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1 Introduction
Locally convex probabilistic normed spaces are an interesting topic. In fact, some papers
[–] discussed the subject, and we enjoy the topic too. On the basis of these papers, we try
to search more concepts and properties about locally convex probabilistic normed spaces.
In this article, we show our results.

Probabilistic normed spaces (briefly, PN spaces) were introduced by Šerstnev [] by
means of a definition that was closely modeled in the theory of normed spaces. Here we
consistently adopt the new and, in our opinion, convincing definition of a PN space given
Alsina, Schweizer, and Sklar [], from which we further use the notation and concepts.
On the basis of this classical work, continuity properties, linear operators, and nonlinear
operators on PN spaces are studied in detail [–], and contraction maps, boundedness
property, finite and countable infinite products, and probabilistic quasi-normed spaces
are deeply discussed [–]. In order to understand the new advances on PN spaces, we
refer to [].

We recall the definition, properties, and examples of probabilistic normed spaces. Let
� be the space of distribution functions, and �+ := {F ∈ � : F() = } be the subset of
distance distribution functions []. The space � can be metrized in several equivalent
ways so that the metric topology coincides with the topology of weak convergence for
distribution functions. Here, we assume that � is metrized by the Sibley metric dS , which
is the same metric denoted by dL in []. We also consider the subset D+ ⊂ �+ of the
proper distance distribution functions, that is, those F ∈ �+ for which limx−→+∞ F(x) = .

A triangle function is a mapping τ : �+ × �+ −→ �+ that is commutative, associative,
nondecreasing in each variable and has ε as the identity, where εa (a ≤ +∞) is the distri-
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bution function defined by

εa(t) :=

⎧
⎨

⎩

, t ≤ a,

, t > a.

Given a nonempty set S, a mapping F from S × S into �+ and a triangle function τ ,
a probabilistic metric space (briefly a PM space) is the triple (S,F , τ ) with the following
properties, where we set Fp,q := Fp,q:

(PM) Fp,q = ε if and only if p = q;
(PM) Fp,q = Fq,p for all p and q ∈ S;
(PM) Fp,r ≥ τ (Fp,q, Fq,r) for all p, q, r ∈ S.
A probabilistic normed space (briefly, a PN space) is a quadruple (V ,υ, τ , τ ∗), where V

is a vector space, τ and τ ∗ are continuous triangle functions such that τ ≤ τ ∗, and υ is a
mapping from V into �+, called the probabilistic norm, such that for every choice of p and
q in V , the following conditions hold:

(PN) υp = ε if and only if p = θ (θ is the null vector in V);
(PN) υ–p = υp;
(PN) υp+q ≥ τ (υp,υq);
(PN) υp ≤ τ ∗(υλp,υ(–λ)p) for every λ ∈ [, ].
When there is a continuous t-norm T (see [, ]) such that τ = τT and τ ∗ = τT∗ , where

T∗(x, y) :=  – T( – x,  – y),

τT (F , G)(x) := sup
s+t=x

T
(
F(s), G(t)

)
, and τT∗ (F , G)(x) := inf

s+t=x
T∗(F(s), G(t)

)
,

the PN space (V ,υ, τT , τT∗ ) is called a Menger PN space and is denoted by (V ,υ, T).
A PN space is called a Šerstnev space if it satisfies (PN), (PN), and the following con-

dition, which implies both (PN) and (PN):
For any p ∈ V , α ∈R\{}, and x > , υαp(x) = υp( x

|α| ).
If (V ,υ, τ , τ ∗) is a PN space and a mapping F : V × V −→ �+ is defined as

F (p, q) := υp–q ()

then (V ,F , τ ) is a probabilistic metric space. Every PM space can be endowed with strong
topology; this topology is generated by the strong neighborhoods defined as follows: for
every t > , the neighborhood Np(t) at a point p of V is defined by

Np(t) :=
{

q ∈ V : dS(υp–q, ε) < t
}

=
{

q ∈ V : υp–q(t) >  – t
}

.

Definition . Let V is a topological space. If for any p ∈ V , Wp is a neighborhood system
of p, then the subset Up ⊂Wp is a neighborhood base of p if for any W ∈Wp, there exists
U ∈ Up such that U ⊂ W .

The local base of V is a neighborhood base of any p in V . For a topological linear space,
the neighborhood base of θ can be translated to be a neighborhood base of any point p
in V . Thus, we always call the neighborhood base of θ the local base.

Definition . Let V is a real linear space, and W ⊂ V .
() W is a convex set if for any t ∈ (, ), tW + ( – t)W ⊂ W .
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() W is a balanceable set if for any α ∈R such that |α| ≤ , αW ⊂ W .
() W is a symmetrical set if W = –W .
() W is an absorbing set if for any p ∈ V , there exists λ >  such that μp ∈ W , where

|μ| ≤ λ (μ ∈R).

Definition . ([]) Let V is a real linear space. A real function p is called a seminorm
on V if it has following properties:

() p(x + y) ≤ p(x) + p(y) and
() p(αx) = |α|p(x) for all x, y ∈ V and α ∈ R.

2 Main Results
Lemma . ([]) Let W is a subset of a linear space V having the following properties:

(a) For any W, W ∈W , there exists W ∈W such that W ⊂ W ∩ W;
(b) Every W ∈W is a balanceable set;
(c) For any W ∈W and p ∈ V , there exists α ∈ R, α 
= , such that αp ∈ W ;
(d) For any W ∈W , there exists W ∈W such that W + W ⊂ W ;
(e) If W ∈W and  
= α ∈R, then αW ∈W .
Then there exists a linear topology τ onV such thatW in the topology τ is a neighborhood

base of zero. Conversely, there exists a neighborhood base of zero that satisfies properties
(a)-(e) on every topological linear space V .

(I) Š-probabilistic seminorm and locally convex Š-probabilistic semi-normed spaces

Definition . A Šerstnev probabilistic seminorm υ with τ (briefly, a Š-probabilistic
seminorm) is a mapping from V into �+, where V is a real vector space, and τ is a contin-
uous triangle function for all p, q in V , such that the following conditions hold:

(ŠPSN) υp+q(t) ≥ τ (υp,υq)(t);
(ŠPSN) υαp(t) = υp( t

|α| ) for all α ∈R.
We adopt the convention that υp( t

|| ) = ε(t).
Let υ = ε. It is obvious that for any Š-probabilistic seminorm υp, if p = θ , then υp = ε,

and υ–p = υp.
If V satisfies (ŠPSN) and (ŠPSN), then (V ,υ, τ ) is said to be a Š-probabilistic seminorm

space with τ (briefly, a Š-PSN space).
Obviously, every Šerstnev probabilistic norm is a Šerstnev probabilistic seminorm, and

a Šerstnev space is a Š-PSN space.

Definition . A linear topological space V is called a locally convex space if it has a
convex neighborhood base of zero.

Theorem . Let V be a vector space, and υ be a Š-probabilistic seminorm with τ and υ

satisfying the following condition:
(ŠPSN) For any p, q ∈ V , t, t > , if υp(t) >  – λ and υq(t) >  – λ, then υp+q(t + t) >

 – λ.
Then we have:
() For each λ ∈ (, ], the function Pλ defined by

Pλ(p) := inf
{

t ≥ ;υp(t) >  – λ
}
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is a seminorm.
() (V ,υ) is a locally convex topological linear space induced by the family of seminorms

{Pλ,λ ∈ (, ]}, and for any positive integer n and each p ∈ V ,

W(p) =
{

W (p,λ,λ, . . . ,λn,λ) : λ > ,λ,λ, . . . ,λn ∈ (, ]
}

is the basis of neighborhoods of zero, where

W (p,λ,λ, . . . ,λn,λ) =
{

p ∈ V : Pλi (p) < λ,λi ∈ (, ], i = , , . . . , n
}

.

() The topology induced by the basis W(p) of neighborhoods of zero coincides with the
topology induced by the following basis of neighborhoods of zero:

N =
{

U(ε,λ);λ ∈ (, ]
}

,

where

U(ε,λ) =
{

p ∈ V ;υp(ε) >  – λ,λ ∈ (, ], ε > 
}

.

Proof () For any α ∈ R, α 
= , we have

Pλ(αp) = inf
{

t ≥ ;υαp(t) >  – λ
}

= inf

{

t ≥ ;υp

(
t

|α|
)

>  – λ

}

= |α| inf
{

t ≥ ;υp(t) >  – λ
}

= |α|Pλ(p).

It is obvious that from α =  we get Pλ( · p) =  ·Pλ(p) and Pλ(p) ≥ . According to the
definition of Pλ, for any ε > , we have υp(Pλ(p) + ε

 ) >  – λ and υq(Pλ(q) + ε
 ) >  – λ. By

condition (ŠPSN), υp+q(Pλ(p) + Pλ(q) + ε) >  – λ. Therefore,

Pλ(p + q) = inf
{

t ≥ ;υp+q(t) >  – λ
}

≤ Pλ(p) + Pλ(q) + ε.

Letting ε → , we have Pλ(p + q) ≤ Pλ(p) + Pλ(q), λ ∈ (, ].
Conclusion () is proved.
() Firstly, it is easy to show that W (p,λ,λ, . . . ,λn,λ) is convex. In fact, for any p, q ∈

W (p,λ,λ, . . . ,λn,λ),

Pλi (p) < λ and Pλi (q) < λ.

Then, for every t ∈ [, ],

Pλi

(
tp + ( – t)q

) ≤ Pλi (tp) + Pλi

(
( – t)q

)
= tPλi (p) + ( – t)Pλi (q) < tλ + ( – t)λ = λ.
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Thus,

tp + ( – t)q ∈ W (p,λ,λ, . . . ,λn,λ).

Secondly, we consider the system

W(p) =
{

W (p,λ,λ, . . . ,λn,λ) : λ > ,λ,λ, . . . ,λn ∈ (, ]
}

,

in which W (p,λ,λ, . . . ,λn,λ) = {p ∈ V : Pλi (p) < λ,λi ∈ (, ], i = , , . . . , n}. By Lemma .
we know that if W = W (p,λ′

,λ′
, . . . ,λ′

n,λ′), W = W (p,λ′′
 ,λ′′

, . . . ,λ′′
m,λ′′), λ = min(λ′,λ′′),

and W = W (p,λ′
,λ′

, . . . ,λ′
n,λ′′

 ,λ′′
, . . . ,λ′′

m,λ), then W ⊂ W ∩ W, so that property (a) is
satisfied.

If α ∈ R and |α| ≤ , then from Pλi (p) < λ, we get Pλi (αp) < λ, that is, the set
W (p,λ,λ, . . . ,λn,λ) is balanceable, so that property (b) is satisfied.

Let q ∈ V and denote W (p,λ,λ, . . . ,λn,λ) by W. Let μ ∈R be such that  < |μ| < λ, and
let σ = max≤i≤n Pλi (q). If q /∈ W and α = μσ –, then Pλi (αq) = |μ|σ –Pλi (q) ≤ |μ| < λ,
that is, αq ∈ W, so that property (c) is satisfied.

Let W = W (p,λ,λ, . . . ,λn, –λ). Then W + W = 
 W + 

 W = W, and we see that
W(p) satisfies property (d).

Since W = W (p,λ,λ, . . . ,λn,λ) and α ∈R, α 
= , we have

αW =
{
αp|Pλi (p) < λ, i = , , . . . , n

}

=
{

p|Pλi (p) < |α|λ, i = , , . . . , n
}

= W (p,λ,λ, . . . ,λn, |α|λ),

that is, αW ∈W(p), so W(p) satisfies property (e).
Conclusion () is proved.
() Next, we prove that U(λ,λi) = W (p,λi,λ) (i = , , . . . , n). Let p ∈ U(λ,λi). Then

υp(λ) >  – λi. Since the distribution function υp is left continuous, there exists λ′ ∈ (,λ)
such that, for each i = , , . . . , n,

υp(λ) ≥ υp
(
λ′) >  – λi.

Hence,

inf
{

t ≥ ;υp(t) >  – λi
} ≤ λ′ < λ,

which implies that p ∈ W (p,λi,λ). Conversely, let p ∈ W (p,λi,λ) = {p ∈ V : Pλi (p) < λ}.
Then Pλi (p) =inf{t ≥ ;υp(t) >  – λi} < λ, υp(λ) >  – λi, that is, p ∈ U(λ,λi). Thus, we get
the conclusion U(λ,λi) = W (p,λi,λ) (i = , , . . . , n).

On the other hand, for each W = W (p,λ,λ, . . . ,λn,λ) ∈W(p), we have

W (p,λ,λ, . . . ,λn,λ) =
{

p ∈ V : Pλi (p) < λ,λi ∈ (, ], i = , , . . . , n
}

=
n⋂

i=

W (p,λi,λ) =
n⋂

i=

U(λ,λi),
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which implies that W(p) coincides with N. Therefore, the topologies induced by them
are equivalent. This completes the proof. �

Theorem . A S̆erstnev space (V ,υ, τ ) is a locally convex Š-probabilistic normed space.

Proof By Corollary .. [], τM = τM∗ . It suffices to consider the family of neighborhoods
of the origin θ , Nθ = {U(ε,λ);λ ∈ (, ]}. Let p, q ∈ U(ε,λ), λ ∈ (, ], and α ∈ [, ], ε > .
Then

υαp+(–α)q(ε) ≥ τM(υαp,υ(–α)q)(ε)

= sup
β∈[,]

TM
(
υαp(βε),υ(–α)q

(
( – β)ε

))

≥ TM
(
υαp(αε),υ(–α)q

(
( – α)ε

))

= TM
(
υp(ε),υq(ε)

)

>  – λ.

Thus, for every α ∈ [, ],

αp + ( – α)q ∈ U(ε,λ).

This completes the proof. �

(II) Probabilistic seminorm and locally convex probabilistic seminormed spaces

Definition . A probabilistic seminorm υ with τ and τ ∗ is a mapping from V into �+,
where V is a real vector space, τ and τ ∗are continuous triangle functions for all p, q in V ,
and the following conditions hold:

(PSN) υ–p(t) = υp(t);
(PSN) υp+q(t) ≥ τ (υp,υq)(t);
(PSN) υp(t) ≤ τ ∗(υαp,υ(–α)p)(t) for all α ∈ [, ].
If V satisfies (PSN), (PSN), and (PSN), then (V ,υ, τ , τ ∗) is said to be a probabilistic

seminorm space (briefly, a PSN space).
Similarly, when there is a continuous t-norm T (see [, ]) such that τ = τT and τ ∗ = τT∗ ,

where

T∗(x, y) :=  – T( – x,  – y),

τT (F , G)(x) := sup
s+t=x

T
(
F(s), G(t)

)
, and τT∗ (F , G)(x) := inf

s+t=x
T∗(F(s), G(t)

)
,

the PSN space (V ,υ, τT , τT∗ ) is called a Menger PSN space and is denoted by (V ,υ, T).
Obviously, a probabilistic norm is a probabilistic seminorm, and a PN space is a PSN

space.

It is easy to prove that following lemma.
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Lemma . Let υp is a probabilistic seminorm with τ and τ ∗. Then for any α,β ∈ R such
that |α| < |β| and any p ∈ V ,

υβp ≤ υαp.

Definition . A linear space V is called a locally convex probabilistic seminormed
(normed) space if it has a convex neighborhood of zero induced by a probabilistic semi-
norm (norm).

Theorem . For each λ ∈ (, ], let Pλ(p) := inft{t ≥ ;υp(t) >  – λ}, where υp(t) is a
probabilistic seminorm satisfying the following conditions:

() υp(t) = τ (υαp,υ(–α)p)(t);
() For any p, q ∈ V and any t, t > , the inequalities υp(t) >  – λ and υq(t) >  – λ,

imply υp+q(t + t) >  – λ.
Then:
() Pλ is a seminorm;
() (V ,υ) is a locally convex topological space induced by the family of semi-norms

{Pλ,λ ∈ (, ]}, and, for any positive integer n and each p ∈ V ,

W(p) =
{

W (p,λ,λ, . . . ,λn,λ) : λ > ,λ,λ, . . . ,λn ∈ (, ]
}

is a basis of neighborhoods of zero, where

W (p,λ,λ, . . . ,λn,λ) =
{

p ∈ V : Pλi (p) < λ,λi ∈ (, ], i = , , . . . , n
}

;

() The topology induced by the basis W(p) of neighborhoods of zero coincides with the
topology induced by the following basis of neighborhoods of zero:

N =
{

U(ε,λ);λ ∈ (, ]
}

,

where

U(ε,λ) =
{

p ∈ V ;υp(ε) >  – λ,λ ∈ (, ]
}

.

Proof () By Theorem  of [] we know that the PN space is a S̆erstnev PN-space when
τ = τM . So the probabilistic seminorm includes the example in the sense of S̆erstnev as a
particular case.

For any F ∈ �+, let F∧ denote the left-continuous quasi-inverse of F , that is, the function
defined for all t ∈ [, ] by

F∧(t) = sup
{

x|F(x) < t
}

.

It is known form [], Section ., that, for any F , G, H in �+, H = τM(F , G) if and only if

H∧ = F∧ + G∧.
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Thus, we get

υ∧
p = υ∧

αp + υ∧
(–α)p for all p ∈ V and α ∈ [, ].

It follows from H∧ = F∧ + G∧ that the function ft : V −→ R+ defined for a fixed t ∈ [, ]
by ft(p) = υ∧

p (t) satisfies f (–p) = f (p) and f (p) = f (αp) + f (( – α)p). Therefore, for all λ ∈ R
and all t ∈ [, ],

υ∧
λp(t) = ft(λp) = |λ|ft(p) = |λ|υ∧

p (t),

whence υ∧
λp = |λ|υ∧

p , which is equivalent to Pλ(αp) = αPλ(p) (see [], Thm. ).
By the definition of Pλ, for any ε > , we have υp(Pλ(p) + ε

 ) >  – λ and υq(Pλ(q) + ε
 ) >

 – λ. By condition (), υp+q(Pλ(p) + Pλ(q) + ε) >  – λ. Therefore,

Pλ(p + q) = inf
t

{
t ≥ ;υp+q(t) >  – λ

}

≤ Pλ(p) + Pλ(q) + ε.

Letting ε → , we get Pλ(p + q) ≤ Pλ(p) + Pλ(q) for λ ∈ (, ).
Conclusion () is proved.
() and (). The proof is similar to that of () and () of Theorem ..
This completes the proof. �

Definition . ([]) A PN space (V ,υ, τ , τ ∗) is called a characteristic space if
limt→+∞ υp(t) = .

Theorem . Let (V ,υ, T) be a characteristic Menger PSN space. Then every neighborhood
U(ε,λ) = {p ∈ V ;υp(ε) >  – λ,λ ∈ (, ]} of the origin θ is a balanced and absorbing set.

Proof Firstly, we show that U(ε,λ) is a balanceable set.
For any p ∈ U(ε,λ) and |α| ≤ , by Lemma ., υαp(ε) ≥ υp(ε) >  –λ. Thus, αp ∈ U(ε,λ).
Now we show that U(ε,λ) is an absorbing set.
Since V is a characteristic space, that is, limt→+∞ υp(t) =  for any p ∈ V . Then for λ ∈

(, ] and ε > , taking t such that  < t < λ, there exists t > ε such that υp(t) >  – t,
and letting δ = ε

t
< , by (PSN) we have

υp(t) ≤ τ ∗(υδp,υ(–δ)p)(t)

= inf
≤k≤

T∗(υδp(kt),υ(–δ)p
(
( – k)t

))

≤ T∗(υδp(δt),υ(–δ)p
(
( – δ)t

))

≤ υδp(δt)

= υδp(ε) (t > ε).

Therefore, we have

υδp(ε) ≥ υp(t) >  – t >  – λ.



Chi et al. Journal of Inequalities and Applications  (2016) 2016:319 Page 9 of 13

Thus, when |μ| < δ, by Lemma . we have

υμp(ε) ≥ υδp(ε) >  – λ.

Then,

μp ∈ U(ε,λ) whenever |μ| < δ.

This completes the proof. �

(III) The cases of simple spaces and α-simple spaces

Definition . LetV is a locally convex space, andW be a balanced convex neighborhood
base. Then, for all W ∈W and x ∈ V , we define the Minkowski functional pw(x) as follows:

pw(x) = inf{μ|x ∈ μW ,μ > }.

Lemma . The Minkowski functional pw is a seminorm.

Proof Let x, y ∈ V , and for any ε > , let λ = pw(x)+ε

pw(x)+pw(y)+ε
. Then we have  < λ <  and

 – λ = pw(y)+ε

pw(x)+pw(y)+ε
. By the definition of pw we have

x ∈ [
pw(x) + ε

]
W , y ∈ [

pw(y) + ε
]
W

or


pw(x) + ε

x ∈ W ,


pw(y) + ε
y ∈ W .

Since the set W is convex, we have

λ


pw(x) + ε
x + ( – λ)


pw(y) + ε

y ∈ W

or


pw(x) + pw(y) + ε

(x + y) ∈ W .

Therefore,

x + y ∈ [
pw(x) + pw(y) + ε

]
W .

According to the definition of pw, we get

pw(x + y) ≤ pw(x) + pw(y) + ε.

Since ε is arbitrary, we have

pw(x + y) ≤ pw(x) + pw(y).
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Now let x ∈ V . For any α > , we have

pw(αx) = inf{μ|αx ∈ μW ,μ > }

= inf

{

μ|x ∈ μ

α
W ,μ > 

}

= α inf

{
μ

α

∣
∣
∣x ∈ μ

α
W ,

μ

α
> 

}

= αpw(x).

If  
= α ∈ R, then α = |α|β , |β| = . In view of the balanceable property of the set W , we
have β–W = W and pw(βx) = pw(x), so that

pw(αx) = pw
(|α|βx

)
= |α|pw(βx) = |α|pw(x).

It is obvious that P() = . This completes the proof. �

Definition . Let (V ,‖ · ‖) be a normed space, and let G ∈ �+ be different from ε and
from ε∞. We define υ : V −→ �+ by

υp(t) := G
(

t
‖p‖

)

(p 
= θ , t > ).

The pair (V ,υ) is called the simple space generated by (V ,‖ · ‖) and G.

Theorem . Let pw is a Minkowski function of Definition ., and let G ∈ �+. Then
υp(t) := G( t

pw(p) ) is a Š-probabilistic seminorm with τM generated by the Minkowski func-
tional (briefly, Minkowski Š-probabilistic seminorm).

Proof It is obvious that υpw (t) = υ–pw (t) is satisfied. Given a d.f. F , its quasi-inverse F∧ is
defined by

F∧(x) = sup
{

t : F(t) < x
}

.

Since υ∧
p = pw(p)G∧ for all p, q ∈ V , we have

[
τM(υp,υq)

]∧ = υ∧
p + υ∧

q

= pw(p)G∧ + pw(q)G∧

=
(
pw(p) + pw(q)

)
G∧

≥ pw(p + q)G∧

= υ∧
p+q.

Thus,

υp+q ≥ τM(υp,υq).



Chi et al. Journal of Inequalities and Applications  (2016) 2016:319 Page 11 of 13

By the equality τM = τM∗ [], Cor. .., we have

[
τM∗ (υλp,υ(–λ)p)

]∧ =
[
τM(υλp,υ(–λ)p)

]∧

= λpw(p)G∧ + ( – λ)pw(p)G∧

= pw(p)G∧

= υ∧
p ,

and thus

υp = τM∗ (υλp,υ(–λ)p).

By Lemma  of [], condition (ŠPSN) holds. This completes the proof. �

In view of Theorem ., we easily get the corollary.

Corolary . A simple space is a locally convex Š-probabilistic seminormed space.

Definition . A PSN space (V ,υ) is said to be equilateral if there is a d.f. F∈ �+, different
from ε and from ε∞, such that, for every p 
= θ , υp = F .

Theorem . An equilateral space is a locally convex Š-probabilistic seminormed space.

Proof According to the definition of an equilateral space, we know that for every p 
= θ ,
υp = F and easily get that the following two conditions are satisfied:

() υp+q(t) ≥ τ (υp,υq)(t);
() υαp(t) = υp( t

|α| ).
By the Theorem . we know that an equilateral space is a locally convex Š-probabilistic

seminormed space but not a TV space (topological vector space) and also it is a PN space
but not a TV space. This completes the proof. �

Definition . Let (V ,‖ · ‖) be a normed space, and let G ∈ �+ be different from ε and
ε∞. Define υ : V −→ �+ by

υp(t) := G
(

t
‖p‖α

)

(p 
= θ , t > ),

where α > . Then the pair (V ,υ) is called the α-simple space generated by (V ,‖ ·‖) and G.
The following theorem shows that, generally, an α-simple space need not be a locally

convex probabilistic seminormed space.

Theorem . Let U be the d.f. of the uniform law on (, ). Then the α-simple space
(V ,‖ · ‖, U ;α) with α ∈ (, ) for λ = / is not a locally convex probabilistic seminormed
space.
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Proof It is easy to evaluate υp(‖p‖α) = . On the other hand, τM∗ = τM and τM(F , F)(x) =
F(x/) for all F ∈ �+ and x ≥ . Therefore,

τM∗ (υp/,υp/)
(‖p‖α

)
= U

( ‖p‖α

‖p/‖α

)

=
α

‖p‖α

‖p‖α



= α–

< .

Thus,

υp
(‖p‖α

)
> τM∗ (υp/,υp/)

(‖p‖α
)
.

Obviously, condition (PSN) is not satisfied, and this α-simple space is not a locally convex
probabilistic seminormed space. This completes the proof. �

Theorem . Let (V ,‖ · ‖) be a normed space, G ∈ D+ be a strictly increasing continuous
d.f., and T be a strict t-norm with additive generator f. Then, for every α >  with α 
= ,
(V ,‖ · ‖, G,α) is a locally convex Š-probabilistic seminormed space under T if the following
inequalities hold for all u, v ∈ (, +∞), λ ∈ [, ], and every pair of points p and q in V with
p 
= θ , q 
= θ , and p + q 
= θ :

() (f ◦ G)( u+v
‖p+q‖α ) ≤ (f ◦ G)( u

‖p‖α ) + (f ◦ G)( v
‖q‖α ) and

() (f ◦ G∗)( u+v
‖p‖α ) ≤ (f ◦ G∗)( u

λα‖p‖α ) + (f ◦ G∗)( v
(–λ)α‖p‖α ),

where G∗(x) :=  – G(x).

Proof Setting h := f ◦ G and h∗ := f ◦ G∗, we get
(a) h, h∗ : [, +∞] −→ [, +∞], h() = h∗(+∞) = +∞, h(+∞) = h∗() = ;
(b) both h and h∗ are continuous;
(c) h is strictly decreasing, and h∗ is strictly increasing.
Therefore, their inverses h– and (h∗)– satisfy the same properties as h and h∗, respec-

tively.
Let p and q be in V with p 
= θ , q 
= θ , and p + q 
= θ , and let λ ∈ (, ). For u, v > , let

s := h
(

u
‖p‖α

)

, t := h
(

v
‖q‖α

)

.

Thus, h–(s) = u
‖p‖α and h–(t) = v

‖q‖α . Now an easy calculation shows that () is equivalent
to

‖p + q‖αh–(s + t) ≤ ‖p‖αh–(s) + ‖q‖αh–(t).

In a similar way, we show that () is equivalent to

λα
(
h∗)–(s) + ( – λ)α

(
h∗)–(t) ≤ (

h∗)–(s + t).

Thus, υp is a Š-probabilistic seminorm, and by Theorem. we know that (V ,‖ · ‖, G,α) is
a locally convex Š-probabilistic seminormed space. This completes the proof. �
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3 Conclusion
The concept of this paper is motivated by the increased interest of the research on best
approximation in statistics. The concept of locally convex probabilistic normed spaces has
been introduced following the definition of Šerstnev through the intersection of two con-
cepts of locally convex spaces and probabilistic normed spaces. In this paper, we discuss
the condition under which a vector space is in fact a locally convex space and the rela-
tion between seminorm and locally convex spaces. Then, we give some particular cases
of locally convex spaces. We prove some examples of locally convex probabilistic Šerst-
nev semi-normed spaces (Theorem . and Theorem .). Also, we give some properties
of locally convex probabilistic seminormed spaces in Theorem . and Theorem .. In
the third part of this work, we prove that some kinds of simple spaces including α-simple
spaces are locally convex PN spaces (Theorems .-.). The theory of locally convex prob-
abilistic normed spaces can be also applied to fuzzy optimization problems and probabilis-
tic models, and by using this theory many innovative methods can be developed further
in some fascinating area of the stochastic optimal control theory.
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