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Abstract
We study partial regularity of very weak solutions to some nonhomogeneous
A-harmonic systems. To obtain the reverse Hölder inequality of the gradient of a very
weak solution, we construct a suitable test function by Hodge decomposition. With
the aid of Gehring’s lemma, we prove that these very weak solutions are weak
solutions. Further, we show that these solutions are in fact optimal Hölder continuity
based on A-harmonic approximation technique.
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1 Introduction
We consider optimal partial regularity of very weak solutions to nonhomogeneous
A-harmonic systems of the following type:

– div A(x, u, Du) = f (x), (.)

where u : � → RN is a vector-valued function on a bounded domain � ⊂ Rn (n ≥ ), and
Du = {Dαui} ( ≤ α ≤ n,  ≤ i ≤ N ) stands for the gradient matrix of u, A(x, u, ξ ) : � ×
RN × RnN → RnN is a measurable function, and Aα

i (x, u, ξ ) ( ≤ α ≤ n,  ≤ i ≤ N ) are of
class C in ξ . To define the very weak solutions to systems (.) and obtain the optimal
partial regularity results, we need to impose certain structural and regularity conditions
on A and to restrict u and f to a particular class of functions as follows: for some p ≥ ,

(H) A is a bounded operator, that is, there exists a constant β >  such that

∣
∣A(x, u, ξ )

∣
∣ ≤ β

(

 + |ξ |)
p–

 for all (x, u, ξ ) ∈ � × RN × RnN ;

(H) A is differentiable with respect to ξ ∈ RnN , that is, there exists a constant α > 
such that

Dξ A(x, u, ξ )ζ · ζ ≥ α
(

 + |ξ |)
p–

 |ζ |

for all x ∈ �, u ∈ RN , and ξ , ζ ∈ RnN ;
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(H) there exist a constant γ ∈ (, ) and a nondecreasing function K : [,∞) → [,∞)
such that

∣
∣A(x, u, ξ ) – A(x̃, ũ, ξ )

∣
∣ ≤ K

(|u|)(|x – x̃|p + |u – ũ|p)
γ
p
(

 + |ξ |)
p


for all x, x̃ ∈ �, u, ũ ∈ RN and ξ ∈ RnN ; without loss of generality, we take K ≥ ;

(H) f is a given vector field in RN of class L
nq

n(p–)+q
loc (�), q > p.

Under these assumptions, we can now define very weak solutions to (.).

Definition  A mapping u ∈ W ,r
loc(�), p –  ≤ r < p, is called a very weak solution to (.)

if
ˆ

�

A(x, u, Du) · Dφ dx =
ˆ

�

f (x)φ dx (.)

for all φ ∈ W
, r

r–p+
 (�).

In order to improve the integrability of a very weak solution to (.), we need to prove
a suitable reverse Hölder inequality. In , Gehring [] discovered the crucial self-
improving property of the reverse Hölder inequality and applied it to establish higher
integrability of n-dimensional k-quasiconformal mapping. Subsequently, Meyers and El-
crat [] generalized this inequality based on Caccioppoli’s inequality. They improved the
integrability of weak solutions to nonlinear elliptic systems with the help of Gehring’s
lemma. Especially, they pointed out that regularity properties remained valid in a some-
what slightly larger Sobolev space to linear elliptic systems depending on the duality. In
fact, this regularity result about very weak solutions was first showed by Meyers [] in
. Unfortunately, neither the method used in [] for proving the reverse Hölder in-
equality nor the duality employed in [, ] can be applied to deal with very weak solutions
to nonlinear elliptic systems. To overcome these difficulties, Lewis [] used the technique
of harmonic analysis and successfully proved that very weak solutions to nonlinear ellip-
tic systems are indeed weak solutions. Later Iwaniec and Sbordone [] achieved a similar
result via the methods of Hodge decomposition and prior estimation.

Since then, studies on properties of very weak solutions to partial differential equa-
tions, especially for regularity of very weak solutions to A-harmonic systems, have at-
tracted considerable attention. Following the method of Iwaniec and Sbordone [], Gia-
chetti, Leonetti, and Schiachi [] obtained the partial regularity result of A-harmonic sys-
tems div A(x, u, Du) = . Tong, Gu, and Xu [] extended their result to nonhomogeneous
A-harmonic systems div A(x, Du) = f (x) and improved the integrability of very weak so-
lutions. Greco, Iwaniec, and Sbordone [] even applied this method to the p-harmonic
equation div |Du|p–Du = div f .

Motivated by these works, we mainly consider the optimal partial regularity to nonho-
mogeneous A-harmonic systems in the form of (.) under assumptions (H)-(H).

For the sake of desired results, we first need to improve the exponent of integrability for
the gradient of a very weak solution to an even slightly better one than the natural expo-
nent p. The crucial difficulty is to construct an appropriate test function below the natural
exponent. In this article, we follow the spirit of Iwaniec and Sbordone [] using the Hodge
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decomposition to construct it. Combining the Sobolev imbedding theorem, Young’s in-
equality, Poincaré’s inequality, and so on, we improve the exponents of integrability of very
weak solutions to (.). In other words, we successfully prove that very weak solutions to
(.) are in fact weak solutions. More precisely, we obtain the following result.

Theorem  Let u be a very weak solution to systems (.). Assume that the structure con-
ditions (H), (H), and (H) hold. Then there exist exponents p –  < r = r(n, N , p,α,β) <
p < r = r(n, N , p,α,β) < ∞ such that u ∈ W ,r

loc (�) belongs to W ,r
loc (�).

A direct consequence of this result follows immediately.

Corollary  Under the assumptions of Theorem , there exists r = r(n, N , p,α,β) < p such
that every very weak solution u ∈ W ,r

loc(�) with r < r < p belongs to W ,p
loc (�).

Further, we establish the optimal partial regularity result of very weak solutions to (.).
Generally speaking, we cannot expect that weak solutions to (.) will be C-solutions
even under reasonable assumptions on operator A and f . This is initially pointed out by
De Giorgi [, ] and Giusti and Miranda []. Thus, our aim is to obtain the optimal
Hölder continuity of very weak solutions to (.). Fortunately, we achieve it by means of
A-harmonic approximation technique and obtain the optimal Hölder continuity C,γ in
the regular set of the following:

Theorem  Let u ∈ W ,r
loc(�), r < r < p, be a very weak solution to (.). Consider r as

in Corollary . Suppose that assumptions (H)-(H) hold. Then there exists an open set
� ⊂ � such that u ∈ C,γ (�) for γ is defined in (H). We have

� – � = 	 ∪ 	,

where

	 =
{

x ∈ � : lim inf
R→+

 
BR(x)

∣
∣Du – (Du)x,R

∣
∣
p dx > 

}

and

	 =
{

x ∈ � : lim sup
R→+

(|ux,R| +
∣
∣(Du)x,R

∣
∣
)

= ∞
}

.

Moreover, we have |� – �| = .

To close this section, we briefly summarize the notation used in this paper. As noted be-
fore, we consider a bounded domain � ⊂ Rn(n ≥ ) and mappings from � to RN . We write
Br(x) = {x ∈ � : |x – x| < r}, x ∈ �. For a given set X, we denote by |X| its n-dimensional
Lebesgue measure. If |X| > , then the average of a given g ∈ L(X) over X is denoted byffl

X g dx, that is,
ffl

X g dx = 
|X|

´
X g dx. In particular, we write gx,r =

ffl
Br(x) g dx. Let αn denote

the volume of the unit ball in Rn, that is, αn = |B()|, then |Br(x)| = αnrn.
The rest of this paper is arranged as follows. In Section , we provide some necessary

preliminary lemmas. In Section , we prove the main results.
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2 Preliminary lemmas
Before proving the results, we state a few useful lemmas.

The first one is a stability result of the Hodge decomposition, from which we could con-
struct a suitable test-function concerning estimates below the natural exponent for (.).

Lemma  ([]) Let � ⊂ Rn be a regular domain, and w ∈ W ,r
 (�, RN ), r > , and let

– < ε < r – . Then there exist φ ∈ W , r
+ε

 (�, RN ) and a divergence-free matrix field
H ∈ L r

+ε (�, RnN ) such that

|Dw|εDw = Dφ + H . (.)

Moreover,

‖H‖ r
+ε

≤ Cr(�, N)|ε|‖Dw‖+ε
r . (.)

The most useful case for us in Lemma  is where ε is negative. For u ∈ W ,r
loc(�) with

p –  < r < p that is a very weak solution to (.), we can set ε = r – p (– < ε < ). Then
there exists φ ∈ W

, r
+r–p

 (�); thus, φ can be illustrated as a test-function in (.). In view
of (.) and (.), we also can get an estimate of Dφ, which is similar to (.).

Applying Lemma , we can decompose the left term of the Hodge decomposition into
two terms that could be controlled more easily in the proof of Theorem .

Lemma  ([]) For every X, Y ∈ Rn, X 
= , Y 
= , and  ≤ ε < , we have the inequality

∣
∣|X|–εX–

∣
∣Y

∣
∣
–εY

∣
∣ ≤ ε  + ε

 – ε
|X – Y |–ε .

In the end of this section, we shall introduce a form of Gehring’s lemma, which plays
an important role in the proof of Theorem . It implies in particular that from it higher
integrability of g(x) follows.

Lemma  ([, ]) Let  < R < R ≤ dist(x, ∂�), x ∈ �. Suppose that g(x) ∈ Lp(BR(x)),
f (x) ∈ Lt(BR(x)), t > p,  < p < ∞, satisfy the reverse Hölder inequality

 
BR/(x)

∣
∣g(x)

∣
∣
p dx ≤ θ

 
BR(x)

∣
∣g(x)

∣
∣
p dx + C∗

[ 
BR(x)

∣
∣g(x)

∣
∣
s dx

]p/s

+
 

BR(x)

∣
∣f (x)

∣
∣
p dx

for some  ≤ s < p,  ≤ θ < . Then g ∈ Lp′
loc(�) for some p′ = p′(θ , p, n, C∗) (t ≥ p′ > p), and

[ 
BR/(x)

∣
∣g(x)

∣
∣
p′

dx
]/p′

≤ C∗
[ 

BR(x)

∣
∣g(x)

∣
∣
p dx

]/p

+ C∗
[ 

BR(x)

∣
∣f (x)

∣
∣
p′

dx
]/p′

,

where C∗ = C∗(n, C∗, p, θ , R).

3 Proof of the main theorems
In this section, we give a proof of partial regularity results. Consider u solving (.) on
BR(x) � �, where we restrict  < R < R < min{, dist(x, ∂�)}.
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3.1 Proof of Theorem 1

Proof Fix a cut-off function η ∈ C∞
 (BR(x)) satisfying  ≤ η ≤ , |Dη| ≤ C/R, and η ≡ 

on BR/(x). Let u ∈ W ,r
loc(BR(x)) with p –  < r < p be a very weak solution to (.). Denote

u – ux,R – p(x – x) by v, where p ∈ RnN . We find that v has calculus mean-value  on
BR(x), that is, vx,R = . Notice that ηv ∈ W ,r

 (BR(x)) and – < r – p < . Then there exist

φ ∈ W
, r

+r–p
 (BR(x)) and h ∈ L

r
+r–p (BR(x)) such that |D(ηv)|r–pD(ηv) = Dφ + h according

to the Hodge decomposition. Thus, φ is admissible as a test-function in the definition of
very weak solutions. Set –ε = r – p (– < –ε < ) for convenience. Then r = p – ε, and we
have

∣
∣D(ηv)

∣
∣
–εD(ηv) = Dφ + h, (.)

where h satisfies

‖h‖ p–ε
–ε

≤ Cr(�, N)ε
∥
∥D(ηv)

∥
∥

–ε

p–ε
. (.)

Further, applying Poincaré’s inequality with constant CP and noting that vx,R = , we get

∥
∥D(ηv)

∥
∥

–ε

p–ε
≤ (‖vDη‖p–ε + ‖ηDv‖p–ε

)–ε

≤
(

C
R

‖v‖p–ε + ‖Dv‖p–ε

)–ε

≤ (

CC


p–ε

P ‖Dv‖p–ε + ‖Dv‖p–ε

)–ε

<
(

 + CC


p–ε

P
)‖Dv‖–ε

p–ε . (.)

In view of (.) and (.), we have

‖h‖ p–ε
–ε

≤ Cε‖Dv‖–ε
p–ε , (.)

where C = Cr(�, N)( + CC


p–ε

P ).
In particular, combining (.) and (.), we find

‖Dφ‖ p–ε
–ε

=
∥
∥
∣
∣D(ηv)

∣
∣
–εD(ηv) – h

∥
∥ p–ε

–ε

≤ ∥
∥
∣
∣D(ηv)

∣
∣
–εD(ηv)

∥
∥ p–ε

–ε
+ ‖h‖ p–ε

–ε

≤ ∥
∥D(ηv)

∥
∥

–ε

p–ε
+ Cr(�, N)ε

∥
∥D(ηv)

∥
∥

–ε

p–ε

≤ (

 + Cr(�, N)ε
)∥
∥D(ηv)

∥
∥

–ε

p–ε
.

Substituting (.) into this estimate, we have

‖Dφ‖ p–ε
–ε

≤ C‖Dv‖–ε
p–ε , (.)

where C = ( + Cr(�, N)ε)( + CC


p–ε

P ).
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Since it is hard to estimate |D(ηv)|–εD(ηv) directly, we set

E(η, v) =
∣
∣D(ηv)

∣
∣
–εD(ηv) – |ηDv|–εηDv,

which by Lemma  yields

∣
∣E(η, v)

∣
∣ ≤ ε  + ε

 – ε
|vDη|–ε .

Joining E(η, v) with (.), we arrive at

Dφ = E(η, v) + |ηDv|–εηDv – h.

Inserting Dφ into equality (.), we get

ˆ
BR(x)

A(x, u, Du) · |ηDv|–εηDv dx

=
ˆ

BR(x)
A(x, u, Du) · h dx –

ˆ
BR(x)

A(x, u, Du) · E(η, v) dx +
ˆ

BR(x)
f (x)φ dx. (.)

In order to use (H), we need to transform the left-hand side of (.) as follows:

ˆ
BR(x)

A(x, u, Du) · |ηDv|–εηDv dx

=
ˆ

BR(x)

(

A(x, u, Du) – A(x, u, p) + A(x, u, p)
) · |ηDv|–εηDv dx

=
ˆ

BR(x)

(

A(x, u, Du) – A(x, u, p)
) · |ηDv|–εηDv dx

+
ˆ

BR(x)
A(x, u, p) · |ηDv|–εηDv dx.

Combining this equality with (.), we find

ˆ
BR(x)

(

A(x, u, Du) – A(x, u, p)
) · |ηDv|–εηDv dx

= –
ˆ

BR(x)
A(x, u, p) · |ηDv|–εηDv dx +

ˆ
BR(x)

A(x, u, Du) · h dx

–
ˆ

BR(x)
A(x, u, Du) · E(η, v) dx +

ˆ
BR(x)

f (x)φ dx

≤ I + I + I + I, (.)

where

I =
∣
∣
∣
∣
–
ˆ

BR(x)
A(x, u, p) · |ηDv|–εηDv dx

∣
∣
∣
∣
;

I =
∣
∣
∣
∣

ˆ
BR(x)

A(x, u, Du) · h dx
∣
∣
∣
∣
;
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I =
∣
∣
∣
∣
–
ˆ

BR(x)
A(x, u, Du) · E(η, v) dx

∣
∣
∣
∣
;

I =
∣
∣
∣
∣

ˆ
BR(x)

f (x)φ dx
∣
∣
∣
∣
.

Consequently, we shall derive estimate for each term of (.) so as to establish a reverse
Hölder inequality for |Du – p|p–ε .

In the case of the term on the left-hand side of (.), we want to derive an estimate from
below in terms of

´
BR/(x) |Du – p|p–ε dx. For this purpose, we need the inequality

(

A(x, u, ζ ) – A(x, u, ξ )
) · (ζ – ξ ) ≥ α

(

 + |ζ | + |ξ |)
p–

 |ζ – ξ |,

which can be deduced from (H) immediately.
Then we infer that

ˆ
BR(x)

(

A(x, u, Du) – A(x, u, p)
) · |ηDv|–εηDv dx

=
ˆ

BR(x)
|ηDv|–εη

(

A(x, u, Du) – A(x, u, p)
) · (Du – p) dx

≥ α

ˆ
BR(x)

|ηDv|–εη
(

 + |Du| + |p|
) p–

 |Du – p| dx

≥ α

ˆ
BR/(x)

|Du – p|–ε

(

 +
|Du – p|



) p–


dx

≥ 
–p

 α

ˆ
BR/(x)

|Du – p|p–ε dx. (.)

Using (H) and Young’s inequality with exponents p–ε

–ε
and p–ε

p– , we find that, for ε > ,

I ≤
ˆ

BR(x)

∣
∣A(x, u, p)

∣
∣|Dv|–ε dx

≤ β
(

 + |p|
) p–



ˆ
BR(x)

|Du – p|–ε dx

≤ β
(

 + |p|
) p–



ˆ
BR(x)

(

ε|Du – p|p–ε + ε
– –ε

p–
 

p–ε
p–

)

dx

≤ β
(

 + |p|
) p–

 ε

ˆ
BR(x)

|Du – p|p–ε dx

+ β
(

 + |p|
) p–

 ε
– –ε

p–


ˆ
BR(x)

dx. (.)

By (H) we have

I ≤
ˆ

BR(x)

∣
∣A(x, u, Du)

∣
∣|h|dx

≤ β

ˆ
BR(x)

(

 + |Du|)
p–

 |h|dx
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≤ β

ˆ
BR(x)

(

 + |Du – p + p|
) p–

 |h|dx

≤ β

ˆ
BR(x)

(


(

 + |p|
)

+ |Du – p|
) p–

 |h|dx

≤ p–β

ˆ
BR(x)

|Du – p|p–|h|dx + p–β
(

 + |p|
) p–



ˆ
BR(x)

|h|dx.

Applying both Hölder’s inequality and Young’s inequality with exponents p–ε

p– and p–ε

–ε
, by

(.) we further have that, for ε > ,

I ≤ p–β

(ˆ
BR(x)

|Du – p|p–ε dx
) p–

p–ε
(ˆ

BR(x)
|h| p–ε

–ε dx
) –ε

p–ε

+ p–β
(

 + |p|
) p–



(ˆ
BR(x)

p–ε dx
) p–

p–ε
(ˆ

BR(x)
|h| p–ε

–ε dx
) –ε

p–ε

≤ p–βCε

(ˆ
BR(x)

|Du – p|p–ε dx
) p–

p–ε
(ˆ

BR(x)
|Du – p|p–ε dx

) –ε
p–ε

+ p–β
(

 + |p|
) p–

 Cε

(ˆ
BR(x)

|Du – p|p–ε dx
) –ε

p–ε
(ˆ

BR(x)
dx

) p–
p–ε

≤ p–βCε

ˆ
BR(x)

|Du – p|p–ε dx

+ p–β
(

 + |p|
) p–

 Cε

(

ε

ˆ
BR(x)

|Du – p|p–ε dx + ε
– –ε

p–


ˆ
BR(x)

dx
)

≤ p–βCε

ˆ
BR(x)

|Du – p|p–ε dx + p–β
(

 + |p|
) p–

 Cεε
– –ε

p–


ˆ
BR(x)

dx

+ p–β
(

 + |p|
) p–

 Cεε

ˆ
BR(x)

|Du – p|p–ε dx. (.)

Combining (H) and the estimate of E(η, v), we find that

I ≤
ˆ

BR(x)

∣
∣A(x, u, Du)

∣
∣
∣
∣E(η, v)

∣
∣dx

≤
ˆ

BR(x)
β
(

 + |Du|)
p–

 ε  + ε

 – ε
|vDη|–ε dx

≤ βε  + ε

 – ε

(
C
R

)–ε ˆ
BR(x)

(

 + |Du|)
p–

 |v|–ε dx.

≤ βε  + ε

 – ε

(
C
R

)–ε ˆ
BR(x)

(


(

 + |p|
)

+ |Du – p|
) p–

 |v|–ε dx

≤ βε  + ε

 – ε

(
C
R

)–ε

p–
ˆ

BR(x)

((

 + |p|
) p–

 + |Du – p|p–)|v|–ε dx.

Denoting βε +ε
–ε

( C
R )–εp– by C, we have

I ≤ C
(

 + |p|
) p–

 K + CK, (.)
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where K =
´

BR(x) |v|–ε dx and K =
´

BR(x) |Du – p|p–|v|–ε dx. Let us estimate K and K.
Using Young’s inequality with exponents p–ε

–ε
and p–ε

p– and Poincaré’s inequality with con-
stant CP , we find that, for ε > ,

K ≤
ˆ

BR(x)

(

ε|v|p–ε + ε
– –ε

p–
 

p–ε
p–

)

dx

≤ ε

ˆ
BR(x)

|v|p–ε dx + ε
– –ε

p–


ˆ
BR(x)

dx

≤ εCP

ˆ
BR(x)

|Du – p|p–ε dx + ε
– –ε

p–


ˆ
BR(x)

dx. (.)

Letting p′ = n(p–ε)
(n+–ε)(p–) and q′ = n(p–ε)

(n–p+)(–ε) , we see that  < p′ < ∞,  < q′ < ∞, and 
p′ + 

q′ = .
With the aid of Hölder’s inequality, we can estimate

K ≤
(ˆ

BR(x)
|Du – p|(p–)p′

dx
) 

p′ (ˆ
BR(x)

|v|(–ε)q′
dx

) 
q′

≤
(ˆ

BR(x)
|Du – p| n(p–ε)

n+–ε dx
) (n+–ε)(p–)

n(p–ε)
(ˆ

BR(x)
|v| n(p–ε)

n–p+ dx
) (n–p+)(–ε)

n(p–ε)
.

Now we set p′′ = n(p–ε)
n+–ε

. Then np′′
n–p′′ = n(p–ε)

n–p+ . Using the Sobolev-Poincaré inequality with
constant Cs, we get

K ≤ C–ε
s

(ˆ
BR(x)

|Du – p| n(p–ε)
n+–ε dx

) (n+–ε)(p–)
n(p–ε)

(ˆ
BR(x)

|Du – p| n(p–ε)
n+–ε dx

) (n+–ε)(–ε)
n(p–ε)

≤ C–ε
s

(ˆ
BR(x)

|Du – p| n(p–ε)
n+–ε dx

) n+–ε
n

. (.)

Combining (.) with (.) and (.), we obtain the estimate for I:

I ≤ C
(

 + |p|
) p–

 εCP

ˆ
BR(x)

|Du – p|p–ε dx

+ C
(

 + |p|
) p–

 ε
– –ε

p–


ˆ
BR(x)

dx

+ CC–ε
s

(ˆ
BR(x)

|Du – p| n(p–ε)
n+–ε dx

) n+–ε
n

. (.)

Finally, we estimate I. Using Hölder’s inequality with exponents n(p–ε)
n(p–)+p–ε

and n(p–ε)
n(–ε)–p+ε

,
we have

I ≤
ˆ

BR(x)

∣
∣f (x)

∣
∣|φ|dx

≤
(ˆ

BR(x)
|f | n(p–ε)

n(p–)+p–ε dx
) n(p–)+p–ε

n(p–ε)
(ˆ

BR(x)
|φ| n(p–ε)

n(–ε)–p+ε dx
) n(–ε)–p+ε

n(p–ε)
.
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Setting p′′′ = p–ε

–ε
, we have np′′′

n–p′′′ = n(p–ε)
n(–ε)–p+ε

. Notice that φ ∈ W , p–ε
–ε

 (BR(x)). Therefore, we
can apply the Sobolev-Poincaré inequality to get

I ≤ Cs

(ˆ
BR(x)

|f | n(p–ε)
n(p–)+p–ε dx

) n(p–)+p–ε
n(p–ε)

(ˆ
BR(x)

|Dφ| p–ε
–ε dx

) –ε
p–ε

.

Combining this with (.), with the aid of Young’s inequality, we obtain, for ε > ,

I ≤ CsC

(ˆ
BR(x)

|f | n(p–ε)
n(p–)+p–ε dx

) n(p–)+p–ε
n(p–ε)

(ˆ
BR(x)

|Du – p|p–ε dx
) –ε

p–ε

≤ CsC

(

ε

ˆ
BR(x)

|Du – p|p–ε dx + ε
– –ε

p–


(ˆ
BR(x)

|f | n(p–ε)
n(p–)+p–ε dx

) n(p–)+p–ε
n(p–)

)

. (.)

Substituting (.), (.), (.), (.), and (.) into (.), we finally have


–p

 α

ˆ
BR/(x)

|Du – p|p–ε dx

≤ β
(

 + |p|
) p–

 ε

ˆ
BR(x)

|Du – p|p–ε dx + p–βCε

ˆ
BR(x)

|Du – p|p–ε dx

+ p–β
(

 + |p|
) p–

 Cεε

ˆ
BR(x)

|Du – p|p–ε dx

+ C
(

 + |p|
) p–

 εCP

ˆ
BR(x)

|Du – p|p–ε dx + CsCε

ˆ
BR(x)

|Du – p|p–ε dx

+ CC–ε
s

(ˆ
BR(x)

|Du – p| n(p–ε)
n+–ε dx

) n+–ε
n

+ CsCε
– –ε

p–


(ˆ
BR(x)

|f | n(p–ε)
n(p–)+p–ε dx

) n(p–)+p–ε
n(p–)

+ β
(

 + |p|
) p–

 ε
– –ε

p–


ˆ
BR(x)

dx + p–β
(

 + |p|
) p–

 Cεε
– –ε

p–


ˆ
BR(x)

dx

+ C
(

 + |p|
) p–

 ε
– –ε

p–


ˆ
BR(x)

dx.

Rearranging this inequality, we have
ˆ

BR/(x)
|Du – p|p–ε dx

≤ θ

ˆ
BR(x)

|Du – p|p–ε dx +

α


p–

 CC–ε
s

(ˆ
BR(x)

|Du – p|τ dx
) p–ε

τ

+

α


p–

 CsCε
– –ε

p–


(ˆ
BR(x)

|f | n(p–ε)
n(p–)+p–ε dx

) n(p–)+p–ε
n(p–)

+ C

ˆ
BR(x)

dx,

where θ = 
α


p–

 (β( + |p|)
p–

 ε + p–βCε + p–β( + |p|)
p–

 Cεε + C( + |p|)
p–

 ×
εCP + CsCε), τ = n(p–ε)

n+–ε
, and C = 

α


p–
 (β( + |p|)

p–
 ε

– –ε
p–

 + p–β( + |p|)
p–

 Cε ×
ε

– –ε
p–

 + C( + |p|)
p–

 ε
– –ε

p–
 ).
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By (H) we get n(p–ε)
n(p–)+p–ε

< nq
n(p–)+q and

´
BR(x) |f |

n(p–ε)
n(p–)+p–ε dx < M.

Moreover, we have (
´

BR(x) |f |
n(p–ε)

n(p–)+p–ε dx)
n(p–)+p–ε

n(p–) ≤ M
p–ε

n(p–)
´

BR(x) |f |
n(p–ε)

n(p–)+p–ε dx.

Setting C = max{ 
α


p–

 CsCε
– –ε

p–
 M

p–ε
n(p–) , C}, we have

ˆ
BR/(x)

|Du – p|p–ε dx

≤ θ

ˆ
BR(x)

|Du – p|p–ε dx +

α


p–

 CC–ε
s

(ˆ
BR(x)

|Du – p|τ dx
) p–ε

τ

+ C

(ˆ
BR(x)

|f | n
n(p–)+p–ε

(p–ε) dx +
ˆ

BR(x)
dx

)

≤ θ

ˆ
BR(x)

|Du – p|p–ε dx +

α


p–

 CC–ε
s

(ˆ
BR(x)

|Du – p|τ dx
) p–ε

τ

+ C

ˆ
BR(x)

(|f | n
n(p–)+p–ε + 

)p–ε dx.

Dividing both sides by |BR(x)| = αnRn yields

 
BR/(x)

|Du – p|p–ε dx

≤ nθ –
ˆ

BR(x)
|Du – p|p–ε dx + C

( 
BR(x)

|Du – p|τ dx
) p–ε

τ

+ nC

 
BR(x)

(|f | n
n(p–)+p–ε + 

)p–ε dx, (.)

where C = n

α


p–
 CC–ε

s (αnRn)
p–τ–ε

τ .
Taking ε, ε, ε, ε, ε sufficiently small such that nθ <  and τ > , we obtain the reverse

Hölder inequality for |Du – p|p–ε . Accordingly, by Lemma  we can derive that u belongs

to W ,r′
loc (�) with r′ > r. Since f ∈ L

nq
n(p–)+q
loc (�), q > p, reasoning as before, we get a new

estimate analogous to (.) with exponents r′ and τ ′ in place of r, that is, p – ε and τ ,
respectively:

 
BR/(x)

|Du – p|r′ dx

≤ nθ ′
 

BR(x)
|Du – p|r′ dx + C′



( 
BR(x)

|Du – p|τ ′
dx

) r′
τ ′

+ nC′


 
BR(x)

(|f | n
n(p–)+r′ + 

)r′ dx.

Therefore, we get u ∈ W ,r′′
loc (�) with r′′ > r′. Repeating this process, we can improve the

degree of integrability of Du again and again. Thus, it is clear that u ∈ W ,t
loc(�) with any

t ∈ (r, r).
This completes the proof of Theorem . �
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3.2 Proof of Theorem 2

Proof The aim of Theorem  is to prove that very weak solutions to systems (.) are not
only weak solutions to (.) but also the optimal Hölder continuity. In fact, under the
assumptions of Theorem , we get that u ∈ W ,r

loc(�) with r < r < p are weak solutions
u ∈ W ,p

loc (�) to systems (.) by Corollary . Then we can safely infer u ∈ C,γ (�) based
on A-harmonic approximation technique. The proving method is standard, so we omit the
process of derivation in this paper. For more details, we refer the reader to Theorem . of
[] and the related literature. So the proof of Theorem  is complete. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally to writing of this paper. Both authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the anonymous referee for careful reading the manuscript and valuable comments. This
work was supported by the National Natural Science foundation of China under Grant No. 11571159.

Received: 26 November 2016 Accepted: 3 January 2017

References
1. Gehring, FW: The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265-277

(1973)
2. Meyers, N, Elcrat, A: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions.

Duke Math. J. 42(1), 121-136 (1975)
3. Meyers, N: An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm.

Super. Pisa, Cl. Sci. 17, 189-206 (1963)
4. Lewis, JL: On the very weak solutions of certain elliptic systems. Commun. Partial Differ. Equ. 18, 1515-1537 (1993)
5. Iwaniec, T, Sbordone, C: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143-161 (1994)
6. Giachetti, D, Leonetti, F, Schiachi, R: On the regularity of very weak minimal. Proc. R. Soc. Edinb. A 126, 287-296 (1996)
7. Tong, YX, Gu, JT, Xu, XJ: Regularity for very weak solutions to A-harmonic equation. Appl. Math. J. Chin. Univ. Ser. A

24(3), 319-323 (2009)
8. Greco, L, Iwaniec, T, Sbordone, C: Inverting the p-harmonic operator. Manuscr. Math. 92, 249-258 (1997)
9. De Giorgi, E: Frontiere orientate di misura minima. Seminaro Mat. Scuola Norm. Sup. Pisa. Editrice Tecnico Scientifica,

Pisa (1961)
10. De Giorgi, E: Un esempio di estremali discontinue per un problema variazionale di tipo ellitico. Boll. Unione Mat. Ital.

4, 135-137 (1968)
11. Giusti, E, Miranda, M: Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari. Arch. Ration.

Mech. Anal. 31, 173-184 (1968)
12. Iwaniec, T, Migliaccio, L, Nania, L, Sbordone, C: Integrability and removability results for quasiregular mappings in

high dimensions. Math. Scand. 75(2), 263-279 (1994)
13. Giaquinta, M: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press,

Princeton (1983)
14. Chen, SH, Tan, Z: Optimal interior partial regularity for nonlinear elliptic systems under the natural growth condition:

the method of A-harmonic approximation. Acta Math. Sci. 27B(3), 491-508 (2007)


	Optimal partial regularity of very weak solutions to nonhomogeneous A-harmonic systems
	Abstract
	Keywords

	Introduction
	Preliminary lemmas
	Proof of the main theorems
	Proof of Theorem 1
	Proof of Theorem 2

	Competing interests
	Authors' contributions
	Acknowledgements
	References


