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Abstract
In the article, we prove that the double inequalities

√
πe–x√

2(x + a)
< K0(x) <

√
πe–x√

2(x + b)
, 1 +

1
2(x + a)

<
K1(x)
K0(x)

< 1 +
1

2(x + b)

hold for all x > 0 if and only if a≥ 1/4 and b = 0 if a,b ∈ [0,∞), where Kν (x) is the
modified Bessel function of the second kind. As applications, we provide bounds for
Kn+1(x)/Kn(x) with n ∈ N and present the necessary and sufficient condition such that
the function x �→ √

x + pexK0(x) is strictly increasing (decreasing) on (0,∞).
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1 Introduction
The modified Bessel function of the first kind Iν(x) is a particular solution of the second-
order differential equation

xy′′(x) + xy′(x) –
(
x + ν)y(x) = ,

and it can be expressed by the infinite series

Iν(x) =
∞∑

n=


n!�(ν + n + )

(
x


)n+ν

.

While the modified Bessel function of the second kind Kν(x) is defined by

Kν(x) =
π (I–ν(x) – Iν(x))

 sin(πν)
, (.)

where the right-hand side of the identity of (.) is the limiting value in case ν is an integer.
The following integral representation formula and asymptotic formulas for the modified

Bessel function of the second kind Kν(x) can be found in the literature [], .., ..,
.., ..:

Kν(x) =
∫ ∞


e–x cosh(t) cosh(νt) dt (x > ), (.)
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K(x) ∼ – log x (x → ), (.)

Kν(x) ∼ 

�(ν)

(
x


)–ν

(ν > , x → ), (.)

Kν(x) ∼
√

π

x
e–x

[
 +

ν – 
x

+
(ν – )(ν – )

!(x) + · · ·
]

(x → ∞). (.)

From (.) we clearly see that

K(x) =
∫ ∞


e–x cosh(t) dt =

∫ ∞



e–xt
√

t – 
dt, (.)

K ′
(x) = –

∫ ∞



te–xt
√

t – 
dt = –K(x). (.)

Recently, the bounds for the modified Bessel function of the second kind Kν(x) have
attracted the attention of many researchers. Luke [] proved that the double inequality


√

x
x + 

<
√


π

exK(x) <
x + 

(x + )
√

x
(.)

holds for all x > .
Gaunt [] proved that the double inequality


√

x + 


<
�(x + 

 )
�(x + )

<
√


π

exK(x) <
√
x

(.)

takes place for all x > , where �(x) =
∫ ∞

 tx–e–t dx is the classical gamma function.
In [], Segura proved that the double inequality

ν +
√

x + ν

x
<

Kν+(x)
Kν(x)

<
ν + 

 +
√

x + (ν + 
 )

x
(.)

holds for all x >  and ν ≥ .
Bordelon and Ross [] and Paris [] provided the inequality

Kν(x)
Kν(y)

> ey–x
(

x
y

)ν

(.)

for all ν > –/ and y > x > .
Laforgia [] established the inequality

Kν(x)
Kν(y)

> ey–x
(

x
y

)–ν

(.)

for all y > x >  if ν ∈ (, /), and inequality (.) is reversed if ν ∈ (/,∞).
Baricz [] presented the inequality

Kν(x)
Kν(y)

> ey–x
(

x
y

)–/

for all y > x >  and ν ∈ (–∞, –/) ∪ (/,∞).
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Motivated by inequality (.), in the article, we prove that the double inequality

√
πe–x

√
(x + a)

< K(x) <
√

πe–x
√

(x + b)

holds for all x >  if and only if a ≥ / and b =  if a, b ∈ [,∞). As applications, we provide
bounds for Kn+(x)/Kn(x) with n ∈ N and present the necessary and sufficient condition
such that the function x �→ √x + pexK(x) is strictly increasing (decreasing) on (,∞).

2 Lemmas
In order to prove our main results, we need two lemmas which we present in this section.

Lemma . (See []) Let –∞ ≤ a < b ≤ ∞, f , g : [a, b] → R be continuous on [a, b] and
differentiable on (a, b), and g ′(x) �=  on (a, b). If f ′(x)/g ′(x) is increasing (decreasing) on
(a, b), then so are the functions

f (x) – f (a)
g(x) – g(a)

,
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma . The function

x �→ f (x) =
K(x)

[K(x) – K(x)]
– x (.)

is strictly increasing from (,∞) onto (, /).

Proof Let ω(t) =
√

(t – )/(t + ). Then it follows from (.), (.) and (.) that

K(x) – K(x) =
∫ ∞


ω(t)e–xt dt,

x
[
K(x) – K(x)

]
= –

∫ ∞


ω(t)d

(
e–xt)

= ω(t)e–xt|t=
t=∞ +

∫ ∞


ω′(t)e–xt dt

=
∫ ∞



t – 
(t – )/ e–xt dt,

K(x) – x
[
K(x) – K(x)

]
=

∫ ∞



ω(t)
t + 

e–xt dt,

f (x) =
K(x) – x[K(x) – K(x)]

[K(x) – K(x)]
=

∫ ∞


ω(t)
t+ e–xt dt


∫ ∞

 ω(t)e–xt dt
,

f ′(x) =
–

∫ ∞


tω(t)
t+ e–xt dt

∫ ∞
 ω(t)e–xt dt +

∫ ∞


ω(t)
t+ e–xt dt

∫ ∞
 tω(t)e–xt dt

(
∫ ∞

 ω(t)e–xt dt)
(.)

=
∫ ∞

 (
∫ ∞


s–t
t+ω(t)ω(s)e–x(s+t) dt) ds

(
∫ ∞

 ω(t)e–xt dt)
=

∫ ∞
 (

∫ ∞


t–s
s+ω(s)ω(t)e–x(t+s) ds) dt

(
∫ ∞

 ω(t)e–xt dt)
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=
∫ ∞

 (
∫ ∞


s–t
t+ω(t)ω(s)e–x(s+t) dt) ds +

∫ ∞
 (

∫ ∞


t–s
s+ω(s)ω(t)e–x(t+s) ds) dt

(
∫ ∞

 ω(t)e–xt dt)

=

∫ ∞


∫ ∞


(s–t)

(t+)(s+)ω(t)ω(s)e–x(t+s) dt ds

(
∫ ∞

 ω(t)e–xt dt)
> 

for all x > .
Note that (.)-(.) and (.) lead to

lim
x→

xK(x) = , lim
x→

xK(x) = ,

lim
x→

f (x) = lim
x→

[
xK(x)

(xK(x) – xK(x))
– x

]
= , (.)

lim
x→∞ f (x) = lim

x→∞

[
K(x) – x(K(x) – K(x))

(K(x) – K(x))

]
= lim

x→∞


x + o( 

x )

x + o( 

x )
=




. (.)

Therefore, Lemma . follows easily from (.)-(.). �

3 Main results
Theorem . Let a, b ≥ . Then the double inequality

√
x + a

<
√


π

exK(x) <
√

x + b

holds for all x >  if and only if a ≥ / and b = .

Proof Let x > , f (x) be defined by Lemma ., and f(x), f(x) and F(x) be respectively
defined by

f(x) =
π


– xexK

 (x), f(x) = exK
 (x) (.)

and

F(x) =
π
 – xexK

 (x)
exK

 (x)
=

f(x)
f(x)

. (.)

Then from (.), (.) and (.) we clearly see that

lim
x→∞ f(x) = lim

x→∞ f(x) = , (.)

f ′
 (x)

f ′
(x)

=
–exK

 (x) + xexK(x)[K(x) – K(x)]
–exK(x)[K(x) – K(x)]

= f (x). (.)

It follows from (.)-(.), Lemmas . and . together with L’Hôpital’s rule that the
function F(x) is strictly increasing on (,∞) and

lim
x→∞ F(x) =




. (.)
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Note that (.) and (.) lead to

lim
x→

F(x) = lim
x→

[
π

exK
 (x)

– x
]

= . (.)

Therefore, Theorem . follows easily from (.), (.), (.) and the monotonicity of
F(x). �

Remark . From Lemma . we clearly see that the double inequality

p <
K(x)

[K(x) – K(x)]
– x < q

holds for all x >  if and only if p ≤  and q ≥ /.

From (.) and Remark . we get Corollary . immediately.

Corollary . Let p, q ≥ . Then the double inequalities

 +


(x + p)
<

K(x)
K(x)

<  +


(x + q)

and

[
log

(
ex√x + p

)]′ < –
[
log K(x)

]′ <
[
log

(
ex√x + q

)]′ (.)

hold for all x >  if and only if p ≥ / and q = .

Remark . Let p ≥ . Then from inequality (.) we know that the function x �→√x + pexK(x) is strictly increasing (decreasing) on (,∞) if and only if p =  (p ≥ /).
We clearly see that the bounds for K(x)/K(x) given in Corollary . are better than the
bounds given in (.) for ν = .

From (.), (.) and Remark . we get Corollary . immediately.

Corollary . The double inequality

√
π


= lim

x→∞
[√

x + pexK(x)
]

<
[√

x + pexK(x)
]

< lim
x→

[√
x + pexK(x)

]
= ∞ (.)

holds for all x >  if p ≥ /, and inequality (.) is reversed if p = .

Remark . also leads to Corollary ..

Corollary . Let p, q ≥ . Then the double inequality

√
y + p
x + p

ey–x <
K(x)
K(y)

<
√

y + q
x + q

ey–x

holds for all  < x < y if and only if p ≥ / and q = .
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Remark . We clearly see that the lower bound for K(x)/K(y) in Corollary . is better
than the bounds given in (.) and (.) for ν = .

Remark . From the inequality

�(x + 
 )

�(x + )
<


√

x + 


given in [], (.), and the fact that


√

x + 


>

√

x
x + 

for all x >  we clearly see that the lower bound given in Theorem . for
√

/πexK(x)
is better than that given in (.) and (.). But the upper bound given in Theorem . is
weaker than that given in (.).

Remark . From Theorem . and Corollary . we clearly see that there exist θ =
θ(x) ∈ (, /) and θ = θ(x) ∈ (, /) such that

K(x) =
√

π

(x + θ)
e–x, K(x) =

[
 +


(x + θ)

]√
π

(x + θ)
e–x

for all x > .

Theorem . Let x > , n ∈N, Rn(x) = Kn+(x)/Kn(x), u(x) =  + /(x), v(x) =  + /(x +
/), and un(x) and vn(x) be defined by

un(x) =


vn–(x)
+

n
x

, vn(x) =


un–(x)
+

n
x

(n ≥ ). (.)

Then the double inequality

vn(x) < Rn(x) =
Kn+(x)
Kn(x)

< un(x) (.)

holds for all x >  and n ∈N.

Proof We use mathematical induction to prove inequality (.). From Corollary . we
clearly see that inequality (.) holds for all x >  and n = .

Suppose that inequality (.) holds for n = k –  (k ≥ ), that is,

vk–(x) < Rk–(x) < uk–(x). (.)

Then it follows from (.) and (.) together with the formula

K ′
ν(x)

Kν(x)
= –

Kν–(x)
Kν(x)

–
ν

x
= –

Kν+(x)
Kν(x)

+
ν

x
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given in [] that

Rk(x) =


Rk–(x)
+

k
x

,

vk(x) =


uk–(x)
+

k
x

< Rk(x) <


vk–(x)
+

k
x

= uk(x). (.)

Inequality (.) implies that inequality (.) holds for n = k, and the proof of Theo-
rem . is completed. �

Remark . Let n = , , . Then Theorem . leads to

(x + )

x(x + )
<

K(x)
K(x)

<
x + x + 

x(x + )
,

x + x + x + 
x(x + x + )

<
K(x)
K(x)

<
x + x + x + 

x(x + ) ,

(x + x + x + x + )
x(x + x + x + )

<
K(x)
K(x)

<
x + x + x + x + 

x(x + x + x + )

for all x > .

Remark . It is not difficult to verify that

(x + )

x(x + )
>

 +
√

x + 
x

,
x + x + 

x(x + )
<


 +

√
x + 



x
,

x + x + x + 
x(x + x + )

>
 +

√
x + 
x

,
x + x + x + 

x(x + ) <

 +

√
x + 



x
,

(x + x + x + x + )
x(x + x + x + )

>
 +

√
x + 
x

,

x + x + x + x + 
x(x + x + x + )

<

 +

√
x + 



x

for x > . Therefore, the bounds given in Remark . are better than the bounds given in
(.) for ν = , , .
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