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Abstract

We establish necessary and sufficient conditions for the one-dimensional differential
Hardy inequality to hold, including the overdetermined case. The solution is given in
terms different from those of the known results. Moreover, the least constant for this
inequality is estimated.
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1 Introduction
LetI:(a,b),—oo§a<b§oo,lfp,qfoo,%+§=1,andé+% =1.Letu>0andp>0
be weight functions such that u € L;"C and p~' = % € L;’,C, where L, = L,(I) stands for the

space of measurable functions f on [ with finite norm

b 1
([JIf@)WPdt)r, 1<p<oo,
esssup,¢; [f(8), p=oc.

fllp =

Let AC(/) be the set of all functions locally absolutely continuous on /. Let AOC(I ) be the
set of functions from AC(J) with compact supports on /.
We consider the following Hardy inequality in the differential form

f e AC(). (1)

luflly < C|lof’

P’

In [1] it is shown that if
c , b ,
/ pP(s)ds=00 and / pP(s)ds =00 (2)
a c
for some c € I, then inequality (1) does not hold. In the case
¢ / b /
/ pP(s)ds<oo and f p P (s)ds =00 (3)
a c
or

c b
/ o7 (s)ds=o00 and / 07 (s)ds < 0o, (4)
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then inequality (1) is satisfied for all functions f € AC(I) such that f(a) = 0 or f(b) = 0,
respectively. For example, in case (3), it is equivalent to the weighted integral Hardy in-
equality (see [1])

b a N\ b 5
( / dx) §C( / vof @) dt) , (5)

which has been studied for all values of the parameters 0 < p,q < oo (see [2, 3], and [4]).

=

u(x)/ f(s)ds

In [1] it is also shown that in the last case

o], <o ©

inequality (1) is satisfied for all functions f € AC(J) such that f(a) = 0 and f(b) = 0, that is,
it is an overdetermined case. This case is studied in [1, 2], and [4].

In the present work, for 1 < p < g < oo, we establish a criterion for the validity of in-
equality (1) with an estimate of the type

for the least constant C in (1), where B(u, p) is some functional depending on « and p.
Moreover, we present a calculation formula for the least value of C; and its two-sided
estimate.

We suppose that only condition (2) does not hold. In case (3) or (4), our criterion co-
incides with the well-known Muckenhoupt result. However, our upper estimate in (7) is
worse than the known one (see [2—4], and Remark 3.2 further). In case (6), our criterion
is given in terms different from those in [1, 2], and [4]. The terms in [4] are close to ours,
but the comparison analysis shows that our results and an estimate of type (7) are better
than in [4] (see Remark 3.3).

At the end of the paper, we find a criterion for the compactness of the set M = {uf : f €
ACW), llof 'l <1} in Ly(1).

2 Auxiliary statements

Lemma2.1 Letl<qg<ooandp())= Aj}—: - ﬁ, A > 1. There exists a point .y = A (q) such
that
1+4/5 2 ‘
2(2) = . L ul@ <min{g,2) forq#2, (8)
2 qg+1
and
A 1
M) = e — =0. 9
o0 = 9)

L 2 1 Py 1
In addition, 5= < 1 for 1< A <Xy and 57 > 575 for A > Ay.

Proof Since

1

v0) = G TDe oD

(AT =227 + 1),
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the sign of the function ¢ is defined by the value of the function d(1) = A7 — 219 + 1.
Moreover, (1) =0, A > 1, ifand only if d(X) =
For g = 2, we have d(1) = A3 — 242 + 1 = (A —1)(A2 — A — 1). This means that d(1) = 0 for
A= 1+4/5
.

Letg #2.Let A =1+¢, ¢ > 0. Using the Lagrange finite-increment formula, we have
(1+e) 1 1+¢) 1

1
(k)= 1+re)i-1 e = qe + )it e %(8_&1_1))‘

This gives that ¢(1) = (1 + &) > 0 for ¢ > g — 1, that is, ¢(A) > 0 for 1 > gq.
Let us find an extremum of the function d for A > 1. We have that d'(A) = (g + I)Aq -
_ . . . / 2 /
2g2171 = A97Y((q + 1)A — 2g). This gives that d’(A) = 0 for A = q—fl, d'(\) >0 for A > = 1,
and d'(1) < 0 for l <A< Zq . Therefore, the function d(1) decreases for 1 < A < qu and

increases for A > 20 Moreover, it has a minimum at q . Since d(2) =1>0, d(\) > 0 for
A > 2. Hence, (A)>Ofork>2
Thus,
¢(A) >0 for A > min{g,2}. (10)

Since d(1) = 0 and d has a minimum at % it follows that d(%) <0fori>1landd(r)<0
for 1< A < 24 Therefore, (p(ﬁ) <0,and
q+1 gq+1

2
o) <0 forl<r<—L (11)
q+1

In view of the continuity of ¢ for A > 1, from (10) and (11) there follows the existence of
a point that satisfies (8) and (9).
The last statement of Lemma 2.1 follows from the intersection of graphs of two decreas-

ing and concave upward functlons — and 7 at the point A = A;. The proof of Lemma 2.1
is complete. d

1
Lemma 2.2 Letl<g<ooandf()= mq 1 L, 0>1. Then

35 +7\2 22
f((2) = NG o Inff()=f() = — 12)
-1 (= 1)7
and, for q # 2, we have the estimate
Yo <f()‘l) < min{ylr V274}! (13)
2gq 1 2q l/ 1 / l/
whereyo—q+1(q+l) (2% )‘f 1= 5957 and yy =qq7(q)7 .

Proof By Lemma 2.1 for g = 2 we have A,(2) = 1*‘[, so that f(11(2)) = (3‘[*7)2.
Let g # 2. The function f is continuous when A > 1, and hm,\_ﬂ+ f(k = 00 and

xq 1)q

lim; _, o f(A) = c0. Therefore, it has a minimum. Since f'(A) = (M 1= 1) by
Lemma 2.1 we have that /(A1) =0, f'(A) <0 for 1 < A < Aq, andf’()\) > 0 for A > Ay, that
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is, the function f decreases for 1 < A < A;, increases for A > ;, and has a minimum at
q
A = A1. Thus, infy,1 f(A) = f(A1). Again by Lemma 2.1 we have that 2o 1 Substituting

PR
this equality into the expression of f(1;), we get (12).
The function g(x) = 2 +— has a minimum at the point A = %. Therefore,
-1

B 29 \  2q 2q 2q i
f<x1)—g<x1>>g(q+1)—q+1<q+1> (q_1> : (14)

By Lemma 2.1 we have that % < A1 < min{qg, 2}. Hence,

Q=

. 2
s <minfr (22,10 s)
q+1
It is easy to see that f(2) < 4. Since A1 < g, we have qZ—il > ﬁ or q(q — 1)% > (g7 - l)é.
Therefore,
N Lond
flg) = < =997 (q)7 . (16)
7 (g-D7

Let us estimatef(%):

1 1

2 2 -1\1 a2 ~1/ 2 "7
f 9 \_ 4 1+q 1|t < q qq q
g+1 q-1 qg+1 g-1["g+1\g+1

1 1 1
_ 2q q% q-1\1( 2q \« _ 2q q% 2qg \4 . 17)
q-1 qg+1 q+1 qg+1 q-1
From (14), (15), (16), and (17), taking into account that f(2) < 4, we have (13). The proof of
Lemma 2.2 is complete. O

3 Main results
Leta<c<b,d=d(a,c b)=min{c—a,b - c}. Assume that

” u ” q,(c—h,c+h)

A, qlc) = sup ” ” T 1<p<oo,
0<hed (| o2 e + 107 con)?
ll2tll g (c.c+h)
Apg(c) = sup LR , pP=00,

O<h<d ||:0_1||1_}a,c_h) + Hp_llll_,%uh,b)

and
A, g =supA,(c).
cel

Theorem 3.1 Let1 < p < q < 0o. Inequality (1) holds if and only if A4 < 00. Moreover, for
the least constant C in (1), we have the estimate

Apg = C=f(M)Apg (18)
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In turn, for f(71), by Lemma 2.2 we have f(11(2)) = (%—5_*17)% and the estimate yo < f(r1) <
min{yi, y»,4} for q # 2.

Proof Necessity. Let inequality (1) hold with the least constant C > 0.
Supposethatl <p<oo.Letce,0<h<d,anda<a <c—h<c+h< f <b. Weintroduce
the following function:

[0 () ds([T" pP (s)ds), a<t<c—h,

L c-h<t<c+h,
4 t) = =t =
Jort® f ”(s)dS(f+hpP(s Yds)™\, c+h<t<§B,
0, tel\ (o p).

It is obvious that f;, € AOC(I). Substituting f; into (1), we get

=

-1)-P
”u”q (c=h,c+h) (”’O Sa,c—h) ”'0 ||p’,(c+h,ﬁ)) :
From the last inequality, taking into account that its left-hand side does not depend on «,
B such that a < « < B8 < b, we have

>

1
)2 (c+h b)) b (19)

letllgue-teemy < C(|07H ey + 107

forallcelandO<h<d.
In the case p = 1, we construct f in the following way. Let numbers ¢ and / be defined as
before,§ >0,anda<x—-5<x+8 <c—h<c+h<y-§<y+38<b. Assume that

fxt_a p7N(s) ds(fx_;(S o7 Ns)ds)™, x-8<t<wx+§,

fonlt) = 1, x+6<t<y-96,
PETN 2 o ds(2 pis)ds) T, y-b<t<y+s,
0, tel\(x-36,y+9).

Substituting f. ; into (1), we get

1 X+6 1 -1 1 y+5 L -1
(3 r0) (5 0)

Taking the limit in this inequality as § — 0, we get

"u”q,(x,;v) = C(,o(x) + p(y))

for almost all x: (a <x < c¢—h) and almost all y: (c + 1 <y < b).
For o > 1, there exist points x: (@ <x <c—h) and y: (¢ + h <y < b) such that

-1 -1
llo ||;o,(a,c—h)§p,1(x) and llo ||oo,(c+h,b)§p,10/).

Then

letlgen < L™ | oue)” + (107 s geansr) "1
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This, together with |||,y = ll#llg,(c—h,c+h)» Yields that

-1

00,(a,c—h) + H'OA ”_1

”M”q,(c—h,c+h) = OIC[H,O71 || (c+h b)]

Since the left-hand side of this inequality does not depend on « > 1, letting @ — 1, we get
(19) for p =1. Thus, for all 1 < p < g < 0o, we have that

Ay, <C. (20)

Sufficiency. Let A, , < 0o be correct. Let f be a nontrivial function from AOC(I ). Without
loss of generality, we assume that f > 0. Let A > 1. For any integer k, we assume that T} =
{tel:f(t)> MY, ATy = Ti\ Trs1. Due to the boundedness of the function f, there exists an
integer n = n(f) such that 7,, # @ and T, = @. It is obvious that I = ., Tx = U<, ATx-
The set Ty is open. Therefore, there exists a family of mutually disjoint intervals {]jk | ]jk =
(Cf,d]k), such that Tj = Uj]].k. For n — 1 > k > —00, we assume that M]k =Tra ﬂ]jk. For
Mlk # ), we define allf = infM;‘ and ,Bf = supM]’f. Then

Tea CJ(@f ) and AT [ J[(¢.of) U (8].4))]- (21)
J

j

In view of the continuity of the function f, we get thatf((xf) =f(ﬁ][‘) = )kl andf(cllf) =
f(d]]-() = A%, Hence,

ok dk
AL = 1) = kL k= / k’ f(s)ds = — k’ £/(s)ds. (22)

J

From (22) by Holder’s inequality we have that

. ||pf/||i (k)
P o AV A
A ||'0 p (c a ) = ()\.—l)p ) (23)
lof'1I?
e f pABf ) ”
”,0 /(ﬂk dk) W (24)

In view of f(¢) < Ak*! for t € ATy and A% = (1-179) )", A7, we have that

q_ q(k+2)
laf 18 =" uf 1L ar, _ZA [

k<n-1

< M- Z”””qwuzﬂ’ A Z”’Z”“”mm

i<k k>i

=M1 =1) D T ull? g,

i

(by (21))

<)ﬂ ZAWZ/ uq(s)ds—kq Z)\WZHMH{]
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Since A,,4 < 00, from (23) and (24), taking into account that g > 1, this gives

laaf 19 < 29 (2 qZZ (e

s

q
P );,
Bl

CIDt

A9 1) g
=017 (1) M(ZZ (lof’ ||p + | of’ ||p @) ))

(by the second relation from (21))

)Lq()hq—l) A1(A\1 —1)
- (- l)q pq(ZH f”PAT) SW qu f”q

T

Therefore,

—

q

llufllq < Apgllof],- (25)

2 —
(?» 1)
Since the left-hand side of this inequality does not depend on A > 1, by Lemma 2.2 we

have

luflly <fO)Apgllof' |,

that is, inequality (1) holds with the estimate C < f(A,)A,, for the least constant C in (1).
This fact, together with (20), gives (18). The proof of Theorem 3.1 is complete. O

Remark 3.1 Let us notice that in [5], for inequality (1), an estimate of the type (18) has
been obtained in the case 1 < g = p < c0.

Remark 3.2 If (3) or (4) is correct, then by Theorem 3.1 there follows the correctness of
the corresponding integral Hardy inequality (see [1]). For example, if (3) holds, then

b 1 z 1
Apg = sup(/ u(x) dx) ! (/ Vv (s) ds) ! ,
zel z a

where the condition A, , < oo coincides with the Muckenhoupt condition (see [3]), and
inequality (1) is equivalent to the integral Hardy inequality (5). However, our upper esti-
mate in (7) is worse than that in the known result (see e.g. [3], Thm. 5). For example, in
case (3) with p = g = 2, from (12) we have A,, < C < (%)%Al,q ~ 3.33A,,4, but from
Theorem 5 of [3] it follows that A, , < C < 24,,,.

Theorem 3.2 Let1=p = q. Inequality (1) holds if and only if A, , < 00. Moreover, A, ;, = C,
where C is the least constant in (1).

Proof From (25) we have that |ufll; < AA,4llof'll,. Taking A — 1, we get |lufll; <
A, qllpf’ ||, that is, inequality (1) holds with the estimate A,, < C, which, together with
(20), gives A, , = C. d
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Theorem 3.3 Let 1 < p < q = 00. Inequality (1) holds if and only if A, , < 0o. Moreover,
Ayq < C<4A,,, where C is the least constant in (1).

Proof Let1 < p < q = 0. The necessity follows from Theorem 3.1. Let us prove the suffi-
ciency. Let A, < 00. For 0 < f € AC(I), we have

2 k
luf Iy = sup luf llgary,, <A2sup AX|lullyar,,,
k k
AZsup MM lullg 7, < A% sup AN [lull, (x
X @Thr1 = Py q(af ,B5)

—19

ST

<AA,, slliip()»pk (. ”Z(Cf,a + 27 p P85, dk))

2
= Apq sup||pf ||p ATy

=31 =5C 1’”

that is,

llf llg < inf - (26)

m”pf ” =44,

which, as before, means that
C<4A,,

Letp=g=o00.
Sufficiency. From (22) we have

)"k||p71||1c al —)\' 1||pf || f k)’
o™ Ngrat < 77 L |of sty
Using these relations instead of (23) and (24), we have

llufll, < A2 SUP)»k llol g oty < AAp, S;(lip()»k o7 ||I,tf,a + k] p! ||1 o dk)

)\2
= L siplof = g Apalof

This gives that

lufllg < 4454 of |,
and

C<4A4,,.

Necessity. Substituting the function f; into (1), we have

Netllge-nerny < CUO™ weon * 107 Vi)
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which means that
Apq =C.
Therefore,

Apg < C=<44,,

The proof of Theorem 3.3 is complete. O

Remark 3.3 The obtained results can be compared with the results of Theorem 8.2 of [4],
where it is proved that, for 1 < p < g < 00, the validity of (1) is equivalent to the condition

By = (CS;EI[”””qxcld)’min{ |07 P(db) p”! Hp/,(a,c)}] < 00

Moreover, for the least constant C in (1), we have the estimates

1
277B<C< inf B, 1<g<oo, (27)
1<A<2
and
_1
2 PB<C<4B, g=o0. (28)

It is easy to see that A,, < B, . Moreover, the estimates for the least constant C in (1)
obtained in Theorems 3.1 and 3.3 are obviously better than in (27) and (28), respectively.

4 Compactness
Let I = (—00, +00) and M = {uf : f € AC(I), || of'|l, < 1}.

Let
1
. (fzz+2h uq(t) dt)g
Ap’ q(z) =sup - ” T
k>0 (||,0_1||p/,(,oo,z) + ||P"1||p/,(z+2h,oo))"
1
_ ([, ui(e)d)a
Am(z) =sup

ST

720 (1077 ooz + 107 o)

Theorem 4.1 Let 1 < p < q < 0o. The set M is relatively compact in L,(I) if and only if
Apg <00 and

lim A,,(x)=0. (29)

|x|— 00

Proof Necessity. Let M be relatively compact in L,(I). Then by Theorem 3.1 we have that

Apg <00. Letfepq,p =fon be the function introduced in the necessary part of Theorem 3.1.
We assume that

Sonap Sfenhaps  Sonap =fehhaps
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=

gzhaﬂ(t) fzhotﬂ(t)(”p 1“ az)+||p z+2hﬁ))_ ’

ST

onap(t) fzhaﬁ(t)(”le (az—2h) T +[o™ zﬁ))_'

Since gzhaﬂ € AC(I) and ||p(gzhaﬁ) ll, <1, we have gzhuﬂ € M, and by the Frechet-
Kolmogorov theorem [6], p.10 we get

1 1
q q
0= lim sup(/ |uf|th) > hrn sup (/ |ugz+huﬁ‘th>
N=oorep \J >N “Pzha,p

(j-z+2h uq(t) dt)a

> lim supsup = lim supA, (2).
N=R2N w0 (lpLf o + 107 aape)?
Therefore,
lim A,,(2)=0 (30)

Similarly, working with the function g7, 5> we get lim,, oA, p (z) = 0, which, together
with (30), gives (29).

Sufficiency. Let 4,4 < 00 and (29) hold. Then, on the basis of Theorem 3.1, the set M is
bounded in L,(I). Therefore, by the Frechet-Kolmogorov theorem it suffices to show that

a
lim sup(/ |uf|th) =0. (31)
N=0rep \J|g|>N
Let
t), t<N, ~ 0, L <N,
= 18 < and 7i(t) =
0, t>N, u(t), t>N.

Hence, by Theorem 3.1 we have

(/oo Iﬁflth> ! <f(h)supA,,(x) forfeM,
— x<N

(o¢]

(/00 |ﬁf|th> ’ <f(r)supA,,(x) forf e M.
_ x>N

(o¢]

Then
1

sup(/ |Mf|th) ' <f(\1) sup Ap4(x).
>N

feM lx|>N

This, together with (29), gives (31). The proof of Theorem 4.1 is complete. a
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