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Abstract
Recently, Sofonea (Gen. Math. 16:47-54, 2008) considered some relations in the
context of quantum calculus associated with the q-derivative operator Dq and divided
difference. As applications of the post-quantum calculus known as the (p,q)-calculus,
we derive several relations involving the (p,q)-derivative operator and divided
differences.
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1 Introduction
The quantum calculus has many applications in the fields of special functions and many
other areas (see [–]). Further there is possibility of extension of the q-calculus to post-
quantum calculus denoted by the (p, q)-calculus. Actually such an extension of quantum
calculus cannot be obtained directly by substitution of q by q/p in q-calculus. When
the case p =  in (p, q)-calculus, the q-calculus may be obtained (see [, ]). Recently,
Chakrabarti and Jagannathan [] introduced a consideration of the (p, q)-integer in order
to generalize or unify several forms of q-oscillator algebras well known in the physics liter-
ature related to the representation theory of single-paramater quantum algebras (see also
[–] and []). They also considered the necessary elements of the (p, q)-calculus involv-
ing (p, q)-exponential, (p, q)-integration and the (p, q)-differentiation. Corcino [] devel-
oped the theory of a (p, q)-extension of the binomial coefficients and also established some
properties parallel to those of the ordinary and q-binomial coefficients, which is comprised
horizontal generating function, the triangular, vertical, and the horizontal recurrence re-
lations and the inverse and the orthogonality relations. Sadjang [] investigated some
properties of the (p, q)-derivatives and the (p, q)-integrations. Sadjang [] also provided
two suitable polynomial bases for the (p, q)-derivative and gave various properties of these
bases.

The (p, q)-number is given by

[n]p,q =
pn – qn

p – q
(p �= q),
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which is a natural generalization of the q-number: that is, we have (cf. [] and [])

lim
p→

[n]p,q := [n]q.

It is clear that the notation [n]p,q is symmetric, that is,

[n]p,q = [n]q,p.

The (p, q)-Gauss binomial coefficients given by

[
n
k

]
p,q

=
[n]p,q!

[n – k]p,q![k]p,q!
(n � k)

and the (p, q)-factorial given by

[n]p,q! = [n]p,q[n – ]p,q · · · []p,q[]p,q (n ∈N)

are also known from [] and []. Further, the (p, q)-analogs of Pascal’s identity are given
by

[
n + 

k

]
p,q

= pk

[
n
k

]
p,q

+ qn–k

[
n

k – 

]
p,q

= qk

[
n
k

]
p,q

+ pn–k

[
n

k – 

]
p,q

,

where k ∈ {, , , . . . , n} (cf. [] and []).
Let p and q be elements of complex numbers and D = Dp,q ⊂ C such that x ∈ D implies

px ∈ D and qx ∈ D. Here, in this investigation, we give the following two definitions which
involve a post-quantum generalization of Sofonea’s work [].

Definition  Let  < |q| < |p| � . A given function f : Dp,q → C is called (p, q)-
differentiable under the restriction that, if  ∈ Dp,q, then f ′() exists.

Definition  Let  < |q| < |p| � . A given function f : Dp,q → C is called (p, q)-
differentiable of order n, if and only if  ∈ Dp,q implies that f (n)() exists.

The (p, q)-derivative operator of a function f is defined by

Dp,qf (x) =
f (px) – f (qx)

(p – q)x
(x �= ) (.)

and

(Dp,qf )() = f ′(),

provided that the function f is differentiable at . We note that

Dp,q = Dq,p.
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Furthermore,

(Dp,qfg)(x) = g(px)(Dp,qf )(x) + f (qx)(Dp,qg)(x) (.)

and (
Dp,q

f
g

)
(x) =

g(px)(Dp,qf )(x) – f (px)(Dp,qg)(x)
g(px)g(qx)

(
g(px)g(qx) �= 

)
(.)

hold true for the linear operator Dp,q (cf. []).
The divided differences at a system of distinct points x, x, . . . , xn are denoted by

[x, x, . . . , xn; f ]. In fact, we have (see [] and [])

[x, x, . . . , xn; f ] =
n∑

k=

f (xk)∏n
(i�=k)
i=

(xk – xi)
. (.)

In the next part of the paper, we obtain some potentially useful results and relations
between the (p, q)-derivative operator and divided differences. The results presented here
provide a good generalization of the above-mentioned Sofonea results.

2 Main results
Let us consider the points

xk = pkqn–kx (k = , , . . . , n)

as follows:

x = qnx, x = qn–px, . . . , xn– = qpn–x, xn = pnx.

We now state the following theorem.

Theorem  Let p and q be complex numbers with

 < |q| < |p|�  and f : Dp,q →C.

Then, by taking the knots xk = pkqn–kx,

[
qnx, qn–px, . . . , qpn–x, pnx; f

]
=


q(n

)[n]p,q!xn(p – q)n

n∑
k=

(–)n–k

[
n
k

]
p,q

p
–k(n–k–)

 q(k
)f

(
xpkqn–k). (.)

Proof For  � l < k, we have

xk – xl = xplqn–k(p – q)[k – l]p,q

and, for k < l � n, we find that

xk – xl = xpkqn–l(q – p)[l – k]p,q.
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Since

n∏
l=
l �=k

(xk – xl) =
k–∏
l=

(xk – xl)
n∏

l=k+

(xk – xl)

= xnp(n–k)k(–)n–k(p – q)nqk(n–k)+(n–k
 )[k]p,q!pk(n–k)+(k

)[n – k]p,q!

= (–)n–k(p – q)nxnpk(n–k–)/q(n
)–(k

)[k]p,q![n – k]p,q!,

we have the following consequence from (.):

[x, x, . . . , xn; f ] =
q–(n

)

[n]p,q!xn(p – q)n

n∑
k=

(–)n–k

[
n
k

]
p,q

p–k(n–k–)/q(k
)f

(
xpkqn–k).

Therefore, the proof of Theorem  is completed. �

By using the following expressions:

D
p,q = I, D

p,q = Dp,q and Dk
p,q = Dp,qDk–

p,q ,

we now give a representation of the operator Dn
p,q as in Theorem  below.

Theorem  Let the function f : Dp,q →C be (p, q)-differentiable of order n. Then

(
Dn

p,qf
)
(x) =

q–(n
)

xn(p – q)n

n∑
k=

(–)n–k

[
n
k

]
p,q

q(k
)f (xpkqn–k)
pk(n–k–)/ . (.)

Proof Theorem  is proved by making use of the following results:

(Dp,qf )(x) =
f (qx) – f (px)

(q – p)x
=

f (qx)
qx – px

+
f (px)

px – qx
= []p,q![qx, px; f ]

and

(
D

p,qf
)
(x)

=
(Dp,qf )(qx) – (Dp,qf )(px)

(q – p)x

=
f (qx)–f (pqx)

(q–p)qx – f (pqx)–f (px)
(q–p)px

(p – q)x

= (p + q)
[

f (qx)
(q – p)(q – p)xq

–
f (pqx)

(q – p)xpq
+

f (px)
(q – p)(q – p)xp

]

= []p,q!
[
qx, pqx, px; f

]
.

Continuing this process, we deduce

(
Dn

p,qf
)
(x) = [n]p,q!

[
qnx, qn–px, . . . , qpn–x, pnx; f

]
(.)
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by using the following formula:

[x, x, . . . , xn; ·] =
[x, x, . . . , xn; ·] – [x, x, . . . , xn–; ·]

xn – x
.

It follows from Theorem  that

(
Dn

p,qf
)
(x) = q–(n

)x–n(p – q)–n
n∑

k=

(–)n–k

[
n
k

]
p,q

p–k(n–k–)/q(k
)f

(
xpkqn–k),

which completes the proof of Theorem . �

In the case when

f (x) = xn

in Theorem , we get the following corollary.

Corollary  The following result holds true:

(p – q)n =
n∑

k=

[
n
k

]
p,q

p(k+
 )q(n–k+

 ) (–)n–k

[n]p,q!
.

We now consider the (p, q)-analog of the Leibniz rule to represent it by means of the
divided differences. First of all, we need to get the (p, q)-analog of the Leibniz rule by the
following lemma.

Lemma Let the functions f : Dp,q → C and g : Dp,q → C be (p, q)-differentiable of order n.
Then

Dn
p,q(fg)(x) =

n∑
k=

[
n
k

]
p,q

Dk
p,q(f )

(
xpn–k)Dn–k

p,q (g)
(
xqk).

Proof The lemma can easily be proved by applying the principle of mathematical induc-
tion. We, therefore, omit the proof of the lemma. �

We now state the (p, q)-Leibniz rule by using divided differences as follows.

Theorem  Let the functions f : Dp,q → C and g : Dp,q → C be (p, q)-differentiable of or-
der n. Then (fg)(x) is also (p, q)-differentiable of order n and

Dn
p,q(fg)(x) = [n]p,q!

n∑
k=

[
qnx, qn–px, . . . , qn–k+pk–x, qn–kpkx; f

]

· [qn–kpkx, qn–k–pk+x, . . . , qpn–x, pnx; g
]
.

Proof Our assertion in Theorem  follows from equation (.) and the above lemma. The
details involved are being omitted here. �
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Now also we give a function at a point pnx by binomial expression and (p, q)-derivative
of order k.

Theorem  Let the function f : Dp,q →C be (p, q)-differentiable of order n. Then

f
(
pnx

)
=

n∑
k=

[
n
k

]
p,q

xkp(k
)(p – q)kDk

p,q
(
f (x)

)
.

Proof We consider Newton’s formula as follows:

f (z) =
n–∑
k=

(z – x)(z – x) · · · (z – xk–)[x, x, . . . , xk ; f ]

+ (z – x)(z – x) · · · (z – xn–)[x, x, . . . , xn–, z; f ]. (.)

Upon setting

xk = pkqn–kx (k = , , . . . , n – )

in equation (.) and z = pnx, if we use equation (.), we find that

f
(
pnx

)
=

n–∑
k=

(
pnx – qnx

)(
pnx – qn–px

) · · · (pnx – qn–k+pk–x
)

· [qnx, qn–px, . . . , qn–kpkx; f
]

+
(
pnx – qnx

)(
pnx – qn–px

) · · · (pnx – qpn–x
)

· [qnx, qn–px, . . . , qpn–x, pnx; f
]

=
n–∑
k=

(
pnx – qnx

)(
pnx – qn–px

) · · · (pnx – qn–k+pk–x
) (Dk

p,qf )(x)
[k]p,q!

+
(
pnx – qnx

)(
pnx – qn–px

) · · · (pnx – qpn–x
) (Dn

p,qf )(x)
[n]p,q!

=
n∑

k=

(
pnx – qnx

)(
pnx – qn–px

) · · · (pnx – qn–k+pk–x
) (Dk

p,qf )(x)
[k]p,q!

=
n∑

k=

xkp(k
)

(pn–qn)(pn––qn–)···(p–q)
(p–q)n

(pn–k –qn–k )(pn–k––qn–k–)···(p–q)
(p–q)n–k (p–q)k

(Dk
p,qf )(x)

[k]p,q!

=
n∑

k=

xkp(k
)(p – q)k [n]p,q!

[n – k]p,q![k]p,q!
(
Dk

p,qf
)
(x),

as asserted by Theorem . �

Finally, we are in a position to give the following result.

Corollary  Let p and q be complex numbers such that

 < |q| < |p|� .



Araci et al. Journal of Inequalities and Applications  (2016) 2016:301 Page 7 of 8

Also let the function f : Dp,q →C be (p, q)-differentiable of order n. Then

f (x) =
n∑

k=

[
n
k

]
p,q

qk(k–n)p(k+
 )(qx – px)k(Dk

p,qf
)(xpn–k

qk

)
.

Proof Since, for k ∈ {, , . . . , n},

[
n
k

]

p , 

q

=
[n] 

p , 
q

!

[n – k] 
p , 

q
![k] 

p , 
q

!
=

(pq)–(n
)

(pq)–(n–k
 )(pq)–(k

)

[
n
k

]
p,q

,

we have

(D 
p , 

q
f )(x) =

f ( x
q ) – f ( x

p )
(p – q)x

(pq) = pq(Dp,qf )
(

x
pq

)

and

(
D


p , 

q
f
)
(x) =

pq(Dp,qf )( x
pq ) – pq(Dp,qf )( x

pq )

( 
p – 

q )x

=
(pq)[(Dp,qf )( x

pq ) – (Dp,qf )( x
pq )]

(p – q)x

= pq(D
p,qf

)( x
pq

)
.

Continuing the process, we readily observe that

(
Dn


p , 

q
f
)
(x) = pnqn(Dn

p,qf
)( x

pnqn

)
. (.)

From Theorem , we thus conclude that

f (x) =
n∑

k=

[
n
k

]
p,q

qk(k–n)p(k+
 )(qx – px)k(Dk

p,qf
)(xpn–k

qk

)
,

which evidently proves Corollary . �

3 Conclusion
We have considered (p, q)-analogs of several results investigated recently by Sofonea [].
We have also given the (p, q)-Leibniz rule and stated the (p, q)-Leibniz rule by means of
divided differences. Moreover, we have shown that a function f at a point qnx can be gen-
erated by a linear combination of the (p, q)-derivatives of order k. In the case when p = ,
the results derived in this paper would correspond to those based upon the relatively more
familiar q-numbers.
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