
Li et al. Journal of Inequalities and Applications  (2016) 2016:243 
DOI 10.1186/s13660-016-1184-z

R E S E A R C H Open Access

Anisotropic interpolation theorems of
Musielak-Orlicz type
Jinxia Li, Ruirui Sun and Baode Li*

*Correspondence:
1246530557@qq.com
College of Mathematics and System
Science, Xinjiang University, Urumqi,
830046, P.R. China

Abstract
Anisotropy is a common attribute of Nature, which shows different characterizations
in different directions of all or part of the physical or chemical properties of an object.
The anisotropic property, in mathematics, can be expressed by a fairly general
discrete group of dilations {Ak : k ∈ Z}, where A is a real n× nmatrix with all its
eigenvalues λ satisfy |λ| > 1. Let ϕ :Rn × [0,∞) → [0,∞) be an anisotropic
Musielak-Orlicz function such that ϕ(x, ·) is an Orlicz function and ϕ(·, t) is a
Muckenhoupt A∞(A) weight. The aim of this article is to obtain two anisotropic
interpolation theorems of Musielak-Orlicz type, which are weighted anisotropic
extension of Marcinkiewicz interpolation theorems. The above results are new even
for the isotropic weighted settings.
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1 Introduction
The aim of this article is to obtain two anisotropic interpolation theorems of Musielak-
Orlicz type. Anisotropy is a common attribute of Nature, which shows different charac-
terizations in different directions of all or part of the physical or chemical properties of
an object. For example, the elastic modulus, hardness or fracture strength of a crystal is
different in different directions, which shows the anisotropic property of the crystal. The
anisotropic property, in mathematics, can be expressed by a general discrete group of di-
lations {Ak : k ∈ Z}, where A is a real n × n matrix with all its eigenvalues λ satisfy |λ| > .

As a natural generalization of Lp(Rn), the Orlicz space was introduced by Birnbaum-
Orlicz [] and Orlicz [], which is defined via an Orlicz function. Recall that a Musielak-
Orlicz space is defined via a Musielak-Orlicz function (see, for example, []) and a
Musielak-Orlicz function is a natural generalization of an Orlicz function. Observe that,
different from Orlicz functions, Musielak-Orlicz functions may also vary in the spatial
variables. Musielak-Orlicz spaces include many function spaces far beyond Lp(Rn), and
the motivation to study function spaces of Musielak-Orlicz type comes from various ap-
plications in mathematics and physics (see, for example, [–] and the references therein).

On the other hand, there were several efforts of extending classical function spaces aris-
ing in harmonic analysis from Euclidean spaces to other domains and non-isotropic set-
tings; see [–]. Calderón and Torchinsky initiated the study of Hardy spaces on R

n with
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anisotropic dilations [–]. The theory of Hardy spaces associated to expansive dilations
was recently developed in [, ]. Another research direction of extending classical func-
tion spaces is the study of weighted function spaces associated with general Muckenhoupt
weights; see [–]. García-Cuerva [] and Strömberg-Torchinsky [] established a
theory of weighted Hardy spaces on R

n.
Moreover, many problems in Fourier analysis concern the boundedness of operators on

Lebesgue spaces, and interpolation provides a framework that often simplifies this study.
For instance, in order to show that a linear operator maps Lp to itself for all  < p < ∞,
it is sufficient to show that it maps the (smaller) Lorentz space Lp, into the (larger)
Lorentz space Lp,∞ for the same range of p. Moreover, some further reductions can be
made in terms of the Lorentz space Lp,. This and other considerations indicate that in-
terpolation is a powerful tool in the study of boundedness of operators. Therefore, many
kinds of interpolation theorems were established. For example, Ding and Lan [], Theo-
rems . and ., obtained two interpolation theorems associated with anisotropic (weak)
Hardy spaces and Lebesgue spaces. Liang et al. [], Theorem ., obtained an interpola-
tion theorem associated with weighted (weak) Lebesgue spaces. Cao et al. [], Proposi-
tion ., also obtained an interpolation theorem associated with weighted Hardy spaces
and weighted (weak) Lebesgue spaces.

Let Aq(A) with q ∈ [,∞] denote the class of anisotropic Muckenhoupt weights (see, for
example, [, ] for their definitions and properties) and ϕ : Rn × [,∞) → [,∞) be an
anisotropic Musielak-Orlicz function such that ϕ(x, ·) is an Orlicz function and ϕ(·, t) ∈
A∞(A). The main goal of this article is to give two anisotropic interpolation theorems of
Musielak-Orlicz type. Precisely, by the boundedness of sublinear operator T on weighted
anisotropic Hardy spaces and weighted (weak) Lebesgue spaces, we can further obtain
the boundedness of T on anisotropic Musielak-Orlicz function spaces (see Theorems .
and . below). The interpolation theorems mentioned above are weighted anisotropic
extension of classical Marcinkiewicz interpolation theorems, see, for example, [], and
they are also a complement of Liang et al. [], Theorem .. And it is worth mentioning
that the classical cubes are not suitable for the anisotropic settings, so we introduce a class
of general dyadic cubes of Christ [] (see Lemma . below), which plays an important
role in the proof of Theorem . mentioned above.

This article is organized as follows.
In Section , we first recall some notation and definitions concerning expansive dila-

tions, anisotropic Muckenhoupt weights and anisotropic Musielak-Orlicz functions. Then
we give two anisotropic interpolation theorems of Musielak-Orlicz type, the proofs of
which are given in Section .

Finally, we make some conventions on notation. Let Z+ := {, , . . .} and N := {} ∪ Z+.
For any α := (α, . . . ,αn) ∈ N

n, |α| := α + · · · + αn, and ∂α := ( ∂
∂x

)α · · · ( ∂
∂xn

)αn . Throughout
the whole paper, we denote by C a positive constant which is independent of the main
parameters, but it may vary from line to line. The symbol D � F means that D ≤ CF . If D �
F and F � D, we then write D ∼ F . If E is a subset of Rn, we denote by χE its characteristic
function. For any a ∈R, �a	 denotes the maximal integer not larger than a. If there are no
special instructions, any space X (Rn) is denoted simply by X and any space X (Rn; A) is
denoted simply by X (A). Denote by S the space of all Schwartz functions, S ′ the space of
all tempered distributions. For any set E ⊂R

n and t ∈ (,∞), let ϕ(E, t) :=
∫

E ϕ(x, t) dx and,
for any measurable function f and t ∈ (,∞), let {|f | > t} := {x ∈R

n : |f (x)| > t}.
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2 Preliminaries and main results
In this section, let us first recall the notion of expansive dilations on R

n; see [], p.. A real
n × n matrix A is called an expansive dilation, shortly a dilation, if minλ∈σ (A) |λ| > , where
σ (A) denotes the set of all eigenvalues of A. Let λ– and λ+ be two positive numbers such
that

 < λ– < min
{|λ| : λ ∈ σ (A)

} ≤ max
{|λ| : λ ∈ σ (A)

}
< λ+.

In the case when A is diagonalizable over C, we can even take λ– := min{|λ| : λ ∈ σ (A)} and
λ+ := max{|λ| : λ ∈ σ (A)}. Otherwise, we need to choose them sufficiently close to these
equalities according to what we need in our arguments.

It was proved in [], p., Lemma ., that, for a given dilation A, there exist a number r ∈
(,∞) and a set � := {x ∈R

n : |Px| < }, where P is some non-degenerate n×n matrix, such
that � ⊂ r� ⊂ A� and, by a scaling, one can additionally assume that |�| = , where |�|
denotes the n-dimensional Lebesgue measure of the set �. Let Bk := Ak� for k ∈ Z. Then
Bk is open, Bk ⊂ rBk ⊂ Bk+, and |Bk| = bk , here and hereafter b := |det A|. Throughout the
whole paper, let σ be the minimum positive integer such that

rσ ≥ 

and, for any subset E of Rn, let E� := R
n \ E. Then, for all k, j ∈ Z with k ≤ j, it holds true

that

Bk + Bj ⊂ Bj+σ , (.)

Bk + (Bj+σ )� ⊂ (Bj)�, (.)

where E + F denotes the algebraic sum {x + y : x ∈ E, y ∈ F} of sets E, F ⊂R
n.

Definition . A quasi-norm, associated with an expansive matrix A, is a Borel measur-
able mapping ρA : Rn → [,∞), for simplicity, denoted by ρ , satisfying

(i) ρ(x) >  for all x ∈R
n \ {n}, here and hereafter, n := (

n
︷ ︸︸ ︷
, . . . , );

(ii) ρ(Ax) = bρ(x) for all x ∈R
n, where, as above, b := |det A|;

(iii) ρ(x + y) ≤ H[ρ(x) + ρ(y)] for all x, y ∈ R
n, where H ∈ [,∞) is a constant

independent of x and y.

In the standard dyadic case A := In×n, ρ(x) := |x|n for all x ∈ R
n is an example of quasi-

norms associated with A, here and hereafter, | · | always denotes the Euclidean norm in R
n.

It was proved, in [], p., Lemma ., that all quasi-norms associated with a given di-
lation A are equivalent. Therefore, for a given expansive dilation A, in the following, for
simplicity, we always use the step quasi-norm ρ defined by setting, for all x ∈R

n,

ρ(x) :=
∑

k∈Z
bkχBk+\Bk (x) if x �= n, or else ρ(n) := .

By (.) and (.), we know that, for all x, y ∈R
n,

ρ(x + y) ≤ bσ
(
max

{
ρ(x),ρ(y)

}) ≤ bσ
[
ρ(x) + ρ(y)

]
.



Li et al. Journal of Inequalities and Applications  (2016) 2016:243 Page 4 of 24

Moreover, (Rn,ρ, dx) is a space of homogeneous type in the sense of Coifman and Weiss
[, ], where dx denotes the n-dimensional Lebesgue measure.

Definition . Let q ∈ [,∞). A function w : Rn → [,∞) is said to satisfy the anisotropic
Muckenhoupt condition Aq(A), denoted by w ∈Aq(A), if there exists a positive constant C
such that, when q ∈ (,∞),

sup
x∈Rn

sup
k∈Z

{

b–k
∫

x+Bk

w(y) dy
}{

b–k
∫

x+Bk

[
w(y)

]– 
q– dy

}q–

≤ [w]Aq(A) < ∞,

and, when q = ,

sup
x∈Rn

sup
k∈Z

{

b–k
∫

x+Bk

w(y) dy
}
{
esssup
y∈x+Bk

[
w(y)

]–} ≤ [w]A(A) < ∞.

Define A∞(A) :=
⋃

≤q<∞ Aq(A) and, for any w ∈A∞(A), let

q(w) := inf
{

q ∈ [,∞) : w ∈Aq(A)
}

. (.)

Obviously, q(w) ∈ [,∞). Moreover, it is known (see []) that, if q(w) ∈ (,∞), then
w /∈ Aq(w)(A) and there exists a w ∈ (

⋂
q> Aq(A)) \A(A) such that q(w) = .

Let ϕ be a nonnegative function on R
n × [,∞). The function ϕ is called a Musielak-

Orlicz function if, for any x ∈ R
n, ϕ(x, ·) is an Orlicz function on [,∞) and, for any t ∈

[,∞),ϕ(·, t) is measurable on R
n. Here a function 
 : [,∞) → [,∞) is called an Orlicz

function if it is nondecreasing, 
() = , 
(t) >  for t ∈ [,∞) and limt→∞ 
(t) = ∞ (see,
for example, []). Remark that, unlike the usual case, such a 
 may not be convex.

For an Orlicz function 
, the most useful tool to study its growth property may be the
upper and the lower types of 
. More precisely, for p ∈ (–∞,∞), a function 
 is said to be
of upper (resp. lower) type p, if there exists a positive constant C such that, for all s ∈ [,∞)
(resp. s ∈ [, ]) and t ∈ (,∞),


(st) ≤ Csp
(t). (.)

Let ϕ be a Musielak-Orlicz function. The Musielak-Orlicz space Lϕ , which was first in-
troduced by Musielak [], is defined to be the set of all measurable functions f such that
∫
Rn ϕ(x, |f (x)|) dx < ∞ with the Luxembourg-Nakano (quasi-)norm:

‖f ‖Lϕ := inf

{

λ ∈ (,∞) :
∫

Rn
ϕ

(

x,
|f (x)|

λ

)

dx ≤ 
}

.

Remark . Let x ∈ R
n, t ∈ [,∞), w be a classical or an anisotropic Muckenhoupt A∞

weight with q(w) being as in (.), and 
(x) an Orlicz function on R
n. If ϕ(x, t) := tpw(x),

then Lϕ = Lp
w; if ϕ(x, t) := 
(t), then Lϕ = L
; if ϕ(x, t) := 
(t)w(x), then Lϕ = L


w .

Moreover, throughout the whole article, we always assume that the Musielak-Orlicz
functions satisfy the following growth assumptions.

Assumption (ϕ) Let ϕ : Rn × [,∞) → [,∞) be a Musielak-Orlicz function satisfying
the following two conditions:
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(i) for any t ∈ (,∞), ϕ(·, t) ∈A∞(A);
(ii) there exists p–

ϕ , p+
ϕ ∈ (,∞) such that, for every x ∈R

n, ϕ(x, ·) is of uniformly upper
type p+

ϕ and of uniformly lower type p–
ϕ .

When p–
ϕ = p ∈ (, ] and p+

ϕ = , Assumption (ϕ) of ϕ coincides with that of [], Defi-
nition .

For a Musielak-Orlicz function ϕ satisfying Assumption (ϕ), the following critical in-
dices are useful. Let

i(ϕ) := sup
{

p ∈ (–∞,∞) : for any x ∈R
n,ϕ(x, ·) is of uniformly

lower type p with C being as in (.) independent of x
}

(.)

and

q(ϕ) := inf
{

q ∈ [,∞) : for any t ∈ (,∞),ϕ(·, t) ∈Aq(A)

with
[
ϕ(·, t)

]
Aq(A) independent of t

}
. (.)

Observe that i(ϕ) may be not attainable, namely, ϕ may be not of uniformly lower type
i(ϕ); see, for example, [] for some examples. Clearly,

ϕ(x, t) := w(x)
(t) for all x ∈R
n and t ∈ [,∞)

satisfies Assumption (ϕ) if w is a classical or an anisotropic A∞(A) Muckenhoupt weight
(see, for example, []) and 
 is of lower type p–

ϕ for some p–
ϕ ∈ (,∞) and of upper type

p+
ϕ with p+

ϕ ∈ (,∞). More examples of growth functions can be found in [, , , ].
Now, let us recall the notion of a weighted Lebesgue space. For any nonnegative locally

integrable function w on R
n and p ∈ (,∞], the space Lp

w is defined to be the space of all
measurable functions f such that, when p ∈ (,∞),

‖f ‖Lp
w

:=
{∫

Rn

∣
∣f (x)

∣
∣pw(x) dx

} 
p

< ∞

and, when p = ∞,

‖f ‖L∞
w := inf

w(E)=
sup

x∈Rn\E

∣
∣f (x)

∣
∣ < ∞.

The space weak Lp
w denotes the set of all measurable functions f such that

‖f ‖weak Lp
w

:= sup
λ>

λ
[
w

({|f | > λ
})] 

p < ∞.

Next, let us introduce the notion of a weighted anisotropic Hardy space. For m ∈N, let

Sm :=
{
φ ∈ S : sup

x∈Rn
sup
α∈Nn

|α|≤m+

[
 + ρ(x)

]m+∣∣∂αφ(x)
∣
∣ ≤ 

}

and, for φ ∈ S , k ∈ Z, and x ∈R
n, let φk(x) := bkφ(Akx).
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For f ∈ S ′, the non-tangential grand maximal function f ∗
m of f is defined by setting, for

all x ∈R
n,

f ∗
m(x) := sup

φ∈Sm
sup

k∈Z,y∈x+Bk

∣
∣f ∗ φk(y)

∣
∣.

For p ∈ (, ], w ∈A∞(A), and q(w) being as in (.), let

mp,w :=
⌊(

q(w)
p

– 
)

ln b
ln(λ–)

⌋

. (.)

The definition of the following weighted anisotropic Hardy space comes from [], Def-
inition ..

Definition . For any p ∈ (, ], w ∈A∞(A), mp,w being as in (.) and m ∈ Z+ satisfying
m ≥ mp,w, the weighted anisotropic Hardy space Hp

w,m(A) is defined as the set of all f ∈ S ′

such that f ∗
m ∈ Lp

w with the (quasi-)norm ‖f ‖Hp
w,m(A) := ‖f ∗

m‖Lp
w

.

For any m, m ≥ mp,w, since Hp
w,m (A) = Hp

w,m (A) with equivalent norms (see [], The-
orem .), then from now on, we denote simply by Hp

w(A) the weighted anisotropic Hardy
space Hp

w,m(A) with m ≥ mp,w.
Finally, we need to make several further explanations for the BMO(A) functions. For

any f ∈ L
loc and E ⊂ R

n, set fE := 
|E|

∫
E f (x) dx, and define the sharp maximal function

associated with dilation A by setting, for all x ∈R
n,

M�f (x) := sup
x∈B∈B


|B|

∫

B

∣
∣f (y) – fB

∣
∣dy,

here and hereafter, let B := {B := x + Bk : x ∈R
n, k ∈ Z} be the collection of all dilated balls.

Moreover, we also define anisotropic BMO space by setting

BMO(A) :=
{

f ∈ L
loc : M�f ∈ L∞}

and

‖f ‖BMO(A) :=
∥
∥M�f

∥
∥∞.

Now, we introduce the interpolation theorem associated with a Musielak-Orlicz func-
tion, which may have independent interest.

Theorem . Let p ∈ (, ], ϕ be a Musielak-Orlicz function satisfying Assumption (ϕ),
q(ϕ) as in (.) with [q(ϕ)] < p–

ϕ ≤ p+
ϕ < ∞ and p ∈ (p+

ϕ ,∞]. Assume that T is a sublinear
operator defined on Hp

ϕ(·,t)(A) + Lp
ϕ(·,t) satisfying the requirement that there exist positive

constants C and C such that, for all α ∈ (,∞) and t ∈ (,∞),

ϕ
({|Tf | > α

}
, t

) ≤ Cα
–p‖f ‖p

Hp
ϕ(·,t)(A)

(.)

and

ϕ
({|Tf | > α

}
, t

) ≤ Cα
–p‖f ‖p

Lp
ϕ(·,t)

(.)
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with the usual modification when p = ∞. Then T is bounded on Lϕ and, moreover, there
exists a positive constant C such that, for any f ∈ Lϕ ,

∫

Rn
ϕ
(
x,

∣
∣Tf (x)

∣
∣
)

dx ≤ C
∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣
)

dx.

By Remark . and Theorem ., we have the following three corollaries.

Corollary . Let w be a classical or an anisotropic Muckenhoupt A∞ weight with q(w)
being as in (.) and p, p, p ∈ R with  < p ≤  ≤ [q(w)] < p < p ≤ ∞. If a sublinear
operator T is bounded from Hp

w to weak Lp
w and from Lp

w to weak Lp
w , then T is bounded

on Lp
w.

Particularly, when w(x) = , the above consequence coincides with a generalization of
Marcinkiewicz interpolation theorem.

Corollary . Let p, p ∈R and 
 be an Orlicz function with uniformly lower type p–

 and

uniformly upper type p+

, where  < p ≤  < p–


 ≤ p+

 < p ≤ ∞. If a sublinear operator T

is bounded from Hp to weak Lp and from Lp to weak Lp , then T is bounded on L
.

Corollary . Let w be a classical or an anisotropic Muckenhoupt A∞ weight with q(w)
being as in (.), 
 an Orlicz function with uniformly lower type p–


 and uniformly upper
type p+


 with [q(w)] < p–

, and p, p ∈ R with  < p ≤  and p+


 < p ≤ ∞. If a sublinear
operator T is bounded from Hp

w to weak Lp
w and from Lp

w to weak Lp
w , then T is bounded

on L

w .

It should be pointed that when p =  and p = ∞, there also exists an interpolation
theorem which differs from Theorem .. It can be stated as follows.

Theorem . Suppose ϕ is a Musielak-Orlicz function satisfying ϕ(·, t) ∈ A(A) for any
t ∈ (,∞) and Assumption (ϕ)(ii) with p–

ϕ ∈ (,∞). Assume that T is a sublinear operator
defined on

H
ϕ(·,t)(A) + BMO(A)

satisfying that there exist positive constants C and C such that, for all α ∈ (,∞) and
t ∈ (,∞),

‖Tf ‖L
ϕ(·,t)

≤ Cα
–‖f ‖

H
ϕ(·,t)(A) (.)

and

‖Tf ‖BMO(A) ≤ C‖f ‖∞. (.)

Then T is bounded on Lϕ and, moreover, there exists a positive constant C such that, for
any f ∈ Lϕ ,

∫

Rn
ϕ
(
x,

∣
∣Tf (x)

∣
∣)dx ≤ C

∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣)dx.
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Remark . For any x ∈ R
n and t ∈ (,∞), if we let ϕ(x, t) := tpw(x), ϕ(x, t) := 
(t) or

ϕ(x, t) := 
(t)w(x), respectively, then, by Theorem ., we may also obtain three corollaries
similar to Corollaries ., ., and ., respectively.

3 Proofs of Theorems 2.5 and 2.9
In order to prove Theorem ., we begin with several lemmas. Lemma . is from [],
pp.-.

Lemma . Let q ∈ [,∞) and w ∈ Aq(A). Then, for any measurable set E ⊂ B ∈ B, there
exist two positive constants C and C such that

C

( |B|
|E|

)/q

≤ w(B)
w(E)

≤ C

( |B|
|E|

)q

.

The following lemma is similar to [], Lemma .(ii).

Lemma . Let ϕ be a Musielak-Orlicz function with uniformly lower type p–
ϕ and uni-

formly upper type p+
ϕ , where  < p–

ϕ ≤ p+
ϕ < ∞, and, for all (x, t) ∈R

n × [,∞),

ϕ̃(x, t) :=
∫ t



ϕ(x, s)
s

ds.

Then ϕ̃ is a Musielak-Orlicz function, which is equivalent to ϕ, moreover, ϕ̃(x, ·) is contin-
uous and strictly increasing for all x ∈R

n.

Proof Since ϕ is a Musielak-Orlicz function, it is easy to see that, for all x ∈R
n, the function

ϕ̃(x, ·) is continuous and strictly increasing. Moreover, ϕ is of uniformly lower type p–
ϕ with

p–
ϕ ∈ (,∞), then we have, for any x ∈R

n,

ϕ̃(x, t) =
∫ t



ϕ(x, s)
s

ds ≤ C
ϕ(x, t)

tp–
ϕ

∫ t




s–p–

ϕ
ds ≤ Cϕ(x, t),

where C is a positive constant as in (.).
On the other hand, since ϕ is of uniformly upper type p+

ϕ ∈ (,∞), we get, for any x ∈R
n,

ϕ̃(x, t) =
∫ t



ϕ(x, s)
s

ds ≥ C
ϕ(x, t)

tp+
ϕ

∫ t




s–p+

ϕ
ds ≥ Cϕ(x, t),

where C is a positive constant as in (.). This finishes the proof of Lemma .. �

Remark . By Lemma ., in the future, we always consider a Musielak-Orlicz function
ϕ of uniformly lower type p–

ϕ and of uniformly upper type p+
ϕ , and ϕ(x, ·) is continuous and

strictly increasing for all x ∈R
n.

By using Remark . and repeating the proofs of [], Lemma .(i), and [], Lemma .(i),
we obtain the following lemma.

Lemma . Let ϕ be a Musielak-Orlicz function with uniformly lower type p–
ϕ and uni-

formly upper type p+
ϕ , where  < p–

ϕ ≤ p+
ϕ < ∞.
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(i)
∫
Rn ϕ(x, |f (x)|

‖f ‖Lϕ
) dx =  for all f ∈ Lϕ \ {}.

(ii) Given c is a positive constant. Then there exists a positive constant C such that the
inequality, for any t ∈ (,∞),

∫

Rn
ϕ

(

x,
|f (x)|

t

)

dx ≤ c

holds true implies that ‖f ‖Lϕ ≤ Ct.

Lemma . Let T be a sublinear operator. If there exists a positive constant C such that,
for any f ∈ Lϕ ,

∫

Rn
ϕ
(
x,

∣
∣Tf (x)

∣
∣
)

dx ≤ C
∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣
)

dx, (.)

then T is bounded on Lϕ .

Proof If f ∈ Lϕ \ {}, then we have f ‖f ‖–
Lϕ ∈ Lϕ . From this, the homogeneity property of

sublinear operator T , (.) and Lemma .(i), it follows that

∫

Rn
ϕ

(

x,
|Tf (x)|
‖f ‖Lϕ

)

dx =
∫

Rn
ϕ

(

x,
∣
∣
∣
∣T

(
f (x)

‖f ‖Lϕ

)∣
∣
∣
∣

)

dx �
∫

Rn
ϕ

(

x,
|f (x)|
‖f ‖Lϕ

)

dx ∼ ,

which, together with Lemma .(ii), implies that

‖Tf ‖Lϕ � ‖f ‖Lϕ .

This finishes the proof of Lemma .. �

Lemma . Let ϕ be a Musielak-Orlicz function satisfying Assumption (ϕ) and let q(ϕ) be
as in (.) with q(ϕ) < p–

ϕ < ∞. If f ∈ Lϕ , then f ∈ L
loc.

Proof For any f ∈ Lϕ , we only need to prove, for any B ∈ B,

I :=


|B|
∫

B

∣
∣f (x)

∣
∣dx < ∞.

Let q(ϕ) be as in (.) and p–
ϕ ∈ (q(ϕ),∞). For any t ∈ (,∞), since ϕ(·, t) ∈ Ap–

ϕ
(A), the

Hölder inequality yields

I �
(


|B|

∫

B

∣
∣f (x)

∣
∣p–

ϕϕ(x, t) dx
) 

p–
ϕ
(


|B|

∫

B

[
ϕ(x, t)

]– 
p–
ϕ– dx

)p–
ϕ–

�
(


ϕ(B, t)

∫

B

∣
∣f (x)

∣
∣p–

ϕϕ(x, t) dx
) 

p–
ϕ

and hence, it suffices to prove
∫

B |f (x)|p–
ϕϕ(x, t) dx < ∞. Notice that

∫

B

∣
∣f (x)

∣
∣p–

ϕϕ(x, t) dx =
∫

{x∈B:|f (x)|>t}

∣
∣f (x)

∣
∣p–

ϕϕ(x, t) dx +
∫

{x∈B:|f (x)|≤t}

∣
∣f (x)

∣
∣p–

ϕϕ(x, t) dx

=: I + I.
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For I, by t/|f (x)| < , the uniformly lower type p–
ϕ property of ϕ and f ∈ Lϕ , we obtain, for

any t ∈ (,∞),

I �
∫

{x∈B:|f (x)|>t}

∣
∣f (x)

∣
∣p–

ϕ

(
t

|f (x)|
)p–

ϕ

ϕ
(
x,

∣
∣f (x)

∣
∣)dx

� tp–
ϕ

∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣)dx < ∞.

For I, by |f (x)| ≤ t and ϕ(·, t) ∈ L
loc, we have I � tp–

ϕϕ(B, t) < ∞, which, together with
I < ∞, we finally obtain I < ∞ and finish the proof of Lemma .. �

For any locally integrable function f , the anisotropic Hardy-Littlewood maximal func-
tion MAf is defined by

MAf (x) := sup
x∈B∈B


|B|

∫

B

∣
∣f (y)

∣
∣dy, x ∈R

n.

Let w ∈ A∞(A). For any locally integrable function f with respect to measure w(x) dx,
the anisotropic weighted Hardy-Littlewood maximal function Mwf is defined by

Mwf (x) := sup
x∈B∈B


w(B)

∫

B

∣
∣f (y)

∣
∣w(y) dy, x ∈R

n.

For any q ∈ (q(w),∞) with q(w) as in (.), by [], Theorem ., we have the boundedness
of Mw from Lq

w to Lq
w. From this and Lemma ., with an argument similar to that of

[], Theorem . and Corollary ., we deduce the following lemma, the details being
omitted.

Lemma . Let ϕ be a Musielak-Orlicz function satisfying Assumption (ϕ) with q(ϕ) <
p–

ϕ ≤ p+
ϕ < ∞, where q(ϕ) is as in (.). Then, for any t ∈ (,∞), the weighted Hardy-

Littlewood maximal operatorMϕ(·,t) is bounded on Lϕ and, moreover, there exists a positive
constant C such that, for all f ∈ Lϕ ,

∫

Rn
ϕ
(
x,Mϕ(·,t)f (x)

)
dx ≤ C

∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣
)

dx.

The definition of weighted atomic anisotropic Hardy spaces is from [], Definition ..

Definition . Let w ∈ A∞(A) and q(w) be as in (.). A triplet (p, q, s)w is called admissi-
ble, if p ∈ (, ], q ∈ (q(w),∞], and s ∈ N with s ≥ �(q(w)/p – ) ln b/ ln (λ–)	. A function a
on R

n is said to be a (p, q, s)w-atom if it satisfies the following three conditions:
(i) supp a ⊂ x + Bj for some j ∈ Z and x ∈R

n;
(ii) ‖a‖Lq

w
≤ [w(x + Bj)]


q – 

p ;
(iii)

∫
Rn a(x)xα dx =  for any multi-index α satisfying |α| ≤ s.

Definition . Let w ∈ A∞(A) and (p, q, s)w be an admissible triplet as in Definition ..
The weighted atomic anisotropic Hardy space Hp,q,s

w (A) is defined to be the set of all f ∈
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S ′ satisfying that f =
∑

i λiai in S ′, where {λi}i ⊂ C,
∑

i |λi|p < ∞, and {ai}i are (p, q, s)w-
atoms. Moreover, the (quasi-)norm of f ∈ Hp,q,s

w (A) is defined by

‖f ‖Hp,q,s
w (A) := inf

{[∑

i

|λi|p
]/p}

,

where the infimum is taken over all admissible decompositions of f as above.

Proof of Theorem . Let ϕ be a Musielak-Orlicz function, q(ϕ) as in (.), p ∈ (p+
ϕ ,∞),

p–
ϕ ∈ ([q(ϕ)],∞), and q ∈ (q(ϕ),∞) close to q(ϕ) such that q(ϕ) < p–

ϕ/q. Suppose f ∈ Lϕ ,
for any t ∈ (,∞), define

Mq
ϕ(·,t)f (x) := sup

x∈B∈B

(


ϕ(B, t)

∫

B

∣
∣f (y)

∣
∣q

ϕ(y, t) dy
) 

q
, x ∈R

n. (.)

For any α ∈ (,∞), let

α :=
{
Mq

ϕ(·,t)f > α
}

.

By an anisotropic variant of Whitney covering lemma in [], Lemma ., we know
that there exist a positive constant L depending only on σ , a sequence {xi}i ⊂ α , and a
sequence {�i}i of integers such that

α =
⋃

i

(xi + B�i ), (.)

(xi + B�i–σ ) ∩ (xj + B�j–σ ) = ∅ for all i, j with i �= j, (.)

�
{

j : (xi + B�i+σ ) ∩ (xj + B�j+σ ) �= ∅} ≤ L for all i, (.)

where we denote by �E the cardinality of the set E and, for any i,

(xi + B�i+σ ) ∩ �
α = ∅ and (xi + B�i+σ+) ∩ �

α �= ∅. (.)

For any i and any x ∈R
n, let χi(x) := χxi+B�i

(x) and

ηi(x) :=

{
χi(x)∑
j χj(x) , for x ∈ α ,

, for x ∈ �
α .

Let s ∈ N with s ≥ mp,ϕ(·,t), where p ∈ (, ] and mp,ϕ(·,t) is as in (.), and Ps denote the
linear space of polynomials of degrees not more than s. For any B ∈ B, let πB : L(B) →Ps

be the natural projection defined, via the Riesz lemma, by setting, for all f̃ ∈ L(B) and
Q ∈Ps,

∫

B
πBf̃ (x)Q(x) dx =

∫

B
f̃ (x)Q(x) dx.

Then, by [], (.), there exists a positive constant C, depending only on s, such that, for
all B ∈ B and f̃ ∈ L(B),

sup
x∈B

∣
∣πBf̃ (x)

∣
∣ ≤ C


|B|

∫

B

∣
∣f̃ (x)

∣
∣dx. (.)
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Setting

g(x) :=

{
f (x), for x ∈ �

α ,
∑

i(πxi+B�i
f ηi)(x)χi(x), for x ∈ α ,

and, for any x ∈R
n,

h(x) :=
∑

i

hi(x), where hi(x) := f (x)χi(x) – (πxi+B�i
f ηi)(x)χi(x).

Obviously, for any x ∈R
n, we have f (x) = g(x) + h(x).

By Hölder’s inequality and the definition of Aq(A) with ϕ(·, t) ∈ Aq(A), we have, for any
B ∈ B and t ∈ (,∞),


|B|

∫

B

∣
∣f (x)

∣
∣dx ≤

(


ϕ(B, t)

∫

B

∣
∣f (x)

∣
∣q

ϕ(x, t) dx
) 

q
. (.)

Moreover, notice that (xi + B�i+σ+) ∩ �
α �= ∅ (see (.)), then there exists some

y ∈ (xi + B�i+σ+) ∩ �
α . (.)

Hence, for any x ∈R
n and t ∈ (,∞), by (.) with f ∈ L(B) (see Lemma . with f ∈ Lϕ),

(.), Lemma . with ϕ(·, t) ∈Aq(A) and (.), we obtain

∣
∣hi(x)

∣
∣ ≤ ∣

∣f (x)
∣
∣ + C

(


ϕ(xi + B�i , t)

∫

xi+B�i

∣
∣f (y)

∣
∣q

ϕ(y, t) dy
) 

q
χi(x)

≤ ∣
∣f (x)

∣
∣ + C

(


ϕ(xi + B�i+σ+, t)

∫

xi+B�i+σ+

∣
∣f (y)

∣
∣q

ϕ(y, t) dx
) 

q
χi(x)

≤ ∣
∣f (x)

∣
∣ + CMq

ϕ(·,t)f (y)χi(x)

≤ ∣
∣f (x)

∣
∣ + Cαχi(x).

Therefore, from the above estimate, Minkowski’s inequality, Lemma . with ϕ(·, t) ∈
Aq(A), and (.) again, it follows that

(


ϕ(xi + B�i , t)

∫

xi+B�i

∣
∣hi(x)

∣
∣q

ϕ(x, t) dx
) 

q

≤
(


ϕ(xi + B�i , t)

∫

xi+B�i

∣
∣f (x)

∣
∣q

ϕ(x, t) dx
) 

q
+ Cα

≤ C
(


ϕ(xi + B�i+σ+, t)

∫

xi+B�i+σ+

∣
∣f (x)

∣
∣q

ϕ(x, t) dx
) 

q
+ Cα

≤ Cα. (.)

For any p ∈ (, ], x ∈R
n, and t ∈ (,∞), set

ai(x) :=
hi(x)

Cα[ϕ(xi + B�i , t)]/p
,
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where C is a constant as in (.), then ai is a (p, q, s)ϕ(·,t)-atom with integer s ≥ mp,ϕ(·,t),
where mp,ϕ(·,t) is as in (.). Thus

h(x) = Cα
∑

i

[
ϕ(xi + B�i , t)

] 
p ai(x) ∈ Hp,q,s

ϕ(·,t) (A)

and, by Lemma . with ϕ(·, t) ∈Aq(A), (.) and (.), we obtain

‖h‖Hp,q,s
ϕ(·,t) (A) ≤ Cα

[∑

i

ϕ(xi + B�i–σ , t)
] 

p ≤ Cα
[
ϕ(α , t)

] 
p . (.)

Also, when x ∈ α , for any t ∈ (,∞), by (.), (.), (.), Lemma . with ϕ(·, t) ∈Aq(A),
and (.) again, we have

∣
∣g(x)

∣
∣ ≤ Cα. (.)

Moreover, for a.e. x ∈ �
α ,

∣
∣g(x)

∣
∣ =

∣
∣f (x)

∣
∣ ≤Mq

ϕ(·,t)f (x) ≤ α.

Thus, we obtain, for a.e. x ∈R
n,

∣
∣g(x)

∣
∣ ≤ Cα. (.)

We prove the theorem by two cases.
Case (i): p ∈ (p+

ϕ ,∞). In this case, by Lemma ., Fubini’s theorem, and the fact that T
is a sublinear operator, we further have

∫

Rn
ϕ
(
x,

∣
∣Tf (x)

∣
∣)dx ∼

∫ ∞




α

∫

{|Tf |>α}
ϕ(x,α) dx dα

�
∫ ∞




α

∫

{|Th|> α
 }

ϕ(x,α) dx dα

+
∫ ∞




α

∫

{|Tg|> α
 }

ϕ(x,α) dx dα

=: I + II.

By (.), Hp
ϕ(·,α)(A) = Hp,q,s

ϕ(·,α)(A) with equivalent norms (see [], Theorem .), (.) and
Lemma ., we conclude that

I �
∫ ∞




α

(‖h‖Hp,q,s
ϕ(·,α) (A)

α

)p

dα �
∫ ∞




α

ϕ(α ,α) dα

∼
∫ ∞




α

∫

{Mq
ϕ(·,t)f >α}

ϕ(x,α) dx dα ∼
∫

Rn
ϕ
(
x,Mq

ϕ(·,t)f (x)
)

dx.

Let ϕ̈(x, t) := ϕ(x, t/q). Obviously, ϕ̈(x, t) is uniformly lower type p–
ϕ/q. From this, the

definitions of Mq
ϕ(·,t)f (x) and Mϕ(·,t)(|f |q)(x), q(ϕ) < p–

ϕ/q with q(ϕ) being as in (.) and
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Lemma . with q(ϕ̈) = q(ϕ) < p–
ϕ/q, it follows that

∫

Rn
ϕ
(
x,

(
Mq

ϕ(·,t)f
)
(x)

)
dx =

∫

Rn
ϕ̈
(
x,

[
Mq

ϕ(·,t)f (x)
]q)dx

=
∫

Rn
ϕ̈
(
x,Mϕ(·,t)

(|f |q)(x)
)

dx

�
∫

Rn
ϕ̈
(
x,

∣
∣f (x)

∣
∣q)dx

�
∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣)dx. (.)

By (.), we obtain

II �
∫ ∞




α+p

∫

Rn

∣
∣g(x)

∣
∣p

ϕ(x,α) dx dα

∼
∫ ∞




α+p

∫

α

∣
∣g(x)

∣
∣p

ϕ(x,α) dx dα +
∫ ∞




α+p

∫

�
α

∣
∣g(x)

∣
∣p

ϕ(x,α) dx dα

=: II + II.

By (.), Lemma ., and (.), we conclude that

II �
∫ ∞




α

∫

{Mq
ϕ(·,t)f >α}

ϕ(x,α) dx dα

∼
∫

Rn
ϕ
(
x,Mq

ϕ(·,t)f (x)
)

dx �
∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣)dx.

Moreover, by Fubini’s theorem, |g(x)| = |f (x)| ≤ Mq
ϕ(·,t)f (x) for x ∈ �

α , and the uniformly
upper type p+

ϕ property of ϕ with p+
ϕ < p, we have

II ∼
∫ ∞




α+p

∫

{Mq
ϕ(·,t)f ≤α}

∣
∣f (x)

∣
∣p

ϕ(x,α) dx dα

∼
∫

Rn

∣
∣f (x)

∣
∣p

∫ ∞

Mq
ϕ(·,t)f (x)


α+p

ϕ(x,α) dα dx

�
∫

Rn

∣
∣f (x)

∣
∣p

∫ ∞

|f (x)|


α+p
ϕ(x,α) dα dx

�
∫

Rn

∣
∣f (x)

∣
∣p

∫ ∞

|f (x)|


α+p

(
α

|f (x)|
)p+

ϕ

ϕ
(
x,

∣
∣f (x)

∣
∣)dα dx

�
∫

Rn

∣
∣f (x)

∣
∣p–p+

ϕϕ
(
x,

∣
∣f (x)

∣
∣)

∫ ∞

|f (x)|
αp+

ϕ–p– dα dx

∼
∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣
)

dx,

as desired.
Case (ii): p = ∞. In this case, obviously we have ‖Tg‖∞ ≤ C‖g‖∞ (see (.) with the

usual modification). From this and (.), it follows that

‖Tg‖∞ ≤ C‖g‖∞ ≤ Cα. (.)
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By Lemma ., Fubini’s theorem, Assumption (ϕ)(ii), and the fact that T is a sublinear
operator, we further have

∫

Rn
ϕ
(
x,

∣
∣Tf (x)

∣
∣)dx ∼

∫ ∞




α

∫

{|Tf |>α}
ϕ(x,α) dx dα

�
∫ ∞




α

∫

{|Tf |>Cα}
ϕ(x,α) dx dα

�
∫ ∞




α

∫

{|Th|>Cα}
ϕ(x,α) dx dα

+
∫ ∞




α

∫

{|Tg|>Cα}
ϕ(x,α) dx dα

=: I + II.

For I, similar to the estimate of I of Case (i), we obtain I �
∫
Rn ϕ(x, |f (x)|) dx.

For II, by (.), we see that

II �
∫ ∞




α

∫

{‖Tg‖∞>Cα}
ϕ(x,α) dx dα =  ≤

∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣)dx,

as desired.
Using the above estimates of Case (i) and Case (ii), we have, for any f ∈ Lϕ ,

∫

Rn
ϕ
(
x,

∣
∣Tf (x)

∣
∣)dx �

∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣)dx,

which, together with Lemma ., implies that T is bounded on Lϕ . This finishes the proof
of Theorem .. �

In order to prove Theorem ., we need some lemmas.
Let

L∞
 :=

{

f ∈ L∞
c :

∫

Rn
f (x) dx = 

}

,

where L∞
c is the space of bounded measurable functions with compact supports.

Lemma . Let ϕ be a Musielak-Orlicz function satisfying Assumption (ϕ) with q(ϕ) <
p–

ϕ ≤ p+
ϕ < ∞, where q(ϕ) is as in (.). Then L∞

 is dense in Lϕ .

Proof Let ϕ be a Musielak-Orlicz function satisfying Assumption (ϕ) with q(ϕ) < p–
ϕ ≤

p+
ϕ < ∞, where q(ϕ) is as in (.). First, we prove that L∞

c is dense in Lϕ . For any f ∈ Lϕ ,
j ∈ Z+ and x ∈R

n, let fj(x) := f (x)χBj (x)χ{|f |<j}(x). Obviously, we have |fj(x) – f (x)| →  (j →
∞) for a.e. x ∈R

n. From this, ϕ(x, ·) is continuous and strictly increasing for all x ∈R
n (see

Remark .), ϕ(x, |fj(x) – f (x)|) decreasingly converges to  as j → ∞ for a.e. x ∈ R
n and

Levi’s theorem, it follows that
∫

Rn
ϕ
(
x,

∣
∣fj(x) – f (x)

∣
∣)dx →  (j → ∞),

which implies that, L∞
c is dense in Lϕ .
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It remains to prove that L∞
 is dense in L∞

c with respect to the norm ‖ · ‖Lϕ . For any
f ∈ L∞

c with supp f ⊂ BN , where N is some integer, integer j ≥ N and x ∈R
n, let

fj(x) :=
(

f (x) –


|Bj|
∫

Bj

f (y) dy
)

χBj (x).

Obviously, {fj}∞j=N ⊂ L∞
 . Thus, for any x ∈ R

n, we only need to prove

∫

Rn
ϕ
(
x,

∣
∣fj(x) – f (x)

∣
∣)dx →  (j → ∞).

By supp f ⊂ BN ⊂ Bj, /|Bj| = /bj <  for sufficient large j (since /bj →  as j → ∞), the
uniformly lower type p–

ϕ property of ϕ with q(ϕ) < p–
ϕ , Lemma ., and ϕ(·, t) ∈Aq(A) with

some q ∈ (q(ϕ), p–
ϕ) for any t ∈ (,∞), it follows that

∫

Rn
ϕ
(
x,

∣
∣f (x) – fj(x)

∣
∣)dx

=
∫

Rn
ϕ

(

x,
∣
∣
∣
∣f (x)χBj (x) –

(

f (x)χBj (x) –


|Bj|
∫

Bj

f (y) dyχBj (x)
)∣

∣
∣
∣

)

dx

≤
∫

Bj

ϕ

(

x,


|Bj|
∫

BN

∣
∣f (y)

∣
∣dy

)

dx � 
|Bj|p–

ϕ
ϕ

(

Bj,
∫

BN

∣
∣f (y)

∣
∣dy

)

� b–j(p–
ϕ–q)ϕ

(
B,‖f ‖∞|BN |) →  (j → ∞).

This finishes the proof of Lemma .. �

Since (Rn,ρ, dx) is a space of homogeneous type in the sense of Coifman and Weiss [,
]. On such homogeneous spaces, the following lemma provides an analog of the grid of
Euclidean dyadic cubes, which comes from [], Lemma .; see also [].

Lemma . Let A be a dilation. There exists a collection Q := {Qk
α ⊂R

n : k ∈ Z,α ∈ Ik} of
open subsets, where Ik is certain index set, such that

(i) |Rn \ ⋃
α Qk

α| =  for each fixed k and Qk
α ∩ Qk

β = ∅ if α �= β ;
(ii) for any α, β , k, � with � ≥ k, either Qk

α ∩ Q�
β = ∅ or Q�

α ⊂ Qk
β ;

(iii) for each (�,β) and each k < � there exists a unique α such that Q�
β ⊂ Qk

α ;
(iv) there exist a certain negative integer v and a positive integer u such that, for all Qk

α

with k ∈ Z and α ∈ Ik , there exists xQk
α

∈ Qk
α satisfying that, for any x ∈ Qk

α ,
xQk

α
+ Bvk–u ⊂ Qk

α ⊂ x + Bvk+u.

In the following, for convenience, we call {Qk
α}k∈Z,α∈Ik in Lemma . dyadic cubes, k the

level of the dyadic cube Qk
α with k ∈ Z and α ∈ Ik and we denote it by �(Qk

α).
Now we recall the definition of the dyadic maximal function. For any given measur-

able function f ∈ L
loc and x ∈ R

n, we define the dyadic maximal function by Mdf (x) :=
supk∈Z Ekf (x), where

Ekf (x) :=
∑

Q∈Qk

(


|Q|
∫

Q

∣
∣f (y)

∣
∣dy

)

χQ(x)
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and Qk := {Qk
α : α ∈ Ik} denotes the set of dyadic cubes as in Lemma .. The following

lemma provides the Calderón-Zygmund decomposition in our setting with a non-typical
assumption on f instead of the usual f ∈ L, which is from [], Proposition A..

Lemma . Given a measurable function f ∈ Lp
w for certain p ∈ [,∞) and w ∈ Ap(A),

and a positive number λ, then exists a sequence {Qj}j ⊂ Q of disjoint dyadic cubes such
that

(i)
⋃

j Qj = {Mdf > λ};
(ii) |f (x)| < λ for almost every x /∈ ⋃

j Qj;
(iii) λ < 

|Qj|
∫

Qj
|f (x)|dx ≤ Cλ, where C >  is a constant independent of f and λ.

Let μf (λ) :=
∑

j w(Qλ
j ), where Qλ

j := Qj is as in Lemma .. We also need the following
two lemmas.

Lemma . If f ∈ L
w with w ∈ A(A). Then, for any λ ∈ (,∞), there exists a positive

constant C such that

w
({
Mf >

(
bσ C + 

)
λ
}) ≤ Cμf (λ),

where C is a positive constant as in Lemma .(iii).

Proof Let us first prove the inequality

Mf (x) ≤ (
bσ C + 

)
λ if x ∈

(⋃

j

xQj + B�(Qj)v+u+σ

)�
, (.)

where xQj + B�(Qj)v+u+σ is the dilated ball containing Qj as in Lemma .(iv). Pick any
dilated ball y + Bl such that x ∈ y + Bl . When y + Bl ⊆ (

⋃
j Qj)�, by Lemma .(ii), we have


|y + Bl|

∫

y+Bl

∣
∣f (z)

∣
∣dz ≤ λ. (.)

In the following, we assume that y + Bl � (
⋃

j Qj)�, and therefore, (y + Bl) ∩ (
⋃

j Qj) �= ∅.
Thus, there exists at least one j such that (y + Bl)∩ (xQj + B�(Qj)v+u) �= ∅. So there exists some
x̃ ∈ (y + Bl) ∩ (xQj + B�(Qj)v+u). By x̃ ∈ y + Bl , we have y ∈ x̃ + Bl . From this, x̃ ∈ xQj + B�(Qj)v+u,
and (.), it follows that

x ∈ y + Bl ⊂ x̃ + Bl + Bl ⊂ xQj + B�(Qj)v+u + Bl+σ . (.)

If l + σ ≤ �(Qj)v + u, we obtain x ∈ xQj + B�(Qj)v+u+σ , which contradicts with x /∈ ⋃
j xQj +

B�(Qj)v+u+σ . Therefore, we have l + σ > �(Qj)v + u. By this and (.), we obtain

xQj + B�(Qj)v+u ⊂ xQj + Bl+σ (.)

and x ∈ xQj + Bl+σ . From this and (.), we conclude that xQj ∈ x + Bl+σ and

xQj + Bl+σ ⊂ x + Bl+σ + Bl+σ ⊂ x + Bl+σ . (.)
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By Qj ⊂ xQj + B�(Qj)v+u (see Lemma .(iv)), (.), and (.), we have

⋃

j:Qj∩(y+Bl) �=∅
Qj ⊂ x + Bl+σ .

Using this, (ii) and (iii) of Lemma ., and the disjoint property of {Qj}j, we find that

∫

y+Bl

∣
∣f (z)

∣
∣dz =

∫

(y+Bl)∩(
⋃

j Qj)�

∣
∣f (z)

∣
∣dz +

∫

(y+Bl)∩(
⋃

j Qj)

∣
∣f (z)

∣
∣dz

≤ λbl +
∑

j:Qj∩(y+Bl) �=∅
Cλ|Qj|

= λbl + Cλ

∣
∣
∣
∣

⋃

j:Qj∩(y+Bl) �=∅
Qj

∣
∣
∣
∣

≤ λbl + Cλbl+σ =
(
bσ C + 

)
λbl,

where C is a positive constant as in Lemma .(iii). That is,


|y + Bl|

∫

y+Bl

f (z) dz ≤ (
bσ C + 

)
λ. (.)

Combining the estimates (.) and (.), we conclude that (.) holds true. Then, by
(.), Lemma .(iv), and Lemma . with w ∈A(A), we obtain

w
({
Mf >

(
bσ C + 

)
λ
})

= w
({

x ∈
(⋃

j

xQj + B�(Qj)v+u+σ

)�
: Mf (x) >

(
bσ C + 

)
λ

})

+ w
({

x ∈
(⋃

j

xQj + B�(Qj)v+u+σ

)

: Mf (x) >
(
bσ C + 

)
λ

})

= w
({

x ∈
(⋃

j

xQj + B�(Qj)v+u+σ

)

: Mf (x) >
(
bσ C + 

)
λ

})

≤ w
(⋃

j

xQj + B�(Qj)v+u+σ

)

≤
∑

j

w(xQj + B�(Qj)v+u+σ )

� bσ+u
∑

j

w(xQj + B�(Qj)v–u) �
∑

j

w(Qj) = μf (λ).

This finishes the proof of Lemma .. �

Lemma . Suppose that f ∈ L
w with w ∈A(A). Then, for any α ∈ (,∞) and β ∈ (,∞)

satisfying βbu < /, there exists a positive constant C such that

μf (α) ≤ w
({
M�f > αβ/

})
+

βbu

 – βbu Cμf
(
–C–

 α
)
,

where C is a positive constant as in Lemma .(iii).
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Proof Let ν := –C–
 α, and make the Calderón-Zygmund decompositions of f with the

heights ν and α, respectively (see Lemma .). Since ν < α, from the proof of Lemma .,
we see that each cube Qα

k in Calderón-Zygmund decomposition with the height α must be
included in some cube Qν

j in Calderón-Zygmund decomposition with the height ν . Thus,
by letting

I :=
{

Qν
j : j ∈ J

}
, where J :=

{
j : Qν

j ⊂ {
M�f > αβ/

}}

and

II :=
{

Qν
j : j /∈ J

}
,

we have

μf (α) =
∑

k

w
(
Qα

k
)

=
∑

Q∈I

∑

Qα
k ⊂Q

w
(
Qα

k
)

+
∑

Q∈II

∑

Qα
k ⊂Q

w
(
Qα

k
)
.

For simplicity, for any dyadic cube Q, let BQ := xQ + B�(Q)v+u and BQ := xQ + B�(Q)v–u.
On the one hand, when Q ∈ II, there exists some x ∈ Q such that

M�f (x) ≤ αβ/.

From this and Q ⊂ BQ (see Lemma .(iv)), it follows that


|BQ|

∫

BQ

∣
∣f (y) – fBQ

∣
∣dy ≤ αβ/. (.)

Moreover, by Lemma .(iii), we conclude that

|fQ| ≤ Cν = α/. (.)

Thus, by Lemma .(iii), the disjoint property of {Qα
k }k , (.), Lemma .(iv), and (.),

we have

∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣ <


α

∑

Qα
k ⊂Q

∫

Qα
k

∣
∣f (y)

∣
∣dy

≤ 
α

∑

Qα
k ⊂Q

∫

Qα
k

∣
∣f (y) – fBQ

∣
∣dy

+

α

∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣|fBQ – fQ| +


α

|fQ|
∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣

≤ 
α

∫

⋃
Qα

k ⊂Q Qα
k

∣
∣f (y) – fBQ

∣
∣dy

+

α

∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣ 
|Q|

∫

Q

∣
∣f (y) – fBQ

∣
∣dy +




∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣

≤ 
α

∫

BQ

∣
∣f (y) – fBQ

∣
∣dy
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+

α

∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣ |BQ|
|Q|


|BQ|

∫

BQ

∣
∣f (y) – fBQ

∣
∣dy +




∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣

≤ β


∣
∣BQ∣

∣ +
β


∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣ |BQ|
|BQ| +




∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣.

From this, it follows that

∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣ < β

∣
∣BQ∣

∣ + βbu
∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣. (.)

Choose β small enough such that βbu < /. By this, the disjoint property of {Qα
k }k , (.),

and Lemma .(iv), we further have

∣
∣
∣
∣

⋃

Qα
k ⊂Q

Qα
k

∣
∣
∣
∣ =

∑

Qα
k ⊂Q

∣
∣Qα

k
∣
∣ <

β

 – βbu

∣
∣BQ∣

∣ ≤ βbu

 – βbu |Q|. (.)

Moreover, by Q ⊂ BQ (see Lemma .(iv)), we obtain
⋃

Qα
k ⊂Q Qα

k ⊂ BQ. Therefore, by
Lemma .(iv) and Lemma . with w ∈A(A), we obtain

w(
⋃

Qα
k ⊂Q Qα

k )

w(Q)
�

w(
⋃

Qα
k ⊂Q Qα

k )

w(BQ)
�

w(
⋃

Qα
k ⊂Q Qα

k )

b–uw(BQ)
�

|⋃Qα
k ⊂Q Qα

k |
|Q| .

From this, the disjoint property of {Qα
k }k again, and (.), we deduce that

∑

Qα
k ⊂Q

w
(
Qα

k
)

= w
( ⋃

Qα
k ⊂Q

Qα
k

)

�
|⋃Qα

k ⊂Q Qα
k |

|Q| w(Q) � βbu

 – βbu w(Q).

Therefore, we have

∑

Q∈II

∑

Qα
k ⊂Q

w
(
Qα

k
)
� βbu

 – βbu

∑

Q∈II

w(Q) � βbu

 – βbu μf (ν). (.)

On the other hand,

∑

Q∈I

∑

Qα
k ⊂Q

w
(
Qα

k
) ≤

∑

Q∈I

w(Q) ≤ w
({
M�f > αβ/

})
,

by which, together with (.), we finally finish the proof of Lemma .. �

In the following, for any λ ∈ (,∞), let μf (λ,λ) :=
∑

j ϕ(Qλ
j ,λ), where Qλ

j := Qj is as in
Lemma ..

Proof of Theorem . Let ϕ be a Musielak-Orlicz function satisfying ϕ(·, t) ∈ A(A) for
any t ∈ (,∞) and Assumption (ϕ)(ii) with p–

ϕ ∈ (,∞) and q ∈ (,∞) close to  such that
 < p–

ϕ/q. For any f ∈ L∞
 , f is a multiple of (,∞, )ϕ(·,t)-atom. From the assumption of
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Theorem ., it follows that Tf ∈ L
ϕ(·,t). Therefore, for any λ ∈ (,∞), by |f (x)| ≤MAf (x)

for any a.e. x ∈R
n, Lemma ., Assumption (ϕ)(ii), and Lemma ., we have

∫

Rn
ϕ
(
x,

∣
∣Tf (x)

∣
∣
)

dx

�
∫

Rn
ϕ
(
x,MA(Tf )(x)

)
dx ∼

∫ ∞




λ

ϕ
({
MA(Tf ) > λ

}
,λ

)
dλ

�
∫ ∞




λ

ϕ
({
MA(Tf ) >

(
bσ C + 

)
λ
}

,λ
)

dλ �
∫ ∞




λ

μTf (λ,λ) dλ,

where C is a positive constant as in Lemma .(iii).
Moreover, by Lemma . and Assumption (ϕ)(ii) again, we further have

∫ ∞




λ

μTf (λ,λ) dλ

�
∫ ∞




λ

ϕ
({
M�(Tf ) > λβ/

}
,λ

)
dλ +

βbu

 – βbu

∫ ∞




λ

μTf (λ,λ) dλ

�
∫ ∞




λ

ϕ
({
M�(Tf ) > λ

}
,λ

)
dλ +

βbu

 – βbu

∫ ∞




λ

μTf (λ,λ) dλ.

Taking β small enough such that βbu/( – βbu) < , by Lemma ., we obtain

∫ ∞




λ

μTf (λ,λ) dλ�
∫ ∞




λ

ϕ
({
M�(Tf ) > λ

}
,λ

)
dλ

∼
∫

Rn
ϕ
(
x,M�(Tf )(x)

)
dx.

Therefore, we have
∫

Rn
ϕ
(
x,

∣
∣Tf (x)

∣
∣)dx �

∫

Rn
ϕ
(
x,M�(Tf )(x)

)
dx. (.)

For any λ ∈ (,∞), let

λ :=
{
Mq

ϕ(·,λ)f > λ
}

,

where Mq
ϕ(·,λ)f is as in (.).

By checking the proof of Theorem . and using the same notation as in the proof of The-
orem . and an anisotropic variant of the Whitney covering lemma (see [], Lemma .)
associated with λ, then we may define

g(x) :=

{
f (x), for x ∈ �

λ ,
∑

i(πxi+B�i
f ηi)(x)χi(x), for x ∈ λ,

and, for any x ∈R
n,

h(x) :=
∑

i

hi(x), where hi(x) := f (x)χi(x) – (πxi+B�i
f ηi)(x)χi(x).

Obviously, for any x ∈R
n, we have f (x) = g(x) + h(x).
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Moreover, for any x ∈R
n, set

ai(x) :=
hi(x)

Cλϕ(xi + B�i ,λ)
,

where C is a constant as in (.), then ai is a (, q, )ϕ(·,λ)-atom by checking the proof of
Theorem . with ϕ(·,λ) ∈A(A) ⊂Aq(A). Therefore, we have

h(x) = Cλ
∑

i

ϕ(xi + B�i ,λ)ai(x) ∈ H,q,
ϕ(·,λ)(A)

and

‖h‖H,q,
ϕ(·,λ)(A) ≤ Cλ

∑

i

ϕ(xi + B�i–σ ,λ) ≤ Cλϕ(λ,λ). (.)

By |g(x)| ≤ Cλ for a.e. x ∈R
n (see (.)) and (.), we obtain

‖Tg‖BMO(A) ≤ Cλ i.e. M�(Tg)(x) ≤ Cλ for a.e. x ∈R
n.

From this and T being a sublinear operator, it follows that

ϕ
({
M�(Tf ) > (C + )λ

}
,λ

)

≤ ϕ
({
M�(Tg) > Cλ

}
,λ

)
+ ϕ

({
M�(Th) > λ

}
,λ

)

= ϕ
({
M�(Th) > λ

}
,λ

)
. (.)

Thus, by Lemma ., the uniformly upper type p+
ϕ property of ϕ, and (.), we see that

∫

Rn
ϕ
(
x,M�(Tf )(x)

)
dx ∼

∫ ∞




λ

ϕ
({
M�(Tf ) > (C + )λ

}
, (C + )λ

)
dλ

�
∫ ∞




λ

ϕ
({
M�(Th) > λ

}
,λ

)
dλ.

From this and (.), it follows that

∫

Rn
ϕ
(
x,

∣
∣Tf (x)

∣
∣
)

dx �
∫ ∞




λ

ϕ
({
M�(Th) > λ

}
,λ

)
dλ. (.)

Since f ∈ L∞
 , we have f ∈ L

loc. Therefore, for any x ∈ R
n, by M�f (x) ≤ MAf (x), As-

sumption (ϕ)(ii), the boundedness of MA from L
ϕ(·,λ) to weak L

ϕ(·,λ) with ϕ(·,λ) ∈ A(A)
(see [], Proposition .(ii)), (.), H

ϕ(·,λ)(A) = H,q,
ϕ(·,λ)(A) with equivalent norms (see [],

Theorem .), (.), Lemma ., and (.) with  = q(ϕ) < p–
ϕ/q, we obtain

∫ ∞




λ

ϕ
({
M�(Th) > λ

}
,λ

)
dλ

�
∫ ∞




λ

ϕ

({

MA(Th) >
λ



}

,λ
)

dλ�
∫ ∞




λ

(‖Th‖L
ϕ(·,λ)

λ

)

dλ
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�
∫ ∞




λ

(‖h‖H,q,
ϕ(·,λ)(A)

λ

)

dλ �
∫ ∞




λ

ϕ(λ,λ) dλ

∼
∫ ∞




λ

∫

{Mq
ϕ(·,λ)f >λ}

ϕ(x,λ) dx dλ ∼
∫

Rn
ϕ
(
x,Mq

ϕ(·,λ)f (x)
)

dx

�
∫

Rn
ϕ
(
x,

∣
∣f (x)

∣
∣)dx,

which, together with (.) and Lemma ., completes the proof of Theorem .. �
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