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Abstract
In this paper, we construct the geometric inequalities for the squared norm of the
mean curvature and warping functions of warped product semi-slant submanifolds
in Kenmotsu space forms. The equality cases are also discussed.
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1 Introduction
The theory of warped product manifolds is an emerging research area in differential ge-
ometry. The idea of a warped product manifold was first discovered by Bishop and O’Neil
(cf. []) as a manifold of negative curvature. They defined the manifolds based on M and
M, which are the two Riemannian manifolds of dimensions n and n endowed with Rie-
mannian matrices g and g such that f : M → (,∞) be a positive differentiable func-
tion on M. Thus, the warped product M = M ×f M is defined based on the product
manifold M × M equipped with a metric g = g + f  · g. Moreover, if we consider that
γ : M × M → M and γ : M × M → M are the natural projections on M and M,
respectively, then the metric g on a warped product is defined as

‖X‖ =
∥
∥γ ∗

 (X)
∥
∥

 + (foγ)∥∥γ ∗
 (X)

∥
∥

, (.)

for any X tangent to TM. The function f is called the warping function. If f = , then M
is called a simply Riemannian product manifold. In contrast, M is denoted a non-trivial
warped product manifold when f �= . Let M = M ×f M be a non-trivial warped product
manifold of an arbitrary Riemannian manifold M̃. Then

∇XZ = ∇ZX = (X ln f )Z, (.)

for any vector fields X ∈ �(TM) and Z ∈ �(TM). Further, ∇ is a Levi-Citvita connection
of the induced Riemannian manifold M.
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The approach of such type inequalities for warped products in almost Hermitian and
almost contact metric manifolds has been an important field for a few decades. Especially,
Chen in [] obtained the sharp relationship between norm of the squared mean curvature
and the warping function f of the warped product M ×f M isometrically immersed in a
real space form, i.e., we have the following.

Theorem . Let φ : M ×f M be an isometrically immersion of an n-dimensional warped
product into m-dimensional real space form M̃(c) with constant sectional curvature c.
Then

�f
f

≤ n

n
‖H‖ + n · c,

where ni = dim Mi, i = , , and ∇ is the Lapalcian operator of M. Moreover, the equality
holds in the above if and only if φ is a mixed totally geodesic and nH = nH such that H

and H are partial mean curvatures.

However, on the base of the literature, we find that several inequalities have been ex-
tended to various structures for warped products by many geometers in [–]. Therefore
other inequalities also appear, in [, , –] for slant submanifolds and semi-slant sub-
manifolds in different curvature forms, which are called Chen inequalities. In addition, it
is well known that Atceken [] studied the non-existence of the warped product semi-
slant submanifolds of a Kenmotsu manifold such that structure vector ξ is tangent to the
fiber. Meanwhile, Uddin in [] and Srivastava in [] proved that the warped product
semi-slant submanifold of a Kenmotsu manifold exists in the forms M = MT ×f Mθ and
M = Mθ ×f MT , except in the case when the structure vector field ξ is tangent to MT and
Mθ , respectively. Moreover, we have studied some inequalities that Cioroboiu [] and Ak-
tan et al. [] obtained for semi-slant submanifolds by constructing its orthonormal frame
but overlooking the suitable conditions for inequalities of a warped semi-slant product.
Therefore, one needs to derive the inequalities for the mean curvature and warping func-
tions with slant angles of a warped semi-slant product in Kemotsu space form. In the
current paper, we are extending studies like [] for warped product semi-slant submani-
folds in a Kenmotsu space form. We also generalize some other inequalities for CR-warped
product submanifolds in special cases because of the warped product of semi-slant gen-
eralized CR-warped products in Kenmotsu manifolds. Moreover, the equality cases and
geometric inequalities applications related to Wireless Sensor Network are also discussed.

2 Preliminaries
An odd (m + )-dimensional smooth manifold M̃ is called a Kenmotsu manifold, if it is
consisting in an endomorphism ϕ of its tangent bundle TM̃, a structure vector field ξ , and
a -form η satisfying the following:

ϕ = –I + η ⊕ ξ , η(ξ ) = , ηoϕ = , (.)

g(ϕU ,ϕV ) = g(U , V ) – η(U)η(V ), η(U) = g(U , ξ ), (.)

and the structure equation is given by

(∇̃Uϕ)V = g(ϕU , V ) – η(V )ϕU , (.)
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∇̃Uξ = U – η(U)ξ , (.)

for any U , V tangent to M̃ (see []). The curvature tensor R̃ for Kenmotsu space forms is
defined as

R̃(X, Y , Z, W ) =
c – 


{

g(X, W )g(Y , Z) – g(X, Z)g(Y , W )
}

+
c + 


{

g(X,ϕW )g(Y ,ϕZ) – g(X,ϕZ)g(Y ,ϕW )

– g(X,ϕY )g(Z,ϕW ) – g(X, W )η(Y )η(Z)

+ g(X, Z)η(X)η(W ) – g(Y , Z)η(X)η(W )

+ g(Y , W )η(X)η(Z)
}

, (.)

where c is a function of the constant ϕ-sectional curvature of M̃ (see [].
Let M be a submanifold of an almost contact metric manifold M̃ with induced metric g ;

if ∇ and ∇⊥ are the induced connections on the tangent bundle TM and the normal bundle
T⊥M of M, respectively, then the Gauss and Weingarten formulas are given by

∇̃U V = ∇U V + h(U , V ), (.)

∇̃U N = –AN U + ∇⊥
U N , (.)

for each U , V ∈ �(TM) and N ∈ �(T⊥M), where h and AN are the second fundamental
form and the shape operator (corresponding to the normal vector field N ), respectively,
for the immersion of M into M̃. They are related as

g
(

h(U , V ), N
)

= g(AN U , V ), (.)

where g denotes the Riemannian metric on M̃ as well as the metric induced on M. More-
over, for a submanifold M, the Gauss equation is defined as

R̃(U , V , Z, W ) = R(U , V , Z, W ) + g
(

h(U , Z), h(V , W )
)

– g
(

h(U , W ), h(V , Z)
)

, (.)

for any U , V , Z, W ∈ �(TM), where R̃ and R are the curvature tensors on M̃ and M, re-
spectively. The mean curvature vector H for an orthonormal frame {e, e, . . . , en} of the
tangent space TM on M is defined by

H =

n

trace(h) =

n

n
∑

i=

h(ei, ei), (.)

where n = dim M. In addition, we set

hr
ij = g

(

h(ei, ej), er
)

and ‖P‖ =
n

∑

i,j=

g(ϕei, ej). (.)
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Furthermore, the scalar curvature ρ for a submanifold M of an almost contact manifold
M̃ is given by

ρ =
∑

≤i�=j≤n

K(ei ∧ ej), (.)

where K(ei ∧ ej) is the sectional curvature of plane section spanned by ei and ej. Let Gr be
a r-plane section on TM and {e, e, . . . , er} any orthonormal basis of Gr . Then the scalar
curvature ρ(Gr) of Gr is given by

ρ(Gr) =
∑

≤i�=j≤r

K(ei ∧ ej). (.)

Let M̃ be a Kenmotsu manifold with an almost contact structure (ϕ, ξ ,η) and M be a sub-
manifold tangent to the structure vector field ξ isometrically immersed in M̃. Then M is
called invariant if ϕ(TpM) ⊆ TpM, and M is called anti-invariant if ϕ(TpM) ⊂ T⊥

p M for
every p ∈ M where TpM denotes the tangent bundle of M at the point p. Moreover, M
is called a slant submanifold if all non-zero vectors U tangent to M at a point p, the an-
gle of θ (U) between ϕU and TpM are constant, i.e., they do not depend on the choice of
p ∈ M and U ∈ �(TpM – 〈ξ (p)〉) (see []). Except invariant, anti-invariant, and slant sub-
manifolds, there are several other classes of submanifolds determined by the behavior of
the tangent space of the submanifold under the action of a one-one tensor field ϕ of an
ambient manifold.

Recently, Cabrerizo et al. [] extended of the mentioned definition into a characteriza-
tion for a slant submanifold in a contact metric manifold. In fact, they have obtained the
following theorem.

Theorem . Let M be a submanifold of an almost contact metric manifold M̃ such that
ξ ∈ TM. Then M is slant if and only if there exists a constant λ ∈ [, ] such that

P = δ(–I + η ⊗ ξ ). (.)

Furthermore, in such a case, if θ is a slant angle, then it satisfies δ = cos θ .

Hence, we have the following relations which are consequences of Theorem ., i.e.,

g(PU , PV ) = cos θ
{

g(U , V ) – η(U)η(V )
}

, (.)

g(FU , FV ) = sin θ
{

g(U , V ) – η(U)η(V )
}

. (.)

There is another class, which is called a semi-slant submanifold. The notion of semi-
slant submanifolds were defined and studied by Papaghiuc in [] as a natural generaliza-
tion of CR-submanifolds of almost Hermitian manifolds in terms of the slant distribution
and it was later extended to the setting of contact manifolds by Cabrerizo []. One de-
fined these submanifolds as follows.

Definition . Let M be a submanifold of an almost contact metric manifold M̃. Then
M is said to be a semi-slant submanifold if there exist two orthogonal distributions D and
Dθ such that
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(i) TM = D ⊕Dθ ⊕ 〈ξ 〉 where 〈ξ 〉 is a -dimensional distribution spanned by ξ :
(ii) D is invariant, i.e., ϕ(D) ⊆D;

(iii) Dθ is slant distribution with slant angle θ �= ,π/.

Assume that φ : M = M ×f M → M̃ is an isometric immersion of a warped product
M ×f M into a Riemannian manifold of M̃ of constant section curvature c. Suppose that
n, n, and n are the dimensions of M, M, and M ×f M, respectively. Then for unit
vector fields X, Z tangent to M, M, respectively,

K(X ∧ Z) = g(∇Z∇XX – ∇X∇ZX, Z)

=

f
{

(∇XX)f – Xf
}

. (.)

Let us assume a local orthonormal frame {e, e, . . . , en} such that e, e, . . . , en tangent to
M and en+, . . . , en are tangent to M. Then

∑

≤i≤n

∑

n+≤j≤n

K(ei ∧ ej) =
n · �f

f
. (.)

Lemma . [] Let a, a, . . . , an, an+ be n +  (n ≥ ) be real number such that

( n
∑

i=

ai

)

= (n – )

( n
∑

i=

a
i + an+

)

.

Then a · a ≥ a with the equality holding if and only if a + a = a = · · · = ak .

3 Main inequalities
In this section, as applications of very famous studied of Nolker in [], we obtain the
following inequality for warped product semi-slant submanifolds of Kenmotsu space form
such that ξ is tangent to the first factor of the warped product, i.e., we have the following.

Theorem . Assume that φ : M = MT ×f Mθ → M̃(c) is an isometric immersion from a
warped product semi-slant MT ×f Mθ into a Kenmotsu space form M̃(c) such that c is a
ϕ-sectional constant curvature and ξ is tangent to MT . Then:

(i) The relation between warping function and the squared norm of mean curvature is
obtained

�f
f

≤ n

n
‖H‖ +

c – 


n –
c + 
n

[

d + d
(

 +  cos θ
)]

, (.)

where ni = dim Mi, i = T , θ , and � is the Laplacian operator on MT .
(ii) The equality case holds in (.) if and only if n · HT = n · Hθ , where HT and Hθ are

partially mean curvature vectors on MT and Mθ , respectively. Moreover, φ is a
mixed totally geodesic immersion.
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Proof Let MT ×f Mθ be a warped product semi-slant submanifold in Kenmotsu space
form M̃(c). Based on the Gauss formula (.) and (.), we derive

ρ =
c – 


n(n – ) +

(c + )


[


∑

≤i�=k≤n

g(Pei, ek) – (n – )
]

+ n‖H‖ – ‖h‖. (.)

As well we are concerned that M is a proper semi-slant submanifold of Kenmotsu space
form M̃(c). Thus, we define the following frame according to Cioroboiu in [], i.e.,

e, e = ϕe, . . . , ed–, ed = ϕed–,

ed+, ed+ = sec θPed+, . . . ed+d–, ed+d = sec θPed+d–,

ed+d+ = ξ ,

Clearly, we derive

g(ϕei, ei+) =

⎧

⎨

⎩

, for i ∈ {, , . . . , d – },
cos θ , for i ∈ {d + , . . . , d + d – }.

(.)

From (.) and (.), it follows that

ρ =
c – 


n(n – ) +

(c + )


[

d + d · ( cos θ – 
)]

+ n‖H‖ – ‖h‖. (.)

Now we consider

δ = ρ –
c – 


n(n – ) –

(c + )


[

d + d · ( cos θ – 
)]

–
n

‖H‖. (.)

Then, from (.) and (.),

n‖H‖ = 
(

δ – ‖h‖). (.)

Thus for a locally orthonormal frame {e, e, . . . , en}, equation (.) takes the form

(m+
∑

r=n+

n
∑

i=

hr
ii

)

= 

(

δ +
m+
∑

r=n+

n
∑

i=

(

hr
ii
) +

m+
∑

r=n+

n
∑

i<j=

(

hr
ij
) +

m+
∑

r=n+

n
∑

i,j=

(

hr
ij
)

)

, (.)

which implies that




(

hn+
 +

n∑

i=

hn+
ii +

n
∑

t=n+

hn+
tt

)

= δ +
(

hn+


) +
n∑

i=

(

hn+
ii

)

+
n

∑

t=n+

(

hn+
tt

) –
∑

≤j �=l≤n

hn+
jj hn+

ll
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–
∑

n+≤t �=s≤n

hn+
tt hn+

ss +
n

∑

i<j=

(

hn+
ij

)

+
m+
∑

r=n+

n
∑

i,j=

(

hr
ij
). (.)

Now consider that a = hn+
 , a =

∑n
i= hn+

ii , and a =
∑n

t=n+ hn+
tt and applying Lemma .

in (.). Then we derive

δ


+

n
∑

i<j=

(

hn+
ij

) +



m+
∑

r=n+

n
∑

i,j=

(

hr
ij
) ≤

∑

≤j �=l≤n

hn+
jj hn+

ll +
∑

n+≤t �=s≤n

hn+
tt hn+

ss , (.)

with equality holding in (.) if and only if

n∑

i=

hn+
ii =

n
∑

t=n+

hn+
tt . (.)

Further, (.) and (.) imply that

n · �f
f

= ρ –
∑

≤j �=k≤n

K(ei ∧ ek) –
∑

n+≤t �=s≤n

K(et ∧ es). (.)

From (.) we obtain

n · �f
f

= ρ –
c – 


n(n – ) +

(c + )


(n – )

–
(c + )


∑

≤i�=k≤n

g(Pei, ek) –
m+
∑

r=

∑

≤j �=k≤n

(

hr
jjh

r
kk –

(

hr
jk
))

–
(c + )


∑

n+≤t �=s≤n

g(Pet , es) –
c – 


n(n – )

–
m+
∑

r=

∑

n+≤t �=s≤n

(

hr
tth

r
ss –

(

hr
ts
)). (.)

Thus, from (.) and (.), it is easily observed that

n · �f
f

≤ ρ –
c – 


n(n – ) +

c – 


n · n +
c + 


(n – )

–
(c + )


(n – ) –

(c + )


n · cos θ –
δ


. (.)

Hence, using (.), then the inequality (.) reduces to

n · �f
f

≤ n


‖H‖ +

c – 


n · n +
c + 


(

–d – d cos θ – d
)

. (.)
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This implies the inequality (.). The equality sign holds in (.) if and only if the terms
left in (.), and (.) imply that

m+
∑

r=n+

n∑

j=

hr
jj =

m+
∑

r=n+

n
∑

i=n+

hr
ii = , (.)

and n · HT = n · Hθ , where HT and Hθ are partially mean curvature vectors on MT and
Mθ , respectively. Moreover, from (.), we find that

hr
ij = , for each  ≤ i ≤ n, n +  ≤ j ≤ n, n +  ≤ r ≤ m + . (.)

It means that φ is a mixed totally geodesic immersion. But the converse of (.) may not
be true in a warped semi-slant product in Kenmotsu space form. Thus the proof of the
theorem is completed. �

Theorem . Let φ : M = Mθ ×f MT → M̃(c) be an isometric immersion of a warped prod-
uct semi-slant Mθ ×f MT into a Kenmotsu space form M̃(c) such that ξ is tangent to Mθ .
Then

(i) The relation between warping function and the norm of the squared mean curvature
is given by

�f
f

≤ n

n
‖H‖ +

c – 


n –
c + 
n

(

d + d
{

 +  cos θ
})

, (.)

where ni = dim Mi, i = T , θ , and � is the Laplacian operator on Mθ .
(ii) The equality case holds in (.) if and only if n · HT = n · Hθ , where HT and Hθ are

partially mean curvature vector fields on MT and Mθ , respectively, and φ is a mixed
totally geodesic immersion.

Proof The proof of Theorem . is similar to Theorem . by reversing and considering
that the structure vector field ξ is normal to the fiber. �

In the sense of Papaghiuc, i.e., the generalization of semi-slant submanifolds, we directly
obtain the following corollaries by using Theorem ., Theorem ., and θ = π

 .

Corollary . Assume that φ : M = MT ×f M⊥ → M̃(c) is an isometric immersion of a CR-
warped product MT ×f M⊥ into a Kenmotsu space form M̃(c) with c a ϕ-sectional constant
curvature such that ξ is tangent to MT . Then

�f
f

≤ n

n
‖H‖ +

c – 


n –
c + 
n

(d + d), (.)

where ni = dim Mi, i = T ,⊥, and � is the Laplacian operator on MT .

Corollary . Let φ : M = M⊥ ×f MT → M̃(c) be an isometric immersion of a CR-warped
product submanifold M⊥ ×f MT into a Kenmotsu space form M̃(c) such that ξ is tangent
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to M⊥. Then

�f
f

≤ n

n
‖H‖ +

c – 


n –
c + 
n

(d + d), (.)

where ni = dim Mi, i = T ,⊥, and � is the Laplacian operator on M⊥.

4 Applications
Any geometric inequality reflects a free or constrained optimum problem with suitable
strategies for improved bandwidth management in wireless communications due to the
dynamically changing traffic conditions and network performance. Except, some applica-
tions of geometric inequalities can be found in Wireless Sensor Networks related to Power
balanced coverage-time optimization and Coverage by randomly deployed sensors [].
Therefore, some applications of geometric inequalities can be found in computer sciences.
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