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Abstract
Some sufficient conditions are proposed in this paper such that the nonlinear
eigenvalue problem with an irreducible singularM-matrix has a unique positive
eigenvector. Under these conditions, the Newton-SOR iterative method is proposed
for numerically solving such a positive eigenvector and some convergence results on
this iterative method are established for the nonlinear eigenvalue problems with an
irreducible singularM-matrix, a nonsingularM-matrix, and a generalM-matrix,
respectively. Finally, a numerical example is given to illustrate that the Newton-SOR
iterative method is superior to the Newton iterative method.
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1 Introduction
In research of physics, Bose-Einstein condensation of atoms near absolute zero tempera-
ture is modeled by a nonlinear Gross-Pitaevskii equation, see [, ], i.e.,

–�u + V (x, y, z)u + ku = λu, ()

lim
|(x,y,z)|→∞

u = ,
∫ ∞

–∞

∫ ∞

–∞

∫ ∞

–∞
u(x, y, z) dx dy dz = , ()

where V is a potential function. The discretization of this equation usually leads to the
following nonlinear eigenvalue problem:

Ax + F(x) = λx, ()

where A ∈ R
n×n is an irreducible M-matrix, the function F(x) is diagonal, that is,

F(x) =

⎡
⎢⎢⎢⎢⎣

f(x)
f(x)

...
fn(xn)

⎤
⎥⎥⎥⎥⎦ ,

with the conditions that xi >  and fi(xi) >  for i = , , . . . , n.
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In [–], some scholars studied the conditions that the nonlinear eigenvalue problem
() with an irreducible nonsingular M-matrix has a unique positive eigenvector, applied
the Newton iterative method to solve numerically this problem, and established some sig-
nificant theoretical and numerical results. It is shown in [–] that the main contributions
were made to the nonlinear eigenvalue problem as follows: (i) any number greater than the
smallest positive eigenvalue of the nonsingular M-matrix is an eigenvalue of the nonlin-
ear eigenvalue problems; (ii) the corresponding positive eigenvector is unique, and (iii) the
Newton iterative method is convergent for numerically solving the positive eigenvector.

However, not all nonlinear eigenvalue problems from the discretization of various
Gross-Pitaevskii equations have a nonsingular M-matrix. Maybe some nonlinear eigen-
value problems have a singular M-matrix or a Z-matrix. In this paper, we will mainly study
the theory and solution of positive eigenvector of nonlinear eigenvalue problem with a
singular M-matrix. Some sufficient conditions will be proposed such that the nonlinear
eigenvalue problem with an irreducible singular M-matrix has a unique positive eigen-
vector. Meanwhile, the Newton-SOR iterative method will be proposed under these con-
ditions for numerically solving such a positive eigenvector, and some convergence results
on this iterative method will be established for the nonlinear eigenvalue problems with an
irreducible singular M-matrix, a nonsingular M-matrix, and a general M-matrix, respec-
tively.

The paper is organized as follows. Some notations and preliminary results as regards
M-matrices are given in Section . The existence and uniqueness of a positive eigenvec-
tor are studied in Section  for the nonlinear eigenvalue problem () with an irreducible
singular M-matrix. The Newton-SOR iterative method is proposed in Section  for nu-
merically solving such a positive eigenvector and some convergence results on this iter-
ative method are established for the nonlinear eigenvalue problems with an irreducible
singular M-matrix, a nonsingular M-matrix and a general M-matrix, respectively. In Sec-
tion , a numerical example is given to demonstrate the effectiveness of the Newton-SOR
iterative method. Conclusions are given in Section .

2 Preliminaries
The following lemmas for the M-matrix are useful and can be found in the literature, see
[, , –], we present them here to make the paper self-contained.

Definition  A matrix A = (aij) ∈ R
n×n is called nonnegative if aij ≥  for all i, j ∈ 〈n〉 =

{, , . . . , n}.

We write A ≥  if A is nonnegative. Let A ≥  and B ≥ , we write A ≥ B if A – B ≥ .

Definition  A matrix A = (aij) ∈ R
n×n is called a Z-matrix if aij ≤  for all i 
= j.

We will use Zn to denote the set of all n × n Z-matrices.

Definition  A matrix A = (aij) ∈ Zn is called an M-matrix if A can be expressed in the
form A = sI – B, where B ≥ , and s ≥ ρ(B), the spectral radius of B. If s > ρ(B), A is called
a nonsingular M-matrix; if s = ρ(B), A is called a singular M-matrix.
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Mn, M•
n, and M

n will be used to denote the set of all n × n M-matrices, the set of all
n × n nonsingular M-matrices, and the set of all n × n singular M-matrices, respectively.
It is easy to see that

Mn = M•
n ∪ M

n and M•
n ∩ M

n = ∅. ()

Lemma  (see []) If A ∈ M
n , then A + D ∈ M•

n for each positive diagonal matrix D.

Lemma  (see []) If A = (aij) ∈ M•
n, and B = (bij) ∈ Zn satisfies aij ≤ bij, i, j = , . . . , n, then

B ∈ M•
n, and hence, B– ≤ A– and μA ≤ μB, where μA and μB are the smallest eigenvalues

of A and B, respectively. In addition, if A is irreducible and A 
= B, then B– < A– and
μA < μB.

Lemma  (see []) Let A ∈ M•
n and μ be the smallest positive eigenvalue of A. Then, for

any ν ≤ μ, A – νI ∈ Mn.

Lemma  (see []) Let S : Rn → Rn be defined and continuous on an interval [y, z] and let
(i) y < S(y) < z;

(ii) y < S(z) < z;
(iii) y ≤ x < x ≤ z implies y < S(x) < S(x) < z.

Then
(a) the fixed point iteration x(k) = S(x(k–)) with x() = y is monotone increasing and

converges: x(k) → x∗, S(x∗) = x∗, y < x∗ < z;
(b) the fixed point iteration x(k) = S(x(k–)) with x() = z is monotone decreasing and

converges: x(k) → x∗, S(x∗) = x∗, y < x∗ < z;
(c) if x is a fixed point of S in [y, z] then x∗ ≤ x ≤ x∗;
(d) S has a unique fixed point in [y, z] if and only if x∗ = x∗.

Definition  (see []) A splitting A = M – N of A ∈ R
n×n is called a regular splitting of

the matrix A if M is nonsingular with M– ≥  and N ≥ .

Lemma  (see []) If A = M –N is a regular splitting of the matrix A ∈R
n×n with A– ≥ ,

then

ρ
(
M–N

)
=

ρ(A–N)
 + ρ(A–N)

< .

Thus, the matrix M–N is convergent, and the iterative method of Mxm+ = Nxm + k, m ≥ 
converges for any initial vector x.

3 Existence and uniqueness of positive eigenvector
In this section, we study the existence and uniqueness of positive eigenvector of nonlinear
eigenvalue problem () with an irreducible singular M-matrix.

Theorem  Let A ∈ M
n be irreducible. Then, for any λ ≤ , the nonlinear eigenvalue prob-

lem () has no positive solution.
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Proof In (), we let F(x) = D(x)
 x, where

D(x)
 =

⎡
⎢⎢⎢⎢⎢⎣

f(x)
x

 · · · 

 f(x)
x

. . .
...

...
. . . . . . 

 · · ·  f(xn)
xn

⎤
⎥⎥⎥⎥⎥⎦

()

is a positive diagonal matrix for xi > , fi(xi) > , i = , . . . , n. We reformulate () equivalently
as follows:

(
A + D(x)

 – λI
)
x = . ()

Since λ ≤  and D(x)
 is a positive diagonal matrix, it follows from Lemma  that A + D(x)

 –
λI is an irreducible nonsingular M-matrix. Consequently, () has a zero solution. Thus,
equation () has no positive solution for λ ≤ . �

In what follows we study the solution of () when λ > .

Theorem  Let A ∈ M
n be irreducible. If λ > , and fi(·) : (,∞) → (,∞) is a C function

satisfying the conditions:

lim
t→

fi(t)
t

= , lim
t→∞

fi(t)
t

= ∞ ()

for i = , . . . , n, then the nonlinear eigenvalue problem has a positive solution. In addition,
if

f ′
i (t) >

fi(t)
t

, i = , . . . , n ()

for any t > , then the positive solution is unique.

Proof Since A is an irreducible singular M-matrix, μ =  is the smallest eigenvalue of A
and there exists a positive vector p = (p, p, . . . , pn)T such that Ap = . According to (),
take β small enough such that λ(βpi) > fi(βpi), i = , . . . , n, and take β > β large enough
so that λ(βpi) ≤ fi(βpi), i = , . . . , n. This is possible in view of () if and only if λ ∈ (,∞).
Take a positive number c such that

c > max
≤i≤n

(
sup

βpi≤t≤βpi

∣∣f ′
i (t)

∣∣) – λ, ()

and let

S(x) = (cI + A)– · [(c + λ)x – F(x)
]
.

To prove existence we show that S(x) satisfies conditions of Lemma  with y = βp and
z = βp. For condition (i) of Lemma , since

S(y) = (cI + A)– · [(c + λ)(βp) – F(βp)
]
,
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in combination with (), we can fully show that

(cI + A)– · c(βp) ≤ (cI + A)– · [(c + λ)(βp) – F(βp)
] ≤ (cI + A)– · c(βp). ()

Since (cI + A)– · c > , () is equivalent to

βp < (cI + A)– · [(c + λ)(βp) – F(βp)
]

< βp.

This follows immediately from the choices of β and β. The conditions (ii) and (iii) can
be verified in a similar way using the condition in () on c.

Now let x∗ and x∗ are two fixed points of S, and  < x∗ ≤ x∗. That means

x∗ = (cI + A)– · [(c + λ)x∗ – F
(
x∗)],

x∗ = (cI + A)– · [(c + λ)x∗ – F(x∗)
]
,

or equivalently that

Ax∗ + F
(
x∗) = λx∗, ()

Ax∗ + F(x∗) = λx∗. ()

Let us show that in this case x∗ = x∗. Pre-multiplying () and () by xT∗ and x∗T , respec-
tively, and subtracting we get

xT
∗ F

(
x∗) = x∗T F(x∗),

or equivalently

n∑
i=

(
fi
(
x∗

i
)
x∗i – fi(x∗i)x∗

i
)

=
n∑

i=

(
x∗ix∗

i

(
fi(x∗

i )
x∗

i
–

fi(x∗i)
x∗i

))
= . ()

Since fi(t) satisfies the condition (),

(
fi(t)

t

)′
=

tf ′
i (t) – fi(t)

t > 

for any i = , , . . . , n. Thus, the function fi(t)
t is monotone increasing, and consequently, for

any i = , , . . . , n,

fi(s)
s

<
fi(t)

t
,  < s < t.

Since all terms in () are nonnegative, the sum is zero if and only if

x∗ = x∗.

This implies the uniqueness of positive solution of (). We completed the proof. �



Zhang et al. Journal of Inequalities and Applications  (2016) 2016:225 Page 6 of 10

Remark  It is easy to see that the function F(x) = (f(t), f(t), . . . , fn(t))T in the Gross-
Pitaevskii equation with fi(t) = t for i = , , . . . , n satisfies all conditions of Theorem .
Thus, this equation has a positive solution.

4 Newton-SOR iteration of positive eigenvector
The Newton iterative method was applied by Choi, Koltracht, and McKenna in [] to solve
numerically the nonlinear eigenvalue problem () with Stiltjes matrices. Later, Choi et al.
in [, ] and Li et al. in [, ] used this iterative method to compute this problem with
nonsingular M-matrices, and they established some significant theoretical and numerical
results. But each step in the Newton iterative method solves one linear system

R′(xk)x = R′(xk)xk – Rxk , k = , , . . . , ()

where R′(xk) = A + F ′(xk) –λI is nonsingular. If A is singular or ill-conditioned, the Newton
iterative method can perform very bad. Thus, it is necessary to improve this method.

On the other hand, many iterative methods are proposed for linear systems; see [–
]. Among these methods, SOR iterative method is a more effective one. In the follow-
ing the Newton iterative method will be improved to propose a new iterative method -
the Newton-SOR iterative method. Next, the SOR iterative method will be introduced to
construct the new iterative method.

For the linear equations

Ax = b, ()

let A = D – L – U , where D = diag(a, a,, . . . , ann), and L and U are, respectively, strictly
lower triangular and strictly upper triangular. We may then write the SOR iteration in the
form

xk+ = (D – ωL)–[( – ω)D + ωU
]
xk + ω(D – ωL)–b, k = , , . . . . ()

The quantity ω is called the relaxation factor, and  ≤ ω ≤ . Clearly, () reduces to the
Gauss-Seidel iteration when ω = . For the equation

R(x) = Ax + F(x) – λx,

[R′(x)]– exists if A, F(x), and λ satisfy the conditions of Theorem , and the fixed point
function of the Newton iteration scheme has the following form:

x = x –
[
R′(x)

]–R(x). ()

From ()

R′(x)x = R′(x)x – R(x), ()

where

R′(x) = A + D(x)
 – λI
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can be decomposed as

R′(x) =
(
D + D(x)

 – λI
)

– L – U ,

where

D(x)
 =

⎡
⎢⎢⎢⎢⎢⎣

f ′
 (x)  · · · 

 f ′
(x)

. . .
...

...
. . . . . . 

 · · ·  f ′
n(xn)

⎤
⎥⎥⎥⎥⎥⎦

.

Let Dx = D + D(x)
 – λI . Then

R′(x) = Dx – L – U ,

where Dx, L, and U are diagonal, strictly lower triangular, and strictly upper triangular
matrices, respectively. It follows from the SOR iteration scheme () and the fixed point
function () of the Newton iteration scheme that the fixed point function of the Newton-
SOR iteration scheme is as follows:

x = (Dx – ωL)–[( – ω)Dx + ωU
]

+ ω(Dx – ωL)–[R′(x)x – R(x)
]
. ()

Assume that xk has been determined. Then the Newton-SOR iteration scheme is given by

xk+ = (Dxk – ωL)–[( – ω)Dxk + ωU
]
xk

+ ω(Dxk – ωL)–[R′(xk)xk – R
(
xk)], k = , , . . . . ()

It follows from Theorem . in [] that the SOR iterative method converges to the unique
solution of () for any choice of the initial guess x() if and only if ρ(Hω) < , where Hω is
the SOR iterative matrix.

In the remainder of this section, the convergence result of the Newton-SOR iterative
method will be established for the nonlinear eigenvalue problem ().

Theorem  If A, λ, and F(x) = [f(x), f(x), . . . , fn(xn)]T in () satisfy all conditions of The-
orem , then ρ(Hk

ω) < , where Hk
ω = (Dxk – ωL)–[( – ω)Dxk + ωU] is the Newton-SOR it-

erative matrix, i.e., the sequence {xk} generated by the Newton-SOR iterative scheme ()
converges to the unique solution of () for any choice of the initial guess x().

Proof We only prove ρ(Hk
ω) < . According to the Newton-SOR iterative matrix

Hk
ω = (Dxk – ωL)–[( – ω)Dxk + ωU

]
,

let Mk = Dxk – ωL and Nk = ( – ω)Dxk + ωU . Then Hk
ω = M–

k Nk and

Mk – Nk = (Dxk – ωL) –
[
( – ω)Dxk + ωU

]

= ω(Dxk – L – U)
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= ω
(
A + D(xk )

 – λI
)

= ωR′(xk). ()

It follows from Lemma  that A + D(x)
 is an irreducible nonsingular M-matrix, where D(x)



is defined in (). From (), D(x)
 > D(x)

 , then A + D(x)
 > A + D(x)

 . Lemma  shows the smallest
eigenvalue of A + D(x)

 is larger than A + D(x)
 . The Perron-Frobenius theorem (see Theo-

rem . in []) indicates that the positive solution of () exists if λ is the smallest eigen-
value of A + D(x)

 . Lemma  shows that A + D(x)
 –λI is an irreducible nonsingular M-matrix.

So

R′(xk) = A + D(xk )
 – λI

is an irreducible nonsingular M-matrix, the same for ωR′(xk). It is easy to see that Dxk –ωL
is an irreducible nonsingular M-matrix, then (Dxk – ωL)– ≥ . It follows that ( – ω)Dxk +
ωU ≥ ,

ωR′(xk) = Mk – Nk

is a regular splitting of the matrix ωR′(xk). It follows from Lemma  that ρ(M–
k Nk) =

ρ(Hk
ω) < , i.e., the sequence {xk} generated by the Newton-SOR iterative scheme () con-

verges to the unique solution of () for any choice of the initial guess x(). This completes
the proof. �

Theorem  Let A ∈ M•
n. If λ and F(x) = [f(x), f(x), . . . , fn(xn)]T in () satisfy all con-

ditions of Theorem , then ρ(Hk
ω) < , where Hk

ω = (Dxk – ωL)–[( – ω)Dxk + ωU] is the
Newton-SOR iterative matrix, i.e., the sequence {xk} generated by the Newton-SOR itera-
tive scheme () converges to the unique solution of () for any choice of the initial guess x().

Proof Similar to the proof of Theorem , the conclusion of this theorem is obtained im-
mediately from Lemma , Lemma , Lemma , and Lemma . �

Theorem  Let A ∈ Mn. If λ and F(x) = [f(x), f(x), . . . , fn(xn)]T in () satisfy all condi-
tions of Theorem , then ρ(Hk

ω) < , where Hk
ω = (Dxk –ωL)–[(–ω)Dxk +ωU] is the Newton-

SOR iterative matrix, i.e., the sequence {xk} generated by the Newton-SOR iterative scheme
() converges to the unique solution of () for any choice of the initial guess x().

Proof According to (), the conclusion of this theorem is obtained immediately from The-
orem  and Theorem . �

5 Numerical experiment
Now, we verify the convergence of Newton-SOR iterative solution by a numerically exam-
ple. We start with the one-dimensional prototype of the Gross-Pitaevskii equation,

–x′′(t) + ν(t)x′(t) + kx(t) = λx(t), –∞ < t < ∞,

x(±∞) = ,
∫ ∞

–∞
x(t) dt = ,
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Table 1 Iteration number, CPU time, and values of e(k)
1 and e(k)

2 for different values of ω

ω 0.25 1 1.5 2.1 2.45

CPU time 2.5498 0.4931 0.2930 0.1685 0.4252
Iter. 664 137 76 50 103
e(k)1 7.7452× 10–12 3.1752× 10–11 4.9257× 10–11 1.5896× 10–10 2.5597× 10–10

e(k)2 9.9186× 10–7 8.7991× 10–7 8.1715× 10–7 7.6891× 10–7 8.8627× 10–7

Table 2 Iteration number, CPU time, and values of e(k)
1 and e(k)

2 of the Newton method

Iter. CPU time e(k)
1 e(k)

2

93 4.5745 4.0768× 10–11 8.9977× 10–7

where ν(t) = t. The finite difference method is applied to this equation, which leads to the
matrix of the form

A =


h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

 – + νh
  · · ·  

– + νh
  – + νh

 · · ·  
...

...
...

. . .
...

...
   · · ·  – + νn–h


   · · · – + νnh

 

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where νi are the values of ν(t) at the mesh points, h is the discretization step-size. When
h is small enough, A is a singular M-matrix.

For simplicity, we truncate t on the interval [–., .]. Let n = , h = 
n+ , and ti =

 + ih, i = , . . . , n + . We chose the parameter values k = , λ = , α = . We begin the
iteration with x() = αp, where p is a positive eigenvector of A. Let e(k)

 = ‖xk –xk–‖
‖xk‖

and
e(k)

 = ‖Axk + F(xk) – λxk‖. The iteration stops when e(k)
 + e(k)

 < ε, ε = –. We adopt the
Newton-SOR iterative method and the Newton iterative method to compute the equation
above on a PC computer by Matlab .. The results on performing a numerical experiment
are given in Tables  and .

The CPU time, iteration number, and values of e(k)
 and e(k)

 of the Newton-SOR method
for different values of ω and the Newton method are given in Table  and Table , respec-
tively. This experiment shows that the Newton-SOR method has the shortest CPU time,
the least iterations, and the minimal error when ω = .. By comparing Table  and Ta-
ble , we find that Newton-SOR has a much shorter CPU time, much less iterations, and
much smaller error than Newton iterative method does. It is clearly illustrated that the
Newton-SOR iterative method is superior to the Newton iterative method.

6 Conclusions
This article mainly studies the nonlinear eigenvalue problem with an irreducible singu-
lar M-matrix and proposes some sufficient conditions such that a positive eigenvector
of this problem exists and is unique. Under these conditions, we improve the SOR itera-
tive method to construct the Newton-SOR iterative method for numerically solving such
a positive eigenvector, meanwhile, we establish some convergence results on this itera-
tive method for the nonlinear eigenvalue problems with an irreducible singular M-matrix,
a nonsingular M-matrix, and a general M-matrix, respectively. Finally, we give a numeri-
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cal example to illustrate that the Newton-SOR iterative method is superior to the Newton
iterative method.
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