# A certain $(p, q)$-derivative operator and associated divided differences 

Serkan Araci ${ }^{1 *}$, Uğur Duran ${ }^{2}$, Mehmet Acikgoz ${ }^{2}$ and Hari M Srivastava ${ }^{3,4}$

"Correspondence:
mtsrkn@hotmail.com
${ }^{1}$ Department of Economics, Faculty of Economics, Administrative and Social Science, Hasan Kalyoncu University, Gaziantep, 27410, Turkey Full list of author information is available at the end of the article


#### Abstract

Recently, Sofonea (Gen. Math. 16:47-54, 2008) considered some relations in the context of quantum calculus associated with the $q$-derivative operator $D_{q}$ and divided difference. As applications of the post-quantum calculus known as the ( $p, q$ )-calculus, we derive several relations involving the ( $p, q$ )-derivative operator and divided differences.

MSC: Primary 11B68; 11B83; secondary 81S40 Keywords: $q$-calculus; ( $p, q$ )-calculus; divided differences; ( $p, q$ )-derivative operator; $(p, q)$-Leibniz rule; principle of mathematical induction


## 1 Introduction

The quantum calculus has many applications in the fields of special functions and many other areas (see [1-7]). Further there is possibility of extension of the $q$-calculus to postquantum calculus denoted by the $(p, q)$-calculus. Actually such an extension of quantum calculus cannot be obtained directly by substitution of $q$ by $q / p$ in $q$-calculus. When the case $p=1$ in $(p, q)$-calculus, the $q$-calculus may be obtained (see [6, 7]). Recently, Chakrabarti and Jagannathan [8] introduced a consideration of the ( $p, q$ )-integer in order to generalize or unify several forms of $q$-oscillator algebras well known in the physics literature related to the representation theory of single-paramater quantum algebras (see also [3-5] and [9]). They also considered the necessary elements of the $(p, q)$-calculus involving $(p, q)$-exponential, $(p, q)$-integration and the $(p, q)$-differentiation. Corcino [10] developed the theory of a $(p, q)$-extension of the binomial coefficients and also established some properties parallel to those of the ordinary and $q$-binomial coefficients, which is comprised horizontal generating function, the triangular, vertical, and the horizontal recurrence relations and the inverse and the orthogonality relations. Sadjang [11] investigated some properties of the $(p, q)$-derivatives and the $(p, q)$-integrations. Sadjang [11] also provided two suitable polynomial bases for the $(p, q)$-derivative and gave various properties of these bases.

The $(p, q)$-number is given by

$$
[n]_{p, q}=\frac{p^{n}-q^{n}}{p-q} \quad(p \neq q),
$$

which is a natural generalization of the $q$-number: that is, we have ( $c f .[10]$ and [11])

$$
\lim _{p \rightarrow 1}[n]_{p, q}:=[n]_{q} .
$$

It is clear that the notation $[n]_{p, q}$ is symmetric, that is,

$$
[n]_{p, q}=[n]_{q, p} .
$$

The ( $p, q$ )-Gauss binomial coefficients given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q}=\frac{[n]_{p, q}!}{[n-k]_{p, q}![k]_{p, q}!} \quad(n \geqq k)
$$

and the $(p, q)$-factorial given by

$$
[n]_{p, q}!=[n]_{p, q}[n-1]_{p, q} \cdots[2]_{p, q}[1]_{p, q} \quad(n \in \mathbb{N})
$$

are also known from [10] and [11]. Further, the $(p, q)$-analogs of Pascal's identity are given by

$$
\begin{aligned}
{\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{p, q} } & =p^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q}+q^{n-k}\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{p, q} \\
& =q^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q}+p^{n-k}\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{p, q},
\end{aligned}
$$

where $k \in\{0,1,2, \ldots, n\}$ (cf. [10] and [11]).
Let $p$ and $q$ be elements of complex numbers and $D=D_{p, q} \subset \mathbb{C}$ such that $x \in D$ implies $p x \in D$ and $q x \in D$. Here, in this investigation, we give the following two definitions which involve a post-quantum generalization of Sofonea's work [1].

Definition 1 Let $0<|q|<|p| \leqq 1$. A given function $f: D_{p, q} \rightarrow \mathbb{C}$ is called $(p, q)$ differentiable under the restriction that, if $0 \in D_{p, q}$, then $f^{\prime}(0)$ exists.

Definition 2 Let $0<|q|<|p| \leqq 1$. A given function $f: D_{p, q} \rightarrow \mathbb{C}$ is called $(p, q)$ differentiable of order $n$, if and only if $0 \in D_{p, q}$ implies that $f^{(n)}(0)$ exists.

The $(p, q)$-derivative operator of a function $f$ is defined by

$$
\begin{equation*}
D_{p, q} f(x)=\frac{f(p x)-f(q x)}{(p-q) x} \quad(x \neq 0) \tag{1.1}
\end{equation*}
$$

and

$$
\left(D_{p, q} f\right)(0)=f^{\prime}(0)
$$

provided that the function $f$ is differentiable at 0 . We note that

$$
D_{p, q}=D_{q, p}
$$

Furthermore,

$$
\begin{equation*}
\left(D_{p, q} f g\right)(x)=g(p x)\left(D_{p, q} f\right)(x)+f(q x)\left(D_{p, q} g\right)(x) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(D_{p, q} \frac{f}{g}\right)(x)=\frac{g(p x)\left(D_{p, q} f\right)(x)-f(p x)\left(D_{p, q} g\right)(x)}{g(p x) g(q x)} \quad(g(p x) g(q x) \neq 0) \tag{1.3}
\end{equation*}
$$

hold true for the linear operator $D_{p, q}(c f .[11])$.
The divided differences at a system of distinct points $x_{0}, x_{1}, \ldots, x_{n}$ are denoted by $\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right]$. In fact, we have (see [1] and [2])

$$
\begin{equation*}
\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right]=\sum_{k=0}^{n} \frac{f\left(x_{k}\right)}{\prod_{\substack{(i \neq k) \\ i=0}}^{n}\left(x_{k}-x_{i}\right)} . \tag{1.4}
\end{equation*}
$$

In the next part of the paper, we obtain some potentially useful results and relations between the $(p, q)$-derivative operator and divided differences. The results presented here provide a good generalization of the above-mentioned Sofonea results.

## 2 Main results

Let us consider the points

$$
x_{k}=p^{k} q^{n-k} x \quad(k=0,1, \ldots, n)
$$

as follows:

$$
x_{0}=q^{n} x, \quad x_{1}=q^{n-1} p x, \quad \ldots, \quad x_{n-1}=q p^{n-1} x, \quad x_{n}=p^{n} x
$$

We now state the following theorem.

Theorem 1 Let $p$ and $q$ be complex numbers with

$$
0<|q|<|p| \leqq 1 \quad \text { and } \quad f: D_{p, q} \rightarrow \mathbb{C} .
$$

Then, by taking the knots $x_{k}=p^{k} q^{n-k} x$,

$$
\begin{align*}
& {\left[q^{n} x, q^{n-1} p x, \ldots, q p^{n-1} x, p^{n} x ; f\right]} \\
& \quad=\frac{1}{q^{\binom{n}{2}}[n]_{p, q}!x^{n}(p-q)^{n}} \sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} p^{\frac{-k(2 n-k-1)}{2}} q^{\binom{k}{2}} f\left(x p^{k} q^{n-k}\right) . \tag{2.1}
\end{align*}
$$

Proof For $0 \leqq l<k$, we have

$$
x_{k}-x_{l}=x p^{l} q^{n-k}(p-q)[k-l]_{p, q}
$$

and, for $k<l \leqq n$, we find that

$$
x_{k}-x_{l}=x p^{k} q^{n-l}(q-p)[l-k]_{p, q} .
$$

Since

$$
\begin{aligned}
\prod_{\substack{l=0 \\
l \neq k}}^{n}\left(x_{k}-x_{l}\right) & =\prod_{l=0}^{k-1}\left(x_{k}-x_{l}\right) \prod_{l=k+1}^{n}\left(x_{k}-x_{l}\right) \\
& =x^{n} p^{(n-k) k}(-1)^{n-k}(p-q)^{n} q^{k(n-k)+\binom{n-k}{2}}[k]_{p, q}!p^{k(n-k)+\binom{k}{2}}[n-k]_{p, q}! \\
& =(-1)^{n-k}(p-q)^{n} x^{n} p^{k(2 n-k-1) / 2} q^{\binom{n}{2}-\binom{k}{2}}[k]_{p, q}![n-k]_{p, q}!,
\end{aligned}
$$

we have the following consequence from (1.4):

$$
\left[x_{0}, x_{1}, \ldots, x_{n} ; f\right]=\frac{q^{-\binom{n}{2}}}{[n]_{p, q}!x^{n}(p-q)^{n}} \sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} p^{-k(2 n-k-1) / 2} q^{\binom{k}{2}} f\left(x p^{k} q^{n-k}\right) .
$$

Therefore, the proof of Theorem 1 is completed.

By using the following expressions:

$$
D_{p, q}^{0}=I, \quad D_{p, q}^{1}=D_{p, q} \quad \text { and } \quad D_{p, q}^{k}=D_{p, q} D_{p, q}^{k-1}
$$

we now give a representation of the operator $D_{p, q}^{n}$ as in Theorem 2 below.

Theorem 2 Let the function $f: D_{p, q} \rightarrow \mathbb{C}$ be $(p, q)$-differentiable of order $n$. Then

$$
\left(D_{p, q}^{n} f\right)(x)=\frac{q^{-\binom{n}{2}}}{x^{n}(p-q)^{n}} \sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n  \tag{2.2}\\
k
\end{array}\right]_{p, q} \frac{q^{\binom{k}{2}} f\left(x p^{k} q^{n-k}\right)}{p^{k(2 n-k-1) / 2}} .
$$

Proof Theorem 2 is proved by making use of the following results:

$$
\left(D_{p, q} f\right)(x)=\frac{f(q x)-f(p x)}{(q-p) x}=\frac{f(q x)}{q x-p x}+\frac{f(p x)}{p x-q x}=[1]_{p, q}![q x, p x ; f]
$$

and

$$
\begin{aligned}
& \left(D_{p, q}^{2} f\right)(x) \\
& \quad=\frac{\left(D_{p, q} f\right)(q x)-\left(D_{p, q} f\right)(p x)}{(q-p) x} \\
& =\frac{\frac{f\left(q^{2} x\right)-f(p q x)}{(q-p) q x}-\frac{f(p q x)-f\left(p^{2} x\right)}{(q-p) p x}}{(p-q) x} \\
& \quad=(p+q)\left[\frac{f\left(q^{2} x\right)}{\left(q^{2}-p^{2}\right)(q-p) x^{2} q}-\frac{f(p q x)}{(q-p)^{2} x^{2} p q}+\frac{f\left(p^{2} x\right)}{\left(q^{2}-p^{2}\right)(q-p) x^{2} p}\right] \\
& \quad=[2]_{p, q}!\left[q^{2} x, p q x, p^{2} x ; f\right] .
\end{aligned}
$$

Continuing this process, we deduce

$$
\begin{equation*}
\left(D_{p, q}^{n} f\right)(x)=[n]_{p, q}!\left[q^{n} x, q^{n-1} p x, \ldots, q p^{n-1} x, p^{n} x ; f\right] \tag{2.3}
\end{equation*}
$$

by using the following formula:

$$
\left[x_{0}, x_{1}, \ldots, x_{n} ; \cdot\right]=\frac{\left[x_{1}, x_{2}, \ldots, x_{n} ; \cdot\right]-\left[x_{0}, x_{1}, \ldots, x_{n-1} ; \cdot\right]}{x_{n}-x_{0}}
$$

It follows from Theorem 1 that

$$
\left(D_{p, q}^{n} f\right)(x)=q^{-\binom{n}{2}} x^{-n}(p-q)^{-n} \sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} p^{-k(2 n-k-1) / 2} q^{\binom{k}{2}} f\left(x p^{k} q^{n-k}\right),
$$

which completes the proof of Theorem 2.

In the case when

$$
f(x)=x^{n}
$$

in Theorem 2, we get the following corollary.

Corollary 1 The following result holds true:

$$
\left.(p-q)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} p^{\left(\frac{k+1}{2}\right)} q^{(n-k+1}{ }_{2}\right) \frac{(-1)^{n-k}}{[n]_{p, q}!} .
$$

We now consider the $(p, q)$-analog of the Leibniz rule to represent it by means of the divided differences. First of all, we need to get the $(p, q)$-analog of the Leibniz rule by the following lemma.

Lemma Let the functions $f: D_{p, q} \rightarrow \mathbb{C}$ and $g: D_{p, q} \rightarrow \mathbb{C}$ be $(p, q)$-differentiable of order $n$. Then

$$
D_{p, q}^{n}(f g)(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} D_{p, q}^{k}(f)\left(x p^{n-k}\right) D_{p, q}^{n-k}(g)\left(x q^{k}\right)
$$

Proof The lemma can easily be proved by applying the principle of mathematical induction. We, therefore, omit the proof of the lemma.

We now state the ( $p, q$ )-Leibniz rule by using divided differences as follows.

Theorem 3 Let the functions $f: D_{p, q} \rightarrow \mathbb{C}$ and $g: D_{p, q} \rightarrow \mathbb{C}$ be $(p, q)$-differentiable of order $n$. Then $(f g)(x)$ is also $(p, q)$-differentiable of order $n$ and

$$
\begin{aligned}
D_{p, q}^{n}(f g)(x)= & {[n]_{p, q}!\sum_{k=0}^{n}\left[q^{n} x, q^{n-1} p x, \ldots, q^{n-k+1} p^{k-1} x, q^{n-k} p^{k} x ; f\right] } \\
& \cdot\left[q^{n-k} p^{k} x, q^{n-k-1} p^{k+1} x, \ldots, q p^{n-1} x, p^{n} x ; g\right] .
\end{aligned}
$$

Proof Our assertion in Theorem 3 follows from equation (2.3) and the above lemma. The details involved are being omitted here.

Now also we give a function at a point $p^{n} x$ by binomial expression and $(p, q)$-derivative of order $k$.

Theorem 4 Let the function $f: D_{p, q} \rightarrow \mathbb{C}$ be $(p, q)$-differentiable of order $n$. Then

$$
f\left(p^{n} x\right)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} x^{k} p^{(k)}(p-q)^{k} D_{p, q}^{k}(f(x))
$$

Proof We consider Newton's formula as follows:

$$
\begin{align*}
f(z)= & \sum_{k=0}^{n-1}\left(z-x_{0}\right)\left(z-x_{1}\right) \cdots\left(z-x_{k-1}\right)\left[x_{0}, x_{1}, \ldots, x_{k} ; f\right] \\
& +\left(z-x_{0}\right)\left(z-x_{1}\right) \cdots\left(z-x_{n-1}\right)\left[x_{0}, x_{1}, \ldots, x_{n-1}, z ; f\right] . \tag{2.4}
\end{align*}
$$

Upon setting

$$
x_{k}=p^{k} q^{n-k} x \quad(k=0,1, \ldots, n-1)
$$

in equation (2.4) and $z=p^{n} x$, if we use equation (2.1), we find that

$$
\begin{aligned}
& f\left(p^{n} x\right)=\sum_{k=0}^{n-1}\left(p^{n} x-q^{n} x\right)\left(p^{n} x-q^{n-1} p x\right) \cdots\left(p^{n} x-q^{n-k+1} p^{k-1} x\right) \\
& \cdot\left[q^{n} x, q^{n-1} p x, \ldots, q^{n-k} p^{k} x ; f\right] \\
& +\left(p^{n} x-q^{n} x\right)\left(p^{n} x-q^{n-1} p x\right) \cdots\left(p^{n} x-q p^{n-1} x\right) \\
& \cdot\left[q^{n} x, q^{n-1} p x, \ldots, q p^{n-1} x, p^{n} x ; f\right] \\
& =\sum_{k=0}^{n-1}\left(p^{n} x-q^{n} x\right)\left(p^{n} x-q^{n-1} p x\right) \cdots\left(p^{n} x-q^{n-k+1} p^{k-1} x\right) \frac{\left(D_{p, q}^{k} f\right)(x)}{[k]_{p, q}!} \\
& +\left(p^{n} x-q^{n} x\right)\left(p^{n} x-q^{n-1} p x\right) \cdots\left(p^{n} x-q p^{n-1} x\right) \frac{\left(D_{p, q}^{n} f\right)(x)}{[n]_{p, q}!} \\
& =\sum_{k=0}^{n}\left(p^{n} x-q^{n} x\right)\left(p^{n} x-q^{n-1} p x\right) \cdots\left(p^{n} x-q^{n-k+1} p^{k-1} x\right) \frac{\left(D_{p, q}^{k} f\right)(x)}{[k]_{p, q}!} \\
& \left.=\sum_{k=0}^{n} x^{k} p^{k} \begin{array}{c}
k \\
2
\end{array}\right) \frac{\frac{\left(p^{n}-q^{n}\right)\left(p^{n-1}-q^{n-1}\right) \cdots(p-q)}{(p-q)^{n}}}{\frac{\left(p^{n-k}-q^{n-k}\right)\left(p^{n-k-1}-q^{n-k-1}\right) \cdots(p-q)}{(p-q)^{n-k}(p-q)^{k}}} \frac{\left(D_{p, q}^{k} f\right)(x)}{[k]_{p, q}!} \\
& =\sum_{k=0}^{n} x^{k} p^{\binom{k}{2}}(p-q)^{k} \frac{[n]_{p, q}!}{[n-k]_{p, q}![k]_{p, q}!}\left(D_{p, q}^{k} f\right)(x),
\end{aligned}
$$

as asserted by Theorem 4.
Finally, we are in a position to give the following result.
Corollary 2 Let $p$ and $q$ be complex numbers such that

$$
0<|q|<|p| \leqq 1 .
$$

Also let the function $f: D_{p, q} \rightarrow \mathbb{C}$ be $(p, q)$-differentiable of order $n$. Then

$$
f(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} q^{k(k-n)} p^{\binom{k+1}{2}}(q x-p x)^{k}\left(D_{p, q}^{k} f\right)\left(\frac{x p^{n-k}}{q^{k}}\right) .
$$

Proof Since, for $k \in\{0,1, \ldots, n\}$,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\frac{1}{p}, \frac{1}{q}}=\frac{[n]_{\frac{1}{p}, \frac{1}{q}}!}{[n-k]_{\frac{1}{p}, \frac{q}{q}}![k]_{\frac{1}{p}, \frac{1}{q}}!}=\frac{(p q)^{-\binom{n}{2}}}{(p q)^{-\left(\left(_{2}^{n-k}\right)\right.}(p q)^{-\left(k_{2}^{k}\right)}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q},
$$

we have

$$
\left(D_{\frac{1}{p}, \frac{1}{q}} f\right)(x)=\frac{f\left(\frac{x}{q}\right)-f\left(\frac{x}{p}\right)}{(p-q) x}(p q)=p q\left(D_{p, q} f\right)\left(\frac{x}{p q}\right)
$$

and

$$
\begin{aligned}
\left(D_{\frac{1}{p}, \frac{1}{q}}^{2} f\right)(x) & =\frac{p q\left(D_{p, q} f\right)\left(\frac{x}{p q}\right)-p q\left(D_{p, q} f\right)\left(\frac{x}{p q}\right)}{\left(\frac{1}{p}-\frac{1}{q}\right) x} \\
& =\frac{(p q)^{2}\left[\left(D_{p, q} f\right)\left(\frac{x}{p q^{2}}\right)-\left(D_{p, q} f\right)\left(\frac{x}{p q}\right)\right]}{(p-q) x} \\
& =p^{2} q^{2}\left(D_{p, q}^{2} f\right)\left(\frac{x}{p^{2} q^{2}}\right) .
\end{aligned}
$$

Continuing the process, we readily observe that

$$
\begin{equation*}
\left(D_{\frac{1}{p}, \frac{1}{q}}^{n} f\right)(x)=p^{n} q^{n}\left(D_{p, q}^{n} f\right)\left(\frac{x}{p^{n} q^{n}}\right) \tag{2.5}
\end{equation*}
$$

From Theorem 4, we thus conclude that

$$
f(x)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{p, q} q^{k(k-n)} p^{\binom{k+1}{2}}(q x-p x)^{k}\left(D_{p, q}^{k} f\right)\left(\frac{x p^{n-k}}{q^{k}}\right)
$$

which evidently proves Corollary 2.

## 3 Conclusion

We have considered ( $p, q$ )-analogs of several results investigated recently by Sofonea [1]. We have also given the $(p, q)$-Leibniz rule and stated the $(p, q)$-Leibniz rule by means of divided differences. Moreover, we have shown that a function $f$ at a point $q^{n} x$ can be generated by a linear combination of the $(p, q)$-derivatives of order $k$. In the case when $p=1$, the results derived in this paper would correspond to those based upon the relatively more familiar $q$-numbers.

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

## Author details

'Department of Economics, Faculty of Economics, Administrative and Social Science, Hasan Kalyoncu University, Gaziantep, 27410, Turkey. ${ }^{2}$ Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, Gaziantep, 27310, Turkey. ${ }^{3}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4 Canada. ${ }^{4}$ China Medical University, Taichung, 40402, Taiwan, Republic of China.

Received: 18 August 2016 Accepted: 10 November 2016 Published online: 23 November 2016

## References

1. Sofonea, DF: Some properties in $q$-calculus. Gen. Math. 16, 47-54 (2008)
2. Sofonea, DF: Numerical analysis and q-calculus. I. Octogon 11, 151-156 (2003)
3. Srivastava, HM: Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390-444 (2011)
4. Srivastava, HM, Choi, J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)
5. Victor, K, Pokman, C: Quantum Calculus. Springer, New York (2002)
6. Gupta, V: (p, q)-Baskakov-Kantorovich operators. Appl. Math. Inf. Sci. 10(4), 1551-1556 (2016)
7. Milovanović, GV, Gupta, V, Malik, N: ( $p, q$ )-beta functions and applications in approximation. Bol. Soc. Mat. Mexicana (2016). arXiv:1602.06307v2 [math.CA]
8. Chakrabarti, R, Jagannathan, R: A ( $p, q$ )-oscillator realization of two-parameter quantum algebras. J. Phys. A, Math. Gen. 24, L711 (1991)
9. Jagannathan, R, Rao, KS: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv:math/0602613 [math.NT]
10. Corcino, RB: On P, Q-binomial coefficients. Electron. J. Comb. Number Theory 8, Article ID A29 (2008)
11. Sadjang, PN: On the fundamental theorem of $(p, q)$-calculus and some $(p, q)$-Taylor formulas. arXiv:1309.3934 [math.QA]

## Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

