
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A(, :, :) =

⎛

⎜
⎜
⎜
⎝

. . . 
.   
 

 . .
 . . .

⎞

⎟
⎟
⎟
⎠

, A(, :, :) =

⎛

⎜
⎜
⎜
⎝

  . .
.   .
 . . .
 . . .

⎞

⎟
⎟
⎟
⎠

,

A(, :, :) =

⎛

⎜
⎜
⎜
⎝

   .
 . . .
   

. .  

⎞

⎟
⎟
⎟
⎠

, A(, :, :) =

⎛

⎜
⎜
⎜
⎝

. .  
.   .
.   
  . 

⎞

⎟
⎟
⎟
⎠

.

Obviously,

|a| = ., r(A) =



, |a| = , r(A) = ,

|a| = , r(A) = , |a| = , r(A) = ,

so N(A) = {, , }, N(A) = {}. First of all, it can be verified that Lemmas .-. cannot
determine whether the tensor A is a strong H-tensor or not. However, Theorem . in
this paper can verify that the tensor A is a strong H-tensor when l = .

In fact, by Lemma .,

|a|
(|a| – r


)

= –. <  = r|a|,

by Lemma ., r = max{s, maxi∈N ti} = max{ r(A)
a

, maxi∈N
aiii

ri(A) } = .,

|a|s = . < . = r
∑

i,i∈N\N
 ,

δi i =

|aii | +
∑

i,i∈N


max
j∈{i,i}

{tj}|aii |,

by Lemma .,

|a| = . < . =
∑

i,i∈N\N
 ,

δi i =

|aii | +
∑

i,i∈N


max
j∈{i,i}

rj(A)
|ajjj| |aii |,

and, by Lemma .,

(

R()
 (A) –

∑

i,i∈N
 ,

δii =

max
j∈{i,i}

R()
j (A)
|ajjj| |aii |

)(

|a| –
∑

i,i∈N\N
 ,

δi i =

|aii |
)

= . ×  = .

< . =
∑

i,i∈N\N


|aii |
∑

i,i∈N


max
j∈{i,i}

R()
j (A)
|ajjj| |aii |.

However, by calculation with Matlab .., r = . and the results of R(l+)
i (A), δ(l+)

i ,
h(l+) (i ∈ {, , }) of Theorem . in this paper are given in Table  for the total number of
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Table 1 The results of R(l+1)
i (A) and δ(l+1)

i and h(l+1) (i ∈ {2, 3, 4})

l R(l+1)
2 (A) R(l+1)

3 (A) R(l+1)
4 (A) δ(l+1)

2 δ(l+1)
3 δ(l+1)

4 h(l+1)

0 6.8333 5.000 6.6667 0.5694 0.6250 0.6667 0.9908
1 6.7706 4.9128 6.5046 0.5642 0.6141 0.6505 0.9937
2 6.7261 4.8782 6.4636 0.5605 0.6098 0.6464 0.9999
3 6.7255 4.8777 6.4628 0.5605 0.6097 0.6463 1.0000
4 6.7254 4.8776 6.4627 0.5604 0.6097 0.6463 1.0000

iterations l = . When l = , we can get

|a| = . > . = h()
∑

i,i∈N


max
j∈{i,i}

δ
()
j |aii | +

∑

i,i∈N\N
 ,

δi i =

|aii |,

we see that A satisfies the conditions of Theorem ., then A is a strong H-tensor. In fact,
there exists a positive diagonal matrix X = diag(, ., ., .) such that AX is
strictly diagonally dominant.

2.2 An application: the positive definiteness of an even-order real symmetric
tensor

In this subsection, by making use of the results in Section ., we present new criteria for
identifying the positive definiteness of an even-order real symmetric tensor.

From Lemma . and Theorems .-., we easily obtain the following result.

Theorem . Let A = (aii···im ) be an even-order real symmetric tensor with mth-order
n-dimension, and ai···i >  for all i ∈ N . If A satisfies one of the following conditions:

(i) all the conditions of Theorem .;
(ii) all the conditions of Theorem .;
(iii) all the conditions of Theorem .,

then A is positive definite.

Example . Let

f (x) = Ax = x
 + x

 + x
 + x

 – x
 x + x

 xx

– xx
x + xx

 + xx
 – xxxx

be a th-degree homogeneous polynomial. We can get an th-order -dimensional real
symmetric tensor A = (aiiii ), where

a = , a = , a = , a = ,

a = a = a = a = –,

a = a = a = a = ,

a = a = a = a = ,

a = a = a = a = a = a = ,

a = a = a = a = a = a = ,
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a = a = a = a = a = a = –,

a = a = a = a = a = a = –,

a = a = a = a = a = a = –,

a = a = a = a = a = a = –,

a = a = a = a = a = a = –,

a = a = a = a = a = a = –,

and other aiiii = . By calculation, we have

|a| =  <  = r(A)

and

|a|
(
a – r(A) + |a|

)
= – <  = r(A)|a|.

Hence, A is not a strictly diagonally dominant tensor defined in [], or a quasi-doubly
strictly diagonally dominant tensor defined in [], so we cannot use Theorem  in []
and Theorem  in [] to identify the positive definiteness of A. Further, it can be verified
that A satisfies all the conditions of Theorem .. Thus, from Theorem ., we can see that
A is positive definite, that is, f (x) is positive definite. In fact, there exists a positive diagonal
matrix X = diag(, ., ., .) such that AX is strictly diagonally dominant.
Therefore, A is a strong H-tensor.

3 Conclusions
In this paper, we give some criteria for identifying a strong H-tensor which only depend
on the elements of tensors, and by increasing the number of iterations, we can determine
whether a given tensor is a strong H-tensor or not more effective. We also present new
criteria for identifying the positive definiteness of an even-order real symmetric tensor
based on these criteria.
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