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1 Introduction
Let I = (a, b), –∞ ≤ a < b ≤ ∞,  ≤ p, q ≤ ∞, 

p + 
p′ = , and 

q + 
q′ = . Let u ≥  and ρ > 

be weight functions such that u ∈ Lloc
q and ρ– ≡ 

ρ
∈ Lloc

p′ , where Lp ≡ Lp(I) stands for the
space of measurable functions f on I with finite norm

‖f ‖p =

{
(
∫ b

a |f (t)|p dt)

p ,  ≤ p < ∞,

ess supt∈I |f (t)|, p = ∞.

Let AC(I) be the set of all functions locally absolutely continuous on I . Let
◦

AC(I) be the
set of functions from AC(I) with compact supports on I .

We consider the following Hardy inequality in the differential form

‖uf ‖q ≤ C
∥∥ρf ′∥∥

p, f ∈ ◦
AC(I). ()

In [] it is shown that if

∫ c

a
ρ–p′ (s) ds = ∞ and

∫ b

c
ρ–p′ (s) ds = ∞ ()

for some c ∈ I , then inequality () does not hold. In the case

∫ c

a
ρ–p′

(s) ds < ∞ and
∫ b

c
ρ–p′

(s) ds = ∞ ()

or
∫ c

a
ρ–p′ (s) ds = ∞ and

∫ b

c
ρ–p′ (s) ds < ∞, ()
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then inequality () is satisfied for all functions f ∈ AC(I) such that f (a) =  or f (b) = ,
respectively. For example, in case (), it is equivalent to the weighted integral Hardy in-
equality (see [])

(∫ b

a

∣∣∣∣u(x)
∫ x

a
f (s) ds

∣∣∣∣
q

dx
) 

q
≤ C

(∫ b

a

∣∣v(t)f (t)
∣∣p dt

) 
p′

, ()

which has been studied for all values of the parameters  < p, q ≤ ∞ (see [, ], and []).
In [] it is also shown that in the last case

∥∥ρ–∥∥
p′ < ∞, ()

inequality () is satisfied for all functions f ∈ AC(I) such that f (a) =  and f (b) = , that is,
it is an overdetermined case. This case is studied in [, ], and [].

In the present work, for  ≤ p ≤ q ≤ ∞, we establish a criterion for the validity of in-
equality () with an estimate of the type

B(u,ρ) ≤ C ≤ CB(u,ρ) ()

for the least constant C in (), where B(u,ρ) is some functional depending on u and ρ .
Moreover, we present a calculation formula for the least value of C and its two-sided
estimate.

We suppose that only condition () does not hold. In case () or (), our criterion co-
incides with the well-known Muckenhoupt result. However, our upper estimate in () is
worse than the known one (see [–], and Remark . further). In case (), our criterion
is given in terms different from those in [, ], and []. The terms in [] are close to ours,
but the comparison analysis shows that our results and an estimate of type () are better
than in [] (see Remark .).

At the end of the paper, we find a criterion for the compactness of the set M = {uf : f ∈
◦

AC(I),‖ρf ′‖p ≤ } in Lq(I).

2 Auxiliary statements
Lemma . Let  < q < ∞ and ϕ(λ) = λq

λq– – 
λ– , λ > . There exists a point λ ≡ λ(q) such

that

λ() =
 +

√



,

q
q + 

< λ(q) < min{q, } for q �= , ()

and

ϕ(λ) =
λ

q


λ
q
 – 

–


λ – 
= . ()

In addition, λq

λq– < 
λ– for  < λ < λ and λq

λq– > 
λ– for λ > λ.

Proof Since

ϕ(λ) =


(λq – )(λ – )
(
λq+ – λq + 

)
,
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the sign of the function ϕ is defined by the value of the function d(λ) = λq+ – λq + .
Moreover, ϕ(λ) = , λ > , if and only if d(λ) = .

For q = , we have d(λ) = λ – λ +  = (λ – )(λ – λ – ). This means that d(λ) =  for
λ = +

√


 .
Let q �= . Let λ =  + ε, ε > . Using the Lagrange finite-increment formula, we have

ϕ(λ) =
( + ε)q

( + ε)q – 
–


ε

≥ ( + ε)q

qε( + ε)q– –

ε

=


qε

(
ε – (q – )

)
.

This gives that ϕ(λ) = ϕ( + ε) ≥  for ε ≥ q – , that is, ϕ(λ) >  for λ > q.
Let us find an extremum of the function d for λ > . We have that d′(λ) = (q + )λq –

qλq– = λq–((q + )λ – q). This gives that d′(λ) =  for λ = q
q+ , d′(λ) >  for λ > q

q+ ,
and d′(λ) <  for  < λ < q

q+ . Therefore, the function d(λ) decreases for  < λ ≤ q
q+ and

increases for λ > q
q+ . Moreover, it has a minimum at q

q+ . Since d() =  > , d(λ) >  for
λ ≥ . Hence, ϕ(λ) >  for λ > .

Thus,

ϕ(λ) >  for λ > min{q, }. ()

Since d() =  and d has a minimum at q
q+ , it follows that d( q

q+ ) <  for λ >  and d(λ) < 
for  < λ ≤ q

q+ . Therefore, ϕ( q
q+ ) < , and

ϕ(λ) <  for  < λ ≤ q
q + 

. ()

In view of the continuity of ϕ for λ > , from () and () there follows the existence of
a point that satisfies () and ().

The last statement of Lemma . follows from the intersection of graphs of two decreas-
ing and concave upward functions λq

λq– and 
λ– at the point λ = λ. The proof of Lemma .

is complete. �

Lemma . Let  < q < ∞ and f (λ) = λ(λq–)

q

λ– , λ > . Then

f
(
λ()

)
=

(

√

 + √
 – 

) 


, inf
λ>

f (λ) = f (λ) =
λ



(λ – )

q′

, ()

and, for q �= , we have the estimate

γ < f (λ) < min{γ,γ, }, ()

where γ = q
q+ ( q

q+ )

q ( q

q– )

q′ , γ = q

q+ q

q ( q

q– )

q′ , and γ = qq


q (q′)


q′ .

Proof By Lemma . for q =  we have λ() = +
√


 , so that f (λ()) = ( 

√
+√
–

) 
 .

Let q �= . The function f is continuous when λ > , and limλ→+ f (λ) = ∞ and

limλ→∞ f (λ) = ∞. Therefore, it has a minimum. Since f ′(λ) = (λq–)

q

λ– ( λq

λq– – 
λ– ), by

Lemma . we have that f ′(λ) = , f ′(λ) <  for  < λ < λ, and f ′(λ) >  for λ > λ, that
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is, the function f decreases for  < λ < λ, increases for λ > λ, and has a minimum at
λ = λ. Thus, infλ> f (λ) = f (λ). Again by Lemma . we have that λ

q


λ
q
 –

= 
λ– . Substituting

this equality into the expression of f (λ), we get ().
The function g(x) = λ

(λ–)

q′

has a minimum at the point λ = q
q+ . Therefore,

f (λ) = g(λ) > g
(

q
q + 

)
=

q
q + 

(
q

q + 

) 
q
(

q
q – 

) 
q′

. ()

By Lemma . we have that q
q+ < λ < min{q, }. Hence,

f (λ) < min

{
f
(

q
q + 

)
, f (q), f ()

}
. ()

It is easy to see that f () < . Since λ < q, we have qq

qq– > 
q– or q(q – )


q > (qq – )


q .

Therefore,

f (q) =
q(qq – )


q

q – 
<

q

(q – )

q′

= qq

q
(
q′) 

q′ . ()

Let us estimate f ( q
q+ ):

f
(

q
q + 

)
=

q
q – 

[(
 +

q – 
q + 

)q

– 
] 

q
≤ q

q – 

[
q

q – 
q + 

(
q

q + 

)q–] 
q

=
q

q – 
q


q

(
q – 
q + 

) 
q
(

q
q + 

) 
q′

=
q

q + 
q


q

(
q

q – 

) 
q′

. ()

From (), (), (), and (), taking into account that f () < , we have (). The proof of
Lemma . is complete. �

3 Main results
Let a < c < b, d = d(a, c, b) = min{c – a, b – c}. Assume that

Ap,q(c) = sup
<h<d

‖u‖q,(c–h,c+h)

(‖ρ–‖–p
p′ ,(a,c–h) + ‖ρ–‖–p

p′ ,(c+h,b))

p

,  ≤ p < ∞,

Ap,q(c) = sup
<h<d

‖u‖q,(c–h,c+h)

‖ρ–‖–
,(a,c–h) + ‖ρ–‖–

,(c+h,b)
, p = ∞,

and

Ap,q = sup
c∈I

Ap,q(c).

Theorem . Let  ≤ p ≤ q < ∞. Inequality () holds if and only if Ap,q < ∞. Moreover, for
the least constant C in (), we have the estimate

Ap,q ≤ C ≤ f (λ)Ap,q. ()
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In turn, for f (λ), by Lemma . we have f (λ()) = ( 
√

+√
–

) 
 and the estimate γ < f (λ) <

min{γ,γ, } for q �= .

Proof Necessity. Let inequality () hold with the least constant C > .
Suppose that  < p < ∞. Let c ∈ I ,  < h < d, and a < α < c–h < c+h < β < b. We introduce

the following function:

fc,h(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t
α
ρ–p′ (s) ds(

∫ c–h
α

ρ–p′ (s) ds)–, α ≤ t ≤ c – h,
, c – h ≤ t ≤ c + h,∫ β

t ρ–p′ (s) ds(
∫ β

c+h ρ–p′ (s) ds)–, c + h ≤ t ≤ β ,
, t ∈ I \ (α,β).

It is obvious that fc,h ∈ ◦
AC(I). Substituting fc,h into (), we get

‖u‖q,(c–h,c+h) ≤ C
(∥∥ρ–∥∥–p

p′ ,(α,c–h) +
∥∥ρ–∥∥–p

p′ ,(c+h,β)

) 
p .

From the last inequality, taking into account that its left-hand side does not depend on α,
β such that a < α < β < b, we have

‖u‖q,(c–h,c+h) ≤ C
(∥∥ρ–∥∥–p

p′ ,(a,c–h) +
∥∥ρ–∥∥–p

p′ ,(c+h,b)

) 
p ()

for all c ∈ I and  < h < d.
In the case p = , we construct f in the following way. Let numbers c and h be defined as

before, δ > , and a < x – δ < x + δ ≤ c – h < c + h ≤ y – δ < y + δ < b. Assume that

fc,h(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t
x–δ

ρ–(s) ds(
∫ x+δ

x–δ
ρ–(s) ds)–, x – δ ≤ t ≤ x + δ,

, x + δ ≤ t ≤ y – δ,∫ y+δ

t ρ–(s) ds(
∫ y+δ

y–δ
ρ–(s) ds)–, y – δ ≤ t ≤ y + δ,

, t ∈ I \ (x – δ, y + δ).

Substituting fc,h into (), we get

‖u‖q,(x+δ,y–δ) ≤ C
[(


δ

∫ x+δ

x–δ

ρ–(s) ds
)–

+
(


δ

∫ y+δ

y–δ

ρ–(s) ds
)–]

.

Taking the limit in this inequality as δ → , we get

‖u‖q,(x,y) ≤ C
(
ρ(x) + ρ(y)

)
for almost all x : (a < x ≤ c – h) and almost all y : (c + h ≤ y < b).

For α > , there exist points x : (a < x ≤ c – h) and y : (c + h ≤ y < b) such that

‖ρ–‖∞,(a,c–h)

α
≤ ρ–(x) and

‖ρ–‖∞,(c+h,b)

α
≤ ρ–(y).

Then

‖u‖q,(x,y) ≤ αC
[(∥∥ρ–∥∥∞,(a,c–h)

)– +
(∥∥ρ–∥∥∞,(c+h,b)

)–].
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This, together with ‖u‖q,(x,y) ≥ ‖u‖q,(c–h,c+h), yields that

‖u‖q,(c–h,c+h) ≤ αC
[∥∥ρ–∥∥–

∞,(a,c–h) +
∥∥ρ–∥∥–

∞,(c+h,b)

]
.

Since the left-hand side of this inequality does not depend on α > , letting α → , we get
() for p = . Thus, for all  ≤ p ≤ q < ∞, we have that

Ap,q ≤ C. ()

Sufficiency. Let Ap,q < ∞ be correct. Let f be a nontrivial function from
◦

AC(I). Without
loss of generality, we assume that f ≥ . Let λ > . For any integer k, we assume that Tk =
{t ∈ I : f (t) > λk}, 
Tk = Tk \Tk+. Due to the boundedness of the function f , there exists an
integer n = n(f ) such that Tn �= ∅ and Tn+ = ∅. It is obvious that I =

⋃
k≤n Tk =

⋃
k≤n 
Tk .

The set Tk is open. Therefore, there exists a family of mutually disjoint intervals {Jk
j }, Jk

j =
(ck

j , dk
j ), such that Tk =

⋃
j Jk

j . For n –  ≥ k > –∞, we assume that Mk
j = Tk+ ∩ Jk

j . For
Mk

j �= ∅, we define αk
j = inf Mk

j and βk
j = sup Mk

j . Then

Tk+ ⊂
⋃

j

(
αk

j ,βk
j
)

and 
Tk ⊃
⋃

j

[(
ck

j ,αk
j
) ∪ (

βk
j , dk

j
)]

. ()

In view of the continuity of the function f , we get that f (αk
j ) = f (βk

j ) = λk+ and f (ck
j ) =

f (dk
j ) = λk . Hence,

λk(λ – ) = λk+ – λk =
∫ αk

j

ck
j

f ′(s) ds = –
∫ dk

j

βk
j

f ′(s) ds. ()

From () by Hölder’s inequality we have that

λkp∥∥ρ–∥∥–p
p′ ,(ck

j ,αk
j ) ≤

‖ρf ′‖p
p,(ck

j ,αk
j )

(λ – )p , ()

λkp∥∥ρ–∥∥–p
p′ ,(βk

j ,dk
j ) ≤

‖ρf ′‖p
p,(βk

j ,dk
j )

(λ – )p . ()

In view of f (t) < λk+ for t ∈ 
Tk and λqk = ( – λ–q)
∑

i≤k λqi, we have that

‖uf ‖q
q =

∑
k≤n–

‖uf ‖q
q,
Tk+

≤
∑

k

λq(k+)‖u‖q
q,
Tk+

≤ λq(λq – 
)∑

k

‖u‖q
q,
Tk+

∑
i≤k

λqi = λq(λq – 
)∑

i

λqi
∑
k≥i

‖u‖q
q,
Tk+

= λq(λq – 
)∑

i

λqi‖u‖q
q,Ti+

(by ())

≤ λq(λq – 
)∑

i

λqi
∑

j

∫ βi
j

αi
j

uq(s) ds = λq(λq – 
)∑

i

λqi
∑

j

‖u‖q
q,(αi

j ,βi
j )

.
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Since Ap,q < ∞, from () and (), taking into account that q
p ≥ , this gives

‖uf ‖q
q ≤ λq(λq – 

)
Aq

p,q

∑
i

∑
j

(
λpi∥∥ρ–∥∥–p

p′ ,(ci
j ,α

i
j ) + λpi∥∥ρ–∥∥–p

p′ ,(βi
j ,di

j )

) q
p

≤ λq(λq – )
(λ – )q Aq

p,q

(∑
i

∑
j

(∥∥ρf ′∥∥p
p,(ci

j ,α
i
j ) +

∥∥ρf ′∥∥p
p,(βi

j ,di
j )

)) q
p

(by the second relation from ())

≤ λq(λq – )
(λ – )q Aq

p,q

(∑
i

∥∥ρf ′∥∥p
p,
Ti

) q
p

≤ λq(λq – )
(λ – )q Aq

p,q
∥∥ρf ′∥∥q

p.

Therefore,

‖uf ‖q ≤ λ(λq – )

q

(λ – )
Ap,q

∥∥ρf ′∥∥
p. ()

Since the left-hand side of this inequality does not depend on λ > , by Lemma . we
have

‖uf ‖q ≤ f (λ)Ap,q
∥∥ρf ′∥∥

p,

that is, inequality () holds with the estimate C ≤ f (λ)Ap,q for the least constant C in ().
This fact, together with (), gives (). The proof of Theorem . is complete. �

Remark . Let us notice that in [], for inequality (), an estimate of the type () has
been obtained in the case  < q = p < ∞.

Remark . If () or () is correct, then by Theorem . there follows the correctness of
the corresponding integral Hardy inequality (see []). For example, if () holds, then

Ap,q = sup
z∈I

(∫ b

z
uq(x) dx

) 
q
(∫ z

a
v–p′

(s) ds
) 

p′
,

where the condition Ap,q < ∞ coincides with the Muckenhoupt condition (see []), and
inequality () is equivalent to the integral Hardy inequality (). However, our upper esti-
mate in () is worse than that in the known result (see e.g. [], Thm. ). For example, in
case () with p = q = , from () we have Ap,q ≤ C ≤ ( 

√
+√
–

) 
 Ap,q ≈ .Ap,q, but from

Theorem  of [] it follows that Ap,q ≤ C ≤ Ap,q.

Theorem . Let  = p = q. Inequality () holds if and only if Ap,q < ∞. Moreover, Ap,q = C,
where C is the least constant in ().

Proof From () we have that ‖uf ‖q ≤ λAp,q‖ρf ′‖p. Taking λ → , we get ‖uf ‖q ≤
Ap,q‖ρf ′‖p, that is, inequality () holds with the estimate Ap,q ≤ C, which, together with
(), gives Ap,q = C. �
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Theorem . Let  ≤ p ≤ q = ∞. Inequality () holds if and only if Ap,q < ∞. Moreover,
Ap,q ≤ C ≤ Ap,q, where C is the least constant in ().

Proof Let  ≤ p < q = ∞. The necessity follows from Theorem .. Let us prove the suffi-
ciency. Let Ap,q < ∞. For  ≤ f ∈ ◦

AC(I), we have

‖uf ‖q = sup
k

‖uf ‖q,
Tk+ ≤ λ sup
k

λk‖u‖q,
Tk+

≤ λ sup
k

λk‖u‖q,Tk+ ≤ λ sup
k,i

λk‖u‖q,(αk
i ,βk

i )

≤ λAp,q sup
k,i

(
λpk∥∥ρ–∥∥–p

p′ ,(ck
i ,αk

i ) + λpk∥∥ρ–∥∥–p
p′ ,(βk

i ,dk
i )

) 
p

≤ λ

λ – 
Ap,q sup

k

∥∥ρf ′∥∥
p,
Tk

≤ λ

λ – 
Ap,q

∥∥ρf ′∥∥
p,

that is,

‖uf ‖q ≤ inf
λ>

λ

λ – 
Ap,q

∥∥ρf ′∥∥
p = Ap,q

∥∥ρf ′∥∥
p, ()

which, as before, means that

C ≤ Ap,q.

Let p = q = ∞.
Sufficiency. From () we have

λk∥∥ρ–∥∥–
,(ck

i ,αk
i ) ≤ 

λ – 
∥∥ρf ′∥∥

p,(ck
i ,αk

i ),

λk∥∥ρ–∥∥–
,(βk

i ,dk
i ) ≤ 

λ – 
∥∥ρf ′∥∥

p,(βk
i ,dk

i ).

Using these relations instead of () and (), we have

‖uf ‖q ≤ λ sup
k,i

λk‖u‖q,(αk
i ,βk

i ) ≤ λAp,q sup
k,i

(
λk∥∥ρ–∥∥–

,(ck
i ,αk

i ) + λk∥∥ρ–∥∥–
,(βk

i ,dk
i )

)

≤ λ

λ – 
Ap,q sup

k

∥∥ρf ′∥∥
p,
Tk

≤ λ

λ – 
Ap,q

∥∥ρf ′∥∥
p.

This gives that

‖uf ‖q ≤ Ap,q
∥∥ρf ′∥∥

p

and

C ≤ Ap,q.

Necessity. Substituting the function fc,h into (), we have

‖u‖q,(c–h,c+h) ≤ C
(∥∥ρ–∥∥–

,(α,c–h) +
∥∥ρ–∥∥–

,(c+h,β)

)
,
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which means that

Ap,q ≤ C.

Therefore,

Ap,q ≤ C ≤ Ap,q.

The proof of Theorem . is complete. �

Remark . The obtained results can be compared with the results of Theorem . of [],
where it is proved that, for  ≤ p ≤ q ≤ ∞, the validity of () is equivalent to the condition

Bp,q = sup
(c,d)⊂I

[‖u‖q,(c,d), min
{∥∥ρ–∥∥

p′ ,(d,b),
∥∥ρ–∥∥

p′ ,(a,c)

}]
< ∞.

Moreover, for the least constant C in (), we have the estimates

– 
p B ≤ C ≤ inf

<λ<
B,  ≤ q < ∞, ()

and

– 
p B ≤ C ≤ B, q = ∞. ()

It is easy to see that Ap,q < Bp,q. Moreover, the estimates for the least constant C in ()
obtained in Theorems . and . are obviously better than in () and (), respectively.

4 Compactness
Let I = (–∞, +∞) and M = {uf : f ∈ ◦

AC(I),‖ρf ′‖p ≤ }.
Let

A+
p,q(z) = sup

h>

(
∫ z+h

z uq(t) dt)

q

(‖ρ–‖–p
p′ ,(–∞,z) + ‖ρ–‖–p

p′ ,(z+h,∞))

p

,

A–
p,q(z) = sup

h>

(
∫ z

z–h uq(t) dt)

q

(‖ρ–‖–p
p′ ,(–∞,z–h) + ‖ρ–‖–p

p′ ,(z,∞))

p

.

Theorem . Let  ≤ p ≤ q < ∞. The set M is relatively compact in Lq(I) if and only if
Ap,q < ∞ and

lim|x|→∞ Ap,q(x) = . ()

Proof Necessity. Let M be relatively compact in Lq(I). Then by Theorem . we have that
Ap,q < ∞. Let fc,h,α,β ≡ fc,h be the function introduced in the necessary part of Theorem ..

We assume that

f +
z,h,α,β ≡ fz+h,h,α,β , f –

z,h,α,β ≡ fz–h,h,α,β ,
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g+
z,h,α,β(t) = f +

z,h,α,β(t)
(∥∥ρ–∥∥–p

p′ ,(α,z) +
∥∥ρ–∥∥–p

p′ ,(z+h,β)

)– 
p ,

g–
z,h,α,β(t) = f –

z,h,α,β(t)
(∥∥ρ–∥∥–p

p′ ,(α,z–h) +
∥∥ρ–∥∥–p

p′ ,(z,β)

)– 
p .

Since g±
z,h,α,β ∈ ◦

AC(I) and ‖ρ(g±
z,h,α,β)′‖p ≤ , we have g±

z,h,α,β ∈ M, and by the Frechet-
Kolmogorov theorem [], p. we get

 = lim
N→∞ sup

f ∈M

(∫
|t|>N

|uf |q dt
) 

q
≥ lim

N→∞ sup
z,h,α,β

(∫
t>N

∣∣ug+
z,h,α,β

∣∣q dt
) 

q

≥ lim
N→∞ sup

z>N
sup
h>

(
∫ z+h

z uq(t) dt)

q

(‖ρ–‖–p
p′ ,(–∞,z) + ‖ρ–‖–p

p′ ,(z+h,∞))

p

= lim
z→∞ sup A+

p,q(z).

Therefore,

lim
z→∞ A+

p,q(z) = . ()

Similarly, working with the function g–
z,h,α,β , we get limz→–∞ A–

p,q(z) = , which, together
with (), gives ().

Sufficiency. Let Ap,q < ∞ and () hold. Then, on the basis of Theorem ., the set M is
bounded in Lq(I). Therefore, by the Frechet-Kolmogorov theorem it suffices to show that

lim
N→∞ sup

f ∈M

(∫
|t|>N

|uf |q dt
) 

q
= . ()

Let

û(t) =

{
u(t), t < N ,
, t ≥ N ,

and ũ(t) =

{
, t ≤ N ,
u(t), t > N .

Hence, by Theorem . we have

(∫ ∞

–∞
|̂uf |q dt

) 
q

≤ f (λ) sup
x<N

Ap,q(x) for f ∈ M,

(∫ ∞

–∞
|̃uf |q dt

) 
q

≤ f (λ) sup
x>N

Ap,q(x) for f ∈ M.

Then

sup
f ∈M

(∫
|t|>N

|uf |q dt
) 

q
≤ f (λ) sup

|x|>N
Ap,q(x).

This, together with (), gives (). The proof of Theorem . is complete. �
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