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Abstract
We know that variational inequality problem is very important in the nonlinear
analysis. The main purpose of this paper is to propose an iterative method for finding
an element of the set of solutions of a variational inequality problem with a
monotone and Lipschitz continuous mapping in Hilbert space. This iterative method
is based on the extragradient method. We get a weak convergence theorem. Using
this result, we obtain three weak convergence theorems for the equilibrium problem,
the constrained convex minimization problem, and the split feasibility problem.
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1 Introduction
The variational inequality problem is a generalization of the nonlinear complementarity
problem. It is widely used in economics, engineering, mechanics, signal processing, im-
age processing, and so on. The variational inequality was first derived from the mechanics
problems in the early s. In , the existence and uniqueness of solutions of vari-
ational inequalities were presented for the first time. Subsequently, some scientists have
published a series of articles. In the s, the variational inequality problem had been
used in many fields. In the s, the variational inequality problem became more impor-
tant in nonlinear analysis.

LetR be the set of real numbers. Let H be a real Hilbert space with the inner product 〈·, ·〉
and norm ‖ · ‖ and let C be a nonempty closed convex subset of H . A mapping A : C → H
is called monotone if

〈Ax – Ay, x – y〉 ≥ , ∀x, y ∈ C.

A mapping A : C → H is called Lipschitz continuous if there exists k ∈ R with k >  such
that

‖Ax – Ay‖ ≤ k‖x – y‖, ∀x, y ∈ C.
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Such A is called k-Lipschitz continuous. If k = , such A is called a nonexpansive mapping.
The variational inequality problem is to find x∗ ∈ C such that

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ C. (.)

We denote the set of solutions of this variational inequality problem by VI(C, A).
In , Korpelevich [] proposed the following so-called extragradient method for solv-

ing the variational inequality problem in the finite-dimensional Euclidean space R
n.

Theorem . ([]) Let C be a nonempty closed convex subset of an n-dimensional Eu-
clidean space R

n. Let A be a monotone and k-Lipschitz continuous mapping of C into H .
Assume that VI(C, A) is nonempty. Let {xn} and {yn} be sequences generated by x = x ∈ C
and

{
yn = PC(xn – λAxn),
xn+ = PC(xn – λAyn),

(.)

for every n = , , , . . . , where λ ∈ (, 
k ). Then the sequences {xn} and {yn} converge to the

same point z ∈ VI(C, A).

In this paper, based on the extragradient method, we introduce an iterative method
for finding an element of the set of solutions of a variational inequality problem for a
monotone and Lipschitz continuous mapping in Hilbert space. We obtain a weak con-
vergence theorem. As applications, we can use this result to solve equilibrium problems,
constrained convex minimization problems, and split feasibility problems.

2 Preliminaries
Let R be the set of real numbers. Let H be a real Hilbert space with the inner product
〈·, ·〉 and norm ‖ · ‖. Let {xn} be a sequence in H , we denote the sequence {xn} converging
weakly to x by xn ⇀ x and the sequence {xn} converging strongly to x by xn → x. Let C be
a nonempty closed convex subset of H . For each x ∈ H , there exists a unique nearest point
in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C. (.)

PC is called the metric projection of H into C. We know that PC is nonexpansive. A set-
valued mapping T : H → H is called monotone if

〈x – y, u – v〉 ≥ , ∀(x, u), (y, v) ∈ G(T).

A monotone mapping T : H → H is called maximal if its graph is not properly contained
in the graph of any other monotone mapping on H . It is known that a monotone mapping
T is maximal if and only if for (x, u) ∈ H ×H , 〈x – y, u – v〉 ≥  for each (y, v) ∈ G(T) implies
u ∈ Tx.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Given
x ∈ H and z ∈ C. Then z = PCx if and only if we have the inequality

〈x – z, z – y〉 ≥ , ∀y ∈ C. (.)
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Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Given
x ∈ H and z ∈ C. Then z = PCx if and only if we have the inequality

‖x – y‖ ≥ ‖x – z‖ + ‖y – z‖, ∀y ∈ C. (.)

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let A
be a monotone and k-Lipschitz continuous mapping of C into H and let NCv be the normal
cone to C at v ∈ C; i.e.,

NCv = w ∈ H : 〈v – u, w〉 ≥ , ∀u ∈ C.

Define

Tv =

{
Av + NCv, ∀v ∈ C,
∅, ∀v /∈ C.

Then T is maximal monotone and  ∈ Tv if and only if v ∈ VI(C, A).

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{xn} be a sequence in H satisfying the properties:

(i) limn→∞ ‖xn – u‖ exists for each u ∈ C;
(ii) ωw(xn) ⊂ C.

Then {xn} converges weakly to a point in C.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{xn} be a sequence in H . Suppose that

‖xn+ – u‖ ≤ ‖xn – u‖, ∀u ∈ C,

for every n = , , , . . . . Then the sequence {PCxn} converges strongly to a point in C.

3 Main results
The main task of this article is to find an element of the set of solutions of a variational
inequality problem with a monotone and Lipschitz continuous mapping in Hilbert space.
We obtain a weak convergence theorem.

Theorem . Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H . Let A be a monotone and k-Lipschitz continuous mapping of C into H . Assume that
VI(C, A) �= ∅. Let the sequences {xn} and {yn} be generated by x = x ∈ C and

{
yn = PC(xn – λnAxn),
xn+ = PC(xn – λnAyn),

(.)

for every n = , , , . . . , where {λn} ⊂ [a, b] for some a, b ∈ (, 
k ). Then the sequences {xn}

and {yn} converge weakly to the same point z ∈ VI(C, A), where z = limn→∞ PVI(C,A)xn.
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Proof For each u ∈ VI(C, A). From Lemma ., we have

‖xn+ – u‖ ≤ ‖xn – λnAyn – u‖ – ‖xn – λnAyn – xn+‖

= ‖xn – u‖ – ‖xn – xn+‖ + λn〈Ayn, u – xn+〉
= ‖xn – u‖ – ‖xn – xn+‖ + λn

(〈Ayn, u – yn〉
+ 〈Ayn, yn – xn+〉

)

= ‖xn – u‖ – ‖xn – xn+‖ + λn
(〈Ayn – Au, u – yn〉

+ 〈Au, u – yn〉 + 〈Ayn, yn – xn+〉
)

≤ ‖xn – u‖ – ‖xn – xn+‖ + λn〈Ayn, yn – xn+〉
= ‖xn – u‖ – ‖xn – yn‖ – 〈xn – yn, yn – xn+〉

– ‖yn – xn+‖ + λn〈Ayn, yn – xn+〉
= ‖xn – u‖ – ‖xn – yn‖ – ‖yn – xn+‖

+ 〈xn – λnAyn – yn, xn+ – yn〉.

Then, from Lemma ., we obtain

〈xn – λnAyn – yn, xn+ – yn〉
= 〈xn – λnAxn – yn, xn+ – yn〉 + 〈λnAxn – λnAyn, xn+ – yn〉
≤ 〈λnAxn – λnAyn, xn+ – yn〉
= λn〈Axn – Ayn, xn+ – yn〉
≤ λn‖Axn – Ayn‖‖xn+ – yn‖
≤ λnk‖xn – yn‖‖xn+ – yn‖.

So, we have

‖xn+ – u‖ ≤ ‖xn – u‖ – ‖xn – yn‖ – ‖yn – xn+‖

+ λnk‖xn – yn‖‖xn+ – yn‖
≤ ‖xn – u‖ – ‖xn – yn‖ – ‖yn – xn+‖

+ λ
nk‖xn – yn‖ + ‖xn+ – yn‖

≤ ‖xn – u‖ +
(
λ

nk – 
)‖xn – yn‖

≤ ‖xn – u‖. (.)

Therefore, there exists

c = lim
n→∞‖xn – u‖ (.)

and the sequence {xn} is bounded. From (.), we also get

(
 – λ

nk)‖xn – yn‖ ≤ ‖xn – u‖ – ‖xn+ – u‖.
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So, we obtain

‖xn – yn‖ ≤ 
 – λ

nk

(‖xn – u‖ – ‖xn+ – u‖). (.)

Hence

xn – yn → , n → ∞. (.)

On the other hand, we have

‖xn+ – yn‖ =
∥∥PC(xn – λnAyn) – PC(xn – λnAxn)

∥∥

≤ ∥∥(xn – λnAyn) – (xn – λnAxn)
∥∥

= ‖λnAxn – λnAyn‖
= λn‖Axn – Ayn‖
≤ λnk‖xn – yn‖. (.)

Hence

xn+ – yn → , n → ∞. (.)

Since A is Lipschitz continuous, we get

Axn+ – Ayn → , n → ∞. (.)

From

‖xn+ – xn‖ ≤ ‖xn+ – yn‖ + ‖yn – xn‖,

we have

xn+ – xn → , n → ∞. (.)

Since {xn} is bounded, there is a subsequence {xni} of {xn} that converges weakly to a
point z. We prove that z ∈ VI(C, A). From (.) and (.), we have yni ⇀ z and xni+ ⇀ z.

Let

Tv =

{
Av + NCv, ∀v ∈ C,
∅, ∀v /∈ C.

From Lemma ., we know that T is maximal monotone and  ∈ Tv if and only if v ∈
VI(C, A).

For each (v, w) ∈ G(T), we have

w ∈ Tv = Av + NCv.
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Hence

w – Av ∈ NCv.

So, we obtain

〈v – p, w – Av〉 ≥ , ∀p ∈ C. (.)

On the other hand, from v ∈ C and

xn+ = PC(xn – λnAyn),

we get

〈xn – λnAyn – xn+, xn+ – v〉 ≥ 

and hence
〈
v – xn+,

xn+ – xn

λn
+ Ayn

〉
≥ . (.)

Therefore from (.) and (.), we obtain

〈v – xni+, w〉
≥ 〈v – xni+, Av〉

≥ 〈v – xni+, Av〉 –
〈
v – xni+,

xni+ – xni

λni

+ Ayni

〉

= 〈v – xni+, Av – Ayni〉 –
〈
v – xni+,

xni+ – xni

λni

〉

= 〈v – xni+, Av – Axni+〉 + 〈v – xni+, Axni+ – Ayni〉

–
〈
v – xni+,

xni+ – xni

λni

〉

≥ 〈v – xni+, Axni+ – Ayni〉 –
〈
v – xni+,

xni+ – xni

λni

〉
. (.)

As i → ∞, we have

〈v – z, w〉 ≥ . (.)

Since T is maximal monotone, we have  ∈ Tz and hence z ∈ VI(C, A).
From Lemma ., we get

xn ⇀ z ∈ VI(C, A). (.)

Since xn – yn → , we also have

yn ⇀ z ∈ VI(C, A). (.)
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From Lemma ., we obtain

z = lim
n→∞ PVI(C,A)xn. (.)

�

4 Application
In the applications of this method, they are useful in nonlinear analysis and optimization
problems in Hilbert space. This section is concerned with three weak convergence theo-
rems for the equilibrium problem, the constrained convex minimization problem, and the
split feasibility problem by Theorem ..

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let F
be a bifunction of C × C into R. The equilibrium problem [] is to find x∗ such that

F
(
x∗, y

) ≥ , ∀y ∈ C. (.)

The set of solutions of problem (.) is denoted by EP(F).

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F be
a bifunction of C × C into R satisfying the properties:

(A) F(x, x)= for all x ∈ C;
(A) for each x ∈ C, y �→ F(x, y) is convex and differentiable.

Then z ∈ EP(F) if and only if z ∈ VI(C, S), where Sx = ∇Fy(x, y)|y=x.

Proof Let z ∈ EP(F). For each y ∈ C, z + λ(y – z) = λy + ( – λ)z ∈ C, ∀λ ∈ (, ). Since for
each x ∈ C, y �→ F(x, y) is differentiable. Then

〈Sz, y – z〉 = lim
λ→+

F(z, z + λ(y – z)) – F(z, z)
λ

≥ .

Conversely. If z ∈ VI(C, S); i.e., 〈∇Fy(z, y)|y=z, y – z〉 ≥ , ∀y ∈ C. Since for each x ∈ C,
y �→ F(x, y) is convex. Then F(z, y) ≥ F(z, z) = . �

Applying Theorem . and Lemma ., we obtain the following result.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let F
be a bifunction of C × C into R satisfying (A) and (A). Assume that S is monotone and
k-Lipschitz continuous and EP(F) �= ∅. Let {xn} and {yn} be sequences generated by x = x ∈
C and

{
yn = PC(xn – λnSxn),
xn+ = PC(xn – λnSyn),

(.)

for every n = , , , . . . , where S(x) = ∇Fy(x, y)|y=x and {λn} ⊂ [a, b] for some a, b ∈ (, 
k ).

Then the sequences {xn} and {yn} converge weakly to the same point z ∈ EP(F), where z =
limn→∞ PEP(F)xn.

Proof Putting A = S in Theorem ., we get the desired result by Lemma .. �
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Consider the following constrained convex minimization problem []: Find x∗ ∈ C such
that

f
(
x∗) = min

x∈C
f (x), (.)

where C is a nonempty closed convex subset of a real Hilbert space H and f is a real-valued
convex function.

Lemma . Let H is a real Hilbert space and let C be a nonempty closed convex subset
of H . Let f be a convex function of H into R. If f is differentiable, then z is a solution of (.)
if and only if z ∈ VI(C,∇f ).

Proof Let z be a solution of (.). For each x ∈ C, z + λ(x – z) ∈ C, ∀λ ∈ (, ). Since f is
differentiable, we have

〈∇f (z), x – z
〉

= lim
λ→+

f (z + λ(x – z)) – f (z)
λ

≥ .

Conversely, if z ∈ VI(C, S), 〈∇f (z), x – z〉 ≥ , ∀x ∈ C. Since f is convex, we have

f (x) ≥ f (z) +
〈∇f (z), x – z

〉 ≥ f (z).

Hence z is a solution of (.). �

Applying Theorem . and Lemma ., we obtain the following result.

Theorem . Let H is a real Hilbert space and let C be a nonempty closed convex subset
of H . Let f be a function of H into R. Assume f is differentiable and we assume that the
set of solutions of (.) is nonempty and ∇f is k-Lipschitz continuous. Let {xn} and {yn} be
sequences generated by x = x ∈ C and

{
yn = PC(xn – λn∇f (xn)),
xn+ = PC(xn – λn∇f (yn)),

(.)

for every n = , , , . . . , where {λn} ⊂ [a, b] for some a, b ∈ (, 
k ). Then the sequences {xn}

and {yn} converge weakly to the same point z, where z is a solution of (.).

Proof Since f is convex, we see that ∇f is monotone. Putting A = ∇f in Theorem ., we
obtain the desired result by Lemma .. �

Very recently, the split feasibility problem (SFP) [–] has been proposed. It is very
important in nonlinear analysis and optimization problems. The SFP is to find a point x∗

such that

x∗ ∈ C and Bx∗ ∈ Q, (.)

where C and Q are nonempty closed convex subsets of real Hilbert spaces H and H and
B is a bounded linear operator of H into H.
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Lemma . ([]) Let H and H be real Hilbert spaces. Let C and Q be nonempty closed
convex subsets of H and H. Let B be a bounded linear operator of H into H. Assume that
C ∩ B–Q is nonempty. Let λ ≥ . Then the following propositions are equivalent:

(i) z ∈ VI(C, B∗(I – PQ)B);
(ii) z = PC(I – λB∗(I – PQ)B)z;

(iii) z ∈ C ∩ B–Q,
where B∗ is the adjoint operator of B.

Lemma . Let H and H be real Hilbert spaces. Let B be a bounded linear operator of H

into H such that B �= . Let Q be a nonempty closed convex subset of H. Then B∗(I – PQ)B
is monotone and ‖B‖-Lipschitz continuous.

Proof Let x, y ∈ H,

〈
B∗(I – PQ)Bx – B∗(I – PQ)By, x – y

〉

–


‖B‖

∥∥B∗(I – PQ)Bx – B∗(I – PQ)By
∥∥

=
〈
B∗[(I – PQ)Bx – (I – PQ)By

]
, x – y

〉

–


‖B‖

∥∥B∗[(I – PQ)Bx – (I – PQ)By
]∥∥

=
〈
(I – PQ)Bx – (I – PQ)By, Bx – By

〉

–


‖B‖

∥∥B∗[(I – PQ)Bx – (I – PQ)By
]∥∥

≥ ∥∥(I – PQ)Bx – (I – PQ)By
∥∥

–
∥∥(I – PQ)Bx – (I – PQ)By

∥∥

= .

Hence

∥∥B∗(I – PQ)Bx – B∗(I – PQ)By
∥∥

≤ ‖B‖〈B∗(I – PQ)Bx – B∗(I – PQ)By, x – y
〉

≤ ‖B‖∥∥B∗(I – PQ)Bx – B∗(I – PQ)By
∥∥‖x – y‖.

So, we obtain

∥∥B∗(I – PQ)Bx – B∗(I – PQ)By
∥∥ ≤ ‖B‖‖x – y‖.

On the other hand, we have

〈
B∗(I – PQ)Bx – B∗(I – PQ)By, x – y

〉

≥ 
‖B‖

∥∥B∗(I – PQ)Bx – B∗(I – PQ)By
∥∥

≥ .
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Then B∗(I – PQ)B is monotone and ‖B‖-Lipschitz continuous. �

Applying Theorem . and Lemma ., we obtain the following result.

Theorem . Let H and H be real Hilbert spaces. Let C and Q be nonempty closed convex
subsets of H and H. Let B : H → H be a bounded linear operator such that B �= . Assume
that C ∩ B–Q is nonempty. Let {xn} and {yn} be sequences generated by x = x ∈ C and

{
yn = PC(xn – λnB∗(I – PQ)Bxn),
xn+ = PC(xn – λnB∗(I – PQ)Byn),

(.)

for every n = , , , . . . , where {λn} ⊂ [a, b] for some a, b ∈ (, 
‖B‖ ). Then the sequences {xn}

and {yn} converge weakly to the same point z ∈ C ∩ B–Q, where z = limn→∞ PC∩B–Qxn.

Proof By Lemma ., we get B∗(I – PQ)B is monotone and ‖B‖-Lipschitz continuous.
Putting A = B∗(I – PQ)B and k = ‖B‖ in Theorem ., we get the desired result by
Lemma .. �

5 Numerical result
In this section, we use our iterative method to solve some specific practical numerical cal-
culation problems. By using the algorithm in Theorem . and Theorem ., we illustrate
its convergence in solving constrained convex minimization problem and linear system of
equations.

The first example is the constrained convex minimization problem of a function of one
variable, which uses the algorithm in Theorem ..

Example  In Theorem ., we suppose that H = R and C = [, ]. Consider the con-
strained convex minimization problem (.) and let the function

f (x) = x – x, ∀x ∈ [, ]. (.)

Then the problem (.) can be written as

min
x∈[,]

(
x – x

)
. (.)

It is easy to find a point x∗ =  solving the problem (.). We can know that ∇f is monotone
and -Lipschitz continuous. Take k =  and λn = 

(n+) + 
 .

Then by Theorem ., the sequences {xn} and {yn} are generated by

{
yn = PC[xn – ( 

(n+) + 
 )(x

n – )],
xn+ = PC[xn – ( 

(n+) + 
 )(y

n – )].
(.)

As n → ∞, we have xn → x∗ = .
From Table , we can see that with the increase of the number of iterations, {xn} ap-

proaches the solution x∗ and the errors gradually approach zero.

The second example is a  ×  linear system of equations, which use the algorithm in
Theorem ..
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Table 1 Numerical results as regards Example 1

n xn En

0 0.5000 5.00E–01
10 0.9214 7.86E–02
50 0.9998 1.69E–04
100 1.0000 8.75E–08
500 1.0000 4.44E–16

Table 2 Numerical results as regards Example 2

n x1
n x2

n x3
n En

0 1.0000 1.0000 1.0000 7.00E+00
10 2.9932 3.9399 –2.3981 2.60E+00
50 2.7238 4.3377 –4.7600 4.98E–01
100 2.7501 4.2636 –4.9161 3.73E–01
500 2.9237 4.0805 –4.9746 1.14E–01

Example  In Theorem ., we suppose that H = H = R
. Take

A =

⎛

⎜
⎝

  
  –
 – 

⎞

⎟
⎠ , (.)

b =

⎛

⎜
⎝




–

⎞

⎟
⎠ . (.)

Let B = A, C = R
 and Q = {b}. Then the SFP (.) is transformed into the problem of

system of linear equations. That is to say, x∗ is the solution of linear system of equations
Ax = b and

x∗ =

⎛

⎜
⎝




–

⎞

⎟
⎠ . (.)

Then by Theorem ., the sequences {xn} and {yn} are generated by

{
yn = xn – ( 

(n+) + 
 )(A∗Axn – A∗b),

xn+ = xn – ( 
(n+) + 

 )(A∗Ayn – A∗b).
(.)

As n → ∞, we have xn → x∗.
From Table , we can also see that with the increase of iterative number, xn approaches

the exact solution x∗ and the errors gradually approach zero.

6 Conclusion
The variational inequality problem is a very important field of study in mathematics. It is
not only playing an important role in optimization problems and nonlinear analysis, but
also widely used in many fields, such as economics, mechanics, signal processing, etc. So,
more and more scientists devote their efforts to the study of variational inequalities. For
a variational inequalities, we mainly study the algorithm and its convergence, existence
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and uniqueness of the solutions. In a real Hilbert space, The gradient-projection method
for solving the variational inequality problem for an inverse-strongly monotone mapping
has been studied. But this method will not be used if the inverse-strongly monotone is
changed to monotone in the condition. So we propose a new iterative method to solve
it. In this paper, we introduce an iterative method for finding an element of the set of
solutions of a variational inequality problem with a monotone and Lipschitz continuous
mapping in Hilbert space. In particular, under certain conditions, equilibrium problem,
constrained convex minimization problem and split feasibility problem are, respectively,
equivalent to a variational inequality problem. Then the new weak convergence theorem
are obtained. The algorithm in Theorem . improves and extends Korpelevich’s method
[] in the following ways:

(i) The finite-dimensional Euclidean space R
n is extended to the case of an

infinite-dimensional Hilbert space H .
(ii) The fixed coefficient λ is extended to the case of a sequence {λn}.
Recently, the variational inequality problem has been further developed. This will attract

more scholars interested in the study of the variational inequality problem. Many scholars
will devote their efforts to its study. Then the variational inequality problem can be better
developed in the future.
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