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Abstract
Results on finite-gain L∞ stability from a disturbance to the output of a time-variant
delay system are presented via a delay decomposition approach. By constructing an
appropriate Lyapunov-Krasovskii functional and a novel integral inequality, which
gives a tighter upper bound than Jensen’s inequality and Bessel-Legendre inequality,
some sufficient conditions are established and desired feedback controllers are
designed in terms of the solution to certain LMIs. Compared with the existing results,
the obtained criteria are more effective due to the tuning scalars and free-weighting
matrices. Numerical examples and their simulations are given to demonstrate the
effectiveness of the proposed method.

Keywords: finite-gain L∞ stable from disturbance to output; Lyapunov-Krasovskii
functional; delay decomposition method; time-variant delay

1 Introduction
In the past few decades, a thorough understanding of dynamic systems from an input-
output point of view has been an area of ongoing and intensive research [–]. The
strength of input-output stability theory is that it provides a method for anticipating the
qualitative behavior of a feedback system with only rough information as regards the feed-
back components []. Disturbance phenomenon is considered as a kind of exogenous
inputs and is frequently a source of generation of oscillation and instability and poor
performance and commonly exists in various mechanical, biological, physical, chemical
engineering, economic systems. In this setting several natural questions rise: Does the
bounded disturbance produce the bounded response (output)? What are the effects on the
output of the same system when tuning the parameters? Do the systems have the property
of robustness for the disturbance? Basing on studies of input-output stability, we investi-
gate disturbance-output properties, which demonstrate how the disturbance affects the
bounded behaviors of system.

The input-output property is mostly discussed by transfer function [, ]. To the best of
our knowledge, there exists some limitation as regards the method of transfer function to
study input-output stability to certain extent. For example, as is mentioned in [] of page ,
the system with transfer function Gk(s) = 

(s+)k (s++se–s)
is bounded-input-bounded-output

stable for k ≥ , even though Gk has a sequence of poles asymptotic to the imaginary
axis. To determine whether one has stability for smaller values of k seems to be beyond
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our present techniques, and therefore it is interesting and challenging to extend Lyapunov
stability tools for the analysis of input/disturbance-output stability.

However, there are very little works about the analysis of disturbance-output stability of
systems with time-variant delays by constructed Lyapunov functionals. This motivates the
present study. Our performance objective is to design feedback gain matrices to guaran-
tee the output of a class of delay system will remain bounded for any bounded disturbance
by the Lyapunov-Krasovskii functional method. We will utilize a delay decomposition ap-
proach to take information of delayed plant states into full consideration. The bounds of
the output vary with the adjustment of parameters. It is also helpful for estimating the
upper bound of some cross terms more precisely.

Another feature of our work is the choice of integral inequalities. As is well known, many
researchers have devoted much attention to obtaining much tighter bounds of various
functions, especially integral terms of quadratic functions to reduce the conservatism in
the fields of controlling and engineering. The common mathematical tools are integral
inequality and free-weighting matrix method. The most recent researches are based on the
Jensen inequality as one of the essential techniques in dealing with the time delay systems
to estimate upper bound of time derivative of constructed Lyapunov functional. Currently,
there are a few works to analyze the conservatism of Jensen’s gap [] in order to reduce
Jensen’s gap in the use of the Wirtinger inequality [–]. Furthermore, a novel integral
inequality called the Bessel-Legendre (B-L) inequality has been developed in [], which
encompasses the Jensen inequality and the Wirtinger-based integral inequality. However,
the inequalities in [] and [] only concern the study of single integral terms of quadratic
functions, while the upper bounds of double integral terms should also be estimated if
triple integral terms are introduced in the Lyapunov-Krasovskii functional to reduce the
conservatism. It is worth noting that the B-L inequality has only been applied to a stability
analysis of the system with constant delay.

In this paper, a new class of integral inequalities for quadratic functions in [] via inter-
mediate terms called auxiliary functions are introduced to develop the criteria of finite-
gain L∞ stability from a disturbance to the output for systems with time-variant delay and
constant delay using appropriate Lyapunov-Krasovskii functionals. These inequalities can
produce much tighter bounds than what the above inequalities produce. Moreover, by in-
troducing free-weighting matrix and tuning parameters, feedback gain matrices are ob-
tained. Finally, two numerical examples show efficacy of the proposed approach. Specially,
the terms on the left side of the equation

η
(
xT (t) + ẋT (t)

)
N
(
(A + CK)x(t) + (B + CK)x

(
t – h(t)

)
+ Cw(t) – ẋ(t)

)
= 

are added to the derivative of the Lyapunov-Krasovskii functional, V (t). In this equation,
the free-weighting matrix N and the scalar η indicate the relationship between the terms
in our system and guarantee the negative definite of stability criteria. As is shown in our
theorem, they can be determined easily by solving the corresponding linear matrix in-
equalities.

Notations Throughout this paper, A– and AT stand for the inverse and transpose of a
matrix A, respectively; P >  (P ≥ , P < , P ≤ ) means that the matrix P is symmet-
ric positive definite (positive-semi definite, negative definite and negative-semi definite);
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Rn denotes n-dimensional Euclidean space; Rm×n is the set of m × n real matrices; ‖x‖,
‖A‖ denote the Euclidean norm of the vector x and the induced matrix norm of A, respec-
tively; λmax(Q) and λmin(Q) denote, respectively, the maximal and minimal eigenvalue of a
symmetric matrix Q.

2 Problem statement and preliminaries
Consider the control system with time delay

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t) + Bx(t – h(t)) + C(u(t) + w(t)),

y(t) = Dx(t),

x(t) = φ(t), –h ≤ t ≤ ,

()

where x(t), u(t), y(t), w(t) ∈ Rn are the state vector, control input, control output, distur-
bance of the system, respectively; φ(t) : [–h, ] → Rn is a continuously differentiable func-
tion, A, B, C, D ∈ Rn×n are known real parameter matrices, and h(t) : R → R is a continuous
function satisfying

 ≤ h ≤ h(t) ≤ h,

where h, h are constants.
Let h = h – h, and ‖φ‖–h , ‖φ̇‖–h be defined by ‖φ‖–h = sup–h≤θ≤ ‖φ(θ )‖, ‖φ̇‖–h =

sup–h≤θ≤ ‖φ̇(θ )‖. To obtain the bounded output of system (), we let

u(t) = Kx(t) + Kx
(
t – h(t)

)
, ()

where K, K are the feedback gain matrices. Substituting () into () gives

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = (A + CK)x(t) + (B + CK)x(t – h(t)) + Cw(t),

y(t) = Dx(t),

x(t) = φ(t), –h ≤ t ≤ .

()

Let us introduce the following definitions and lemmas for later use.

Definition . We have a real-valued vector w(t) ∈ Ln∞, if ‖w‖L∞ = supt≤t<∞ ‖w(t)‖ <
+∞.

Definition . The control system () is said to be finite-gain L∞ stable from a distur-
bance (here w) to the output (here y) if there exist nonnegative constants γ and θ such
that

∥
∥y(t)

∥
∥≤ γ ‖w‖L∞ + θ

for all w(t) ∈Ln∞, t ≥ t.

Remark . Definition . relates the output of the system directly to the disturbance;
namely, if the system is finite-gain L∞ stable from w to y, then, for every bounded distur-
bance w(t), the output y(t) is bounded. There is defined according to Definition . []
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a concept of stability in the input-output sense. The constant θ in Definition . is called
the bias term.

Remark . The norm function captures the ‘size’ of the signals. The ∞-norm is useful
when amplitude constraints are imposed on a problem, and the -norm is of more help in
the context of energy constraints. We will typically be interested in measuring signals of
the ∞-norm.

Lemma . ([]) For a positive definite matrix R > , and a differentiable function x(u),
u ∈ [a, b], the following inequalities hold:

∫ b

a
ẋT (α)Rẋ(α) dα ≥ 

b – a
�T

 R� +


b – a
�T

 R�, ()

∫ b

a
ẋT (α)Rẋ(α) dα ≥ 

b – a
�T

 R� +


b – a
�T

 R� +


b – a
�T

 R�, ()

∫ b

a

∫ b

β

ẋT (α)Rẋ(α) dα ≥ �T
 R� + �T

 R�, ()

∫ b

a

∫ β

a
ẋT (α)Rẋ(α) dα ≥ �T

R� + �T
R�, ()

where

� = x(b) – x(a),

� = x(b) + x(a) –


b – a

∫ b

a
x(α) dα,

� = x(b) – x(a) +


b – a

∫ b

a
x(α) dα –


(b – a)

∫ b

a

∫ b

β

x(α) dα dβ ,

� = x(b) –


b – a

∫ b

a
x(α) dα,

� = x(b) +


b – a

∫ b

a
x(α) dα –


(b – a)

∫ b

a

∫ b

β

x(α) dα dβ ,

� = x(a) –


b – a

∫ b

a
x(α) dα,

� = x(a) –


b – a

∫ b

a
x(α) dα +


(b – a)

∫ b

a

∫ b

β

x(α) dα dβ .

Remark . Inequalities ()-() can produce much tighter bounds than what the men-
tioned inequalities produce. Inequality () is will be used frequently in the proof of the
theorem and the corollary.

Lemma . ([] Reciprocal convexity lemma) For any vector x, x, matrices R > , S, and
real scalars α ≥ , β ≥  satisfying α + β = , the following inequality holds:

–

α

xT
 Rx –


β

xT
 Rx ≤ –

[
x

x

]T [
R S

ST R

][
x

x

]
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subject to

 <

[
R S

ST R

]

.

3 Main results
In this section, basing on the delay decomposition approach and integral inequality (), we
will give a less conservative criterion such that the time-variant delay system () is finite-
gain L∞ stable from w to y. We will solve the design problem for the feedback controller
via LMIs.

Theorem . Given scalars  ≤ h ≤ h, the control system () with feedback gain matrix
K, K is finite-gain L∞ stable from w to y, if there exist matrices  < P,  < Qi,  < Ri,
i = , . . . , , and N , Sij, i, j = , . . . , , scalars  ≤ ε,  ≤ ε,  < α < ,  < α <  and η such
that

�(n×n) < , ()

where

� = (αh)R +
(
( – α)h

)R +
(
( – α)h

)R + (αh)R – ηN – ηNT + εη
I,

� = P – ηNT + ηNA + ηX, � = ηNB + ηX,

� = Q + ηAT NT + ηNA + ηX + ηXT
 + εη

I,

� = R, � = ηNB + ηX, � = –R, � = R,

� = –Q + Q – R – R, � = R, � = R, � = –R,

�, = –R, �, = R, � = –Q + Q – R – R, � = R,

�, = R, �, = –R, �, = –R, �, = R,

�, = –Q + Q – R – R, �, = –ST
, �, = –ST

 + R,

�, = –ST
, �, = –ST

, �, = –R, �, = R, �, = R,

�, = –R, � = –Q – R, � = –S + R, �, = R,

�, = –R, �, = –S, �, = –S,

� = –S – ST
 – R, �, = –ST

 – R, �, = –ST
 + R,

�, = –S + R, �, = –S – R, � = –R,

� = R, � = –R,

�, = –R, �, = R, �, = –R,

�, = –R, �, = R, �, = –S,

�, = –S, �, = –R, �, = –S, �, = –S,

�, = –R, �, = R,

�, = –R, �, = –R, �, = R, �, = –R.
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The remaining entries are zero and

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

R –R R –R S S S S

–R R –R R S S S S

R –R R –R S S S S

–R R –R R S S S S

ST
 ST

 ST
 ST

 R –R R –R

ST
 ST

 ST
 ST

 –R R –R R

ST
 ST

 ST
 ST

 R –R R –R

ST
 ST

 ST
 ST

 –R R –R R

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

> . ()

The desired control gain matrices are given by Ki = C–N–Xi.

Proof Consider a Lyapunov-Krasovskii functional candidate

V (t) =
∑

i=

Vi(t),

where

V(t) = xT (t)Px(t),

V(t) =
∫ t

t–αh

xT (α)Qx(α) dα +
∫ t–αh

t–h

xT (α)Qx(α) dα,

V(t) =
∫ t–h

t–h

xT (α)Qx(α) dα +
∫ t–h

t–h

xT (α)Qx(α) dα,

V(t) = αh

∫ 

–αh

∫ t

t+β

ẋT (α)Rẋ(α) dα dβ

+ ( – α)h

∫ –αh

–h

∫ t

t+β

ẋT (α)Rẋ(α) dα dβ ,

V(t) = ( – α)h

∫ –h

–h

∫ t

t+β

ẋT (α)Rẋ(α) dα dβ

+ αh

∫ –h

–h

∫ t

t+β

ẋT (α)Rẋ(α) dα dβ ,

where h = h + αh. Then the time derivative of V (t) along the trajectories of equa-
tion () is

V̇ (t) =
∑

i=

V̇i(t),

where

V̇(t) = ẋT (t)Px(t), ()

V̇(t) = xT (t)Qx(t) – xT (t – αh)Qx(t – αh) + xT (t – αh)Qx(t – αh)

– xT (t – h)Qx(t – h), ()
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V̇(t) = xT (t – h)Qx(t – h) – xT (t – h)Qx(t – h) + xT (t – h)Qx(t – h)

– xT (t – h)Qx(t – h), ()

V̇(t) = (αh)ẋT (t)Rẋ(t) – αh

∫ t

t–αh

ẋT (α)Rẋ(α) dα + (h – αh)ẋT (t)Rẋ(t)

– (h – αh)
∫ t–αh

t–h

ẋT (α)Rẋ(α) dα, ()

V̇(t) = (h – h)ẋT (t)Rẋ(t) – (h – h)
∫ t–h

t–h

ẋT (α)Rẋ(α) dα + (h – h)ẋT (t)Rẋ(t)

– (h – h)
∫ t–h

t–h

ẋT (α)Rẋ(α) dα. ()

Applying the proposed integral inequality () in Lemma . leads to

–αh

∫ t

t–αh

ẋT (α)Rẋ(α) dα

≤ –�T (t)
{

(e – e)R(e – e)T + (e + e – e)R(e + e – e)T

+ (e – e + e – e)R(e – e + e – e)T}�(t), ()

–( – α)h

∫ t–αh

t–h

ẋT (α)Rẋ(α) dα

≤ –�T (t)
{

(e – e)R(e – e)T + (e + e – e)R(e + e – e)T

+ (e – e + e – e)R(e – e + e – e)T}�(t), ()

–αh

∫ t–h

t–h

ẋT (α)Rẋ(α) dα

≤ –�T (t)
{

(e – e)R(e – e)T + (e + e – e)R(e + e – e)T

+ (e – e + e – e)R(e – e + e – e)T}�(t), ()

where

�(t) =
[
ẋ(t) x(t) x(t – αh) x(t – h) x(t – h) x(t – h) x(t – h(t))


αh

∫ t
t–αh

x(α) dα 
(αh)

∫ t
t–αh

∫ t
β

x(α) dα dβ 
h–αh

∫ t–αh
t–h

x(α) dα


(h–αh)

∫ t–αh
t–h

∫ t–αh
β

x(α) dα dβ 
h–h(t)

∫ t–h(t)
t–h

x(α) dα


(h–h(t))

∫ t–h(t)
t–h

∫ t–h(t)
β

x(α) dα dβ 
h(t)–h

∫ t–h
t–h(t) x(α) dα


(h(t)–h)

∫ t–h
t–h(t)

∫ t–h
β

x(α) dα dβ 
αh

∫ t–h
t–h

x(α) dα


(αh)

∫ t–h
t–h

∫ t–h
β

xT (α) dα dβ
]T

,

ei(i = , , . . . , ) ∈ Rn×n are elementary matrices, for example

eT
 =

[
I                

]
.
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Furthermore, there are two cases about h(t), h ≤ h(t) ≤ h, or h ≤ h(t) ≤ h. We only
discuss the first case, and the other case can be discussed similarly.

Case : h ≤ h(t) ≤ h.
In fact,

∫ t–h

t–h

ẋT (α)Rẋ(α) dα =
∫ t–h(t)

t–h

ẋT (α)Rẋ(α) dα +
∫ t–h

t–h(t)
ẋT (α)Rẋ(α) dα.

So, by Lemma . again, we get

–( – α)h

∫ t–h(t)

t–h

ẋT (α)Rẋ(α) dα

≤ –
( – α)h

h – h(t)
�T (t)

{
(e – e)R(e – e)T

+ (e + e – e)R(e + e – e)T

+ (e – e + e – e)R(e – e + e – e)T}�(t), ()

–( – α)h

∫ t–h

t–h(t)
ẋT (α)Rẋ(α) dα

≤ –
( – α)h

h(t) – h
�T (t)

{
(e – e)R(e – e)T

+ (e + e – e)R(e + e – e)T

+ (e – e + e – e)R(e – e + e – e)T}�(t). ()

Using Lemma ., we obtain the following relation from equations () and ():

–( – α)h

∫ t–h(t)

t–h

ẋT (α)Rẋ(α) dα – ( – α)h

∫ t–h

t–h(t)
ẋT (α)Rẋ(α) dα

≤ –
( – α)h

h – h(t)
xT

 �x –
( – α)h

h(t) – h
xT

 �x

≤ –

[
x

x

]T [
� S
ST �

][
x

x

]

()

subject to () defined in Theorem ., where

x = col

⎧
⎨

⎩

[
x(t – h(t))
x(t – h)

] ⎡

⎣


h–h(t)
∫ t–h(t)

t–h
x(α) dα


(h–h(t))

∫ t–h(t)
t–h

∫ t–h(t)
β

x(α) dα dβ

⎤

⎦

⎫
⎬

⎭
,

x = col

⎧
⎨

⎩

[
x(t – h)

x(t – h(t))

] ⎡

⎣


h(t)–h

∫ t–h
t–h(t) x(α) dα


(h(t)–h)

∫ t–h
t–h(t)

∫ t–h
β

x(α) dα dβ

⎤

⎦

⎫
⎬

⎭
,

� =

⎡

⎢⎢
⎢
⎣

R –R R –R

–R R –R R

R –R R –R

–R R –R R

⎤

⎥⎥
⎥
⎦

, S =

⎡

⎢⎢
⎢
⎣

S S S S

ST
 S S S

ST
 ST

 S S

ST
 ST

 ST
 S

⎤

⎥⎥
⎥
⎦

.
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Moreover, for any scalars ε > , ε > , we have

ηẋT (t)NCw(t) ≤ εη
ẋT (t)ẋ(t) +


ε

rT (t)CT NT NCw(t), ()

ηxT (t)NCw(t) ≤ εη
xT (t)x(t) +


ε

rT (t)CT NT NCw(t). ()

Combining equations ()-() gives

V̇ (t) ≤ �T (t)��(t) – xT (t)Rx(t) +
(


ε

+

ε

)
wT (t)CT NT NCw(t)

≤ –λmin(R)
∥∥x(t)

∥∥ +
(


ε

+

ε

)
‖NC‖‖w‖

L∞ .

Let c = λmin(R), c = ( 
ε

+ 
ε

)‖NC‖‖w‖
L∞ , we have

V̇ (t) ≤ –c
∥∥x(t)

∥∥ + c.

Now we shall show that the state x(t) is bounded for t ≥ .
First suppose ‖x(t)‖ ≥ c

c
for t ≥ . Then V (t) ≤ V () for all t ≥ , which implies

∥∥x(t)
∥∥ ≤ V (t)

λmin(P)
≤ V ()

λmin(P)
≤ d‖φ‖

–h
+ d‖φ̇‖

–h

λmin(P)
,

where

d = λmax(P) + αhλmax(Q) + ( – α)hλmax(Q) + αhλmax(Q)

+ ( – α)hλmax(Q),

d =



(αh)λmax(R) +



( + α)( – α)h
λmax(R)

+



(h + h)( – α)h
λmax(R)

+



(h + h)(αh)λmax(R).

Now consider the case ‖x(t)‖ ≤ c
c

for t ≥ . Then x(t) is bounded obviously.
If the first two cases were not true, there would exist t > t > , such that

∥∥x(t)
∥∥ <

c

c
,

∥∥x(t)
∥∥ >

c

c
,

which implies there exists a t∗ >  due to the continuity of x(t) such that V (t∗) =
∑

i= Vi(t∗)
and V (t) ≤ V (t∗) for t ∈ [t∗, t].

Thus for t ∈ [t∗, t], we have

∥
∥x(t)

∥
∥ ≤ V (t∗)

λmin(P)
≤ d

c
c

+ dd


λmin(P)
,
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where

d =
((∥∥(A + CK)

∥
∥ +

∥
∥(B + CK)

∥
∥)
√(


εc

+


εc

)
‖NC‖ + ‖C‖

)
‖w‖L∞

= e‖w‖L∞ ,

e =
(∥∥(A + CK)

∥∥ +
∥∥(B + CK)

∥∥)
√(


εc

+


εc

)
‖NC‖ + ‖C‖.

Therefore in the last case, ‖x(t)‖ ≤ max{ c
c

,
d

c
c

+dd


λmin(P) }, t ≥ .
Note that, for t ≥ ,

∥
∥x(t)

∥
∥ ≤ d‖φ‖

–h
+ d‖φ̇‖

–h

λmin(P)
+

c

c
+

d
c
c

+ dd


λmin(P)
.

Thus,

∥∥x(t)
∥∥ ≤

√
d‖φ‖

–h
+ d‖φ̇‖

–h

λmin(P)
+

c

c
+

d
c
c

+ dd


λmin(P)

≤
((

cd‖φ‖
–h + cd‖φ̇‖

–h +
((


ε

+

ε

)
‖NC‖λmin(P)

+ d

(

ε

+

ε

)
‖NC‖ + cde



)
‖w‖

L∞

)
/(

cλmin(P)
)
)/

≤
√

cd‖φ‖–h +
√

cd‖φ̇‖–h√
cλmin(P)

+

√
( 
ε

+ 
ε

)‖NC‖λmin(P) + d( 
ε

+ 
ε

)‖NC‖ + cde


cλmin(P)
‖w‖L∞ .

So

‖y‖ ≤ ‖D‖∥∥x(t)
∥∥

≤ ‖D‖(
√

cd‖φ‖–h +
√

cd‖φ̇‖–h )√
cλmin(P)

+

√
( 
ε

+ 
ε

)‖NC‖λmin(P) + d( 
ε

+ 
ε

)‖NC‖ + cde


cλmin(P)
‖D‖‖w‖L∞ .

Let

γ =

√
( 
ε

+ 
ε

)‖NC‖λmin(P) + d( 
ε

+ 
ε

)‖NC‖ + cde


cλmin(P)
‖D‖,

θ =
‖D‖(

√
cd‖φ‖–h +

√
cd‖φ̇‖–h )√

cλmin(P)
.

This shows the trivial solution of system () is finite-gain L∞ stable from w to y and the
feedback gain matrices Ki, i = ,  are expressed in the form of Ki = C–N–Xi. �
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Remark . Instead of constructing the state feedback by the pre-determined method,
Theorem . fixes them by solving LMIs. So, suitable ones are always chosen due to the
free-weighting N , thus overcoming the conservatism of Theorem . in [, ].

Remark . The proposed integral inequalities in Lemma . give much tighter upper
bounds in equations ()-() than those obtained by Jensen’s inequality. Therefore, the
resulting stability criterion in Theorem . is much less conservative than the ones based
on Jensen’s inequality.

Remark . The utilized state-augmented vector �(t) includes newly proposed
double integral terms such as (/(αh))

∫ t
t–αh

∫ t
β

xT (α) dα dβ , (/(h(t) – h)) ×
∫ t–h

t–h(t)
∫ t–h
β

x(α) dα dβ . If h(t) = h, the system under the assumption

u(t) = Kx(t) + Kx(t – h)

is represented by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t) + Bx(t – h) + C(u(t) + w(t)),

y(t) = Dx(t),

x(t) = φ(t), –h ≤ t ≤ ,

()

where ‖φ‖–h, ‖φ̇‖–h are defined by ‖φ‖–h = sup–h≤θ≤ ‖φ(θ )‖, ‖φ̇‖–h = sup–h≤θ≤ ‖φ̇(θ )‖.
Through a similar line as in the proof of Theorem ., we have the following corollary.

Corollary . The control system () with feedback gain matrix K, K is finite-gain L∞
stable from w to y, if there exist matrices  < P,  < Qi,  < Ri, i = , , and N , scalars η,
 ≤ β,  ≤ β, such that

ψ(n×n) =

(
ψ̃ �

� T �

)

< , ()

where

ψ̃ ∈ Rn×n,

� T
(n×n) =

[
η√
β

CT NT       
 η√

β
CT NT      

]

,

�n×n =

[
–I 
 –I

]

,

ψ = (αh)R +
(
( – α)h

)R – ηN – ηNT , ψ = P – ηNT + ηNA + ηX,

ψ = ηNB + ηX, ψ =
η√
β

NC, ψ = Q + ηAT NT + ηNA + ηX + ηXT
 ,

ψ = R, ψ = –R, ψ = R, ψ = ηNB + ηX,

ψ, =
η√
β

NC, ψ = –Q + Q – R – R, ψ = R, ψ = –R,
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ψ = R, ψ = –R, ψ = R, ψ = –R, ψ = R,

ψ, = –R, ψ = –Q – R, ψ = R, ψ = –R,

ψ = –R, ψ = R, ψ = –R, ψ = –I, ψ, = –I.

The remaining entries are zero. The desired control gain matrices are given by Ki =
C–N–Xi.

Proof Consider the following Lyapunov-Krasovskii functional candidate:

V (t) =
∑

i=

Vi(t),

where

V(t) = xT (t)Px(t),

V(t) =
∫ t

t–αh
xT (α)Qx(α) dα,

V(t) =
∫ t–αh

t–h
xT (α)Qx(α) dα,

V(t) = αh
∫ 

–αh

∫ t

t+β

ẋT (α)Rẋ(α) dα dβ ,

V(t) = ( – α)h
∫ –αh

–h

∫ t

t+β

ẋT (α)Rẋ(α) dα dβ .

The time derivative along the trajectories of equations () is

V̇ (t) =ẋT (t)Px(t) + xT (t)Qx(t) – xT (t – αh)Qx(t – αh)

+ xT (t – αh)Qx(t – αh) – xT (t – h)Qx(t – h)

+ (αh)ẋT (t)Rẋ(t) – αh
∫ t

t–αh
ẋT (α)Rẋ(α) dα

+
(
( – α)h

)ẋT (t)Rẋ(t) – ( – α)h
∫ t–αh

t–h
ẋT (α)Rẋ(α) dα

+
(
ηx(t) + ηẋ(t)

)T N
(
(A + CK)x(t) + (B + CK)x(t – h) + Cw(t) – ẋ(t)

)
. ()

By inequality () in Lemma ., we obtain

–αh
∫ t

t–αh
ẋT (α)Rẋ(α) dα

≤ –γ T (t)
{

(�e – �e)R(�e – �e)T

+ (�e + �e – �e)R(�e + �e – �e)T

+ (�e – �e + �e – �e)R(�e – �e + �e – �e)T}γ (t), ()
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–( – α)h
∫ t–αh

t–h
ẋT (α)Rẋ(α) dα

≤ –γ T (t)
{

(�e – �e)R(�e – �e)T

+ (�e + �e – �e)R(�e + �e – �e)T

+ (�e – �e + �e – �e)R(�e – �e + �e – �e)T}γ (t), ()

where

γ (t) = col

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎢
⎢⎢
⎣

ẋ(t)
x(t)

x(t – αh)


αh
∫ t

t–αh x(α) dα

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎢
⎣


(αh)

∫ t
t–αh

∫ t
β

x(α) dα dβ

x(t – h)


(–α)h
∫ t–αh

t–h x(α) dα


((–α)h)

∫ t–αh
t–h

∫ t–αh
β

x(α) dα dβ

⎤

⎥
⎥⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

�ei(i = , , . . . , ) ∈ Rn×n are elementary matrices, for example

�e
T

 = [I       ].

For β ∈ R\{}, β ∈ R\{}, it is clear that

ηẋT (t)NCw(t) – βwT (t)w(t) + βwT (t)w(t)

= –β

[
w(t) –

η

β
CT NT ẋ(t)

]T[
w(t) –

η

β
CT NT ẋ(t)

]

+
η

β
ẋT (t)NCCT NT ẋ(t) + βwT (t)w(t), ()

ηxT (t)NCw(t) – βwT (t)w(t) + βwT (t)w(t)

= –β

[
w(t) –

η

β
CT NT x(t)

]T[
w(t) –

η

β
CT NT ẋ(t)

]

+
η

β
xT (t)NCCT NT x(t) + βwT (t)w(t). ()

This, together with ()-(), shows we have

V̇ (t) = ẋT (t)Px(t) + xT (t)Qx(t) – xT (t – αh)Qx(t – αh)

+ xT (t – αh)Qx(t – αh)

– xT (t – h)Qx(t – h) + (αh)ẋT (t)Rẋ(t) – αh
∫ t

t–αh
ẋT (α)Rẋ(α) dα

+
(
ηx(t) + ηẋ(t)

)T N
(
(A + CK)x(t) + (B + CK)x(t – h) + Cw(t) – ẋ(t)

)

= γ T (t)
(
ψ̃ – ��–� T)γ (t) – xT (t)Rw(t) + βwT (t)w(t) + βwT (t)w(t)

≤ –xT (t)Rw(t) + βwT (t)w(t) + βwT (t)w(t)

≤ –λmin(R)
∥∥x(t)

∥∥ + (β + β)‖w‖
L∞
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if condition () holds. Thus the output of systems () can be expressed as

∥∥y(t)
∥∥≤ γ̃ ‖w‖L∞ + θ̃ ,

where

γ̃ =

√
(β + β)λmin(P) + d̃(β + β) + cd̃ẽ


cλmin(P)

‖D‖,

θ̃ =
‖D‖(

√
cd̃‖φ‖–h +

√
cd̃‖φ̇‖–h)√

cλmin(P)
,

c = λmin(R), d̃ = λmax(P) + αhλmax(Q) + ( – α)hλmax(Q),

d̃ =



(αh)λmax(R) +



( + α)
(
 – α

)hλmax(R),

d̃ = ẽ‖w‖L∞ , ẽ =
(∥∥(A + CK)

∥
∥ +

∥
∥(B + CK)

∥
∥)
√

(β + β)
c

+ ‖C‖.

The feedback gain matrices Ki, i = , , are expressed as Ki = C–N–Xi. �

Remark . To reduce the conservatism, equivalent transformations are employed
through the positive scalars β, β and the free-weighting matrix N instead of using in-
equalities when dealing with the item of xT (t)NCw(t) and ẋT (t)NCw(t) in Corollary ..
As is shown in () and (), the terms ẋT (t)NCw(t) and η

β
ẋT (t)NCCT NT ẋ(t) and all the

resulting relations in V̇ (t) =
∑

i= V̇i(t) are well used and stability criteria are given in the
form of LMIs.

Remark . The bound of output y(t) is dependent on feedback gain matrices in Theo-
rem . and Corollary .. That is to say, the bound of output y(t) can be adjusted by our
free weighing matrix N . In this way, our results are much less conservative than those in
[, ]. To this end, the control problem has been solved in terms of a solution to the LMIs
() and ().

Remark . By developing a delay decomposition approach, the information of delayed
plant states can be taken into full consideration. It is worth pointing out that this method
has been more widely adopted to the discussion of neural networks and less conservatism
is realized by choosing different Lyapunov matrices in the decomposed integral intervals
and estimating the upper bound of some cross terms more exactly. It is easily extended
to disturbance-output properties of linear time-varying delay systems and the bound of
output is influenced by tuning parameters, which will be illustrated with two numerical
examples. Since the delay term is concerned more exactly, less conservative results are
presented.

4 Examples
In this section, two numerical examples are provided to show the effectiveness of the pro-
posed method.
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Example . As an application of Theorem ., we consider the system () with the fol-
lowing parameters:

A =

[
. .

– –.

]

, B =

[
 .

. –

]

, C =

[
 
 

]

, D =

[
 
 

]

.

As the Remark . states, the bound of output y(t) is dependent on the feedback gain
matrices which are solutions to certain LMIs related to parameters η, ε, ε, α, α. For
h(t) = . + . sin t, wT (t) = [sin t cos t], η = ., ε = ., ε = .,
the stabilizing control gain matrices K, K can easily be solved by LMI () and () with
α = ., α = .. We have

K =

[
. –.

–. .

]

, K =

[
–. .
. –.

]

.

Figures  to  show that we can use the method of delay decomposition to vary the bound
of output. Figure  shows the bound of output without any delay decomposition, while
Figure  shows the larger bound of output with one delay decomposition, that is, α =
.. We also can get a much larger bound of output given in Figure  by α = .,
α = . and a much smaller one given in Figure  by α = ., α = ..

Figure 1 The output in Example 4.1 with α1 = 0, α2

= 1.

Figure 2 The output in Example 4.1 with α1

= 0.9595, α2 = 1.
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Figure 3 The output in Example 4.1 with α1

= 0.2769, α2 = 0.0462.

Figure 4 The output in Example 4.1 with α1

= 0.6551, α2 = 0.1626.

Example . Consider the system () with

A =

[
– 
 –

]

, B =

[
– 
 –

]

, C =

[
 
 

]

, D =

[
 
 

]

.

The purpose is to show the bound of output can be adjusted by delay decomposition and to
compare the allowable bounds of time delay h that guarantee the boundedness of the above
system. For wT (t) = [sin(t) cos(t)], solving LMI () gives us the stabilizing feedback gain
matrices with h = ., α = ., η = –., β = ., β = .. We have

K =

[
–. –.
–. –.

]

, K =

[
–. .
. –.

]

.

The larger bound of output is shown in Figure  by α = . as compared with that
without delay decomposition in Figure . Certainly, the bound of output can also become
smaller shown in Figures  and . And it can be seen that the proposed approaches can
provide a higher bound than that in the existing result [] with the same parameters.

5 Conclusions
In this paper, we consider the disturbance-output property of a delay system. Our con-
tributions are as follows: () The delay decomposition approach is used to take informa-
tion of delayed plant states into full consideration. It is also helpful for estimating the up-
per bound of some cross terms more precisely. Our examples reveal that we can use this
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Figure 5 The output in Example 4.2 with α3

= 0.4218, η = 0.8315, β1 = 0.7922, β2 = 0.9595.

Figure 6 The output in Example 4.2 with α3 = 0, η
= 0.8315, β1 = 0.7922, β2 = 0.9595.

Figure 7 The output in Example 4.2 with α3

= 0.7952, η = –0.1225, β1 = 0.3816, β2 = 0.7655.

Figure 8 The output in Example 4.2 with α3 = 0, η
= –0.1225, β1 = 0.3816, β2 = 0.7655.
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method to vary the bounds of the output by tuning the parameters. () Compared with
the existing results on the analysis of the input-output stability, our criteria are established
by the method of Lyapunov and LMI tools instead of small gain theory or transfer func-
tion. We show how Lyapunov stability tools can be used to establish L∞ stability of dy-
namic systems represented by the state model. () A novel integral inequality is utilized,
which produces much tighter bounds than what the Jensen inequality and B-L inequality
produce. Potential applications of the theoretical results proposed here need to be devel-
oped. Moreover, it is interesting to consider the disturbance-output property by impulsive
control in future work.
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