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Abstract
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Herz spaces with variable exponent. Our method is based on the theory on Banach
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1 Introduction
The boundedness of fractional integrals on function spaces is one of the important prob-
lems not in harmonic analysis but also in potential theory and in partial differential
equations. Among the development of variable exponent analysis the we can list up bound-
edness of fractional integrals on function spaces with variable exponent. Capone, Cruz-
Uribe and Fiorenza [] have proved the boundedness on Lebesgue spaces with variable
exponent, provided that the exponents satisfy the log-Hölder continuous conditions. The
conditions on variable exponents have been established by the study of the boundedness
of the Hardy-Littlewood maximal operator on spaces with variable exponent [–]. Cruz-
Uribe, Fiorenza, Martell and Pérez [] have also proved the boundedness of fractional
integrals by virtue of the extrapolation method.

Every Herz space has an interesting norm involving both local and global information
and has been studied in harmonic analysis. Lu and Yang [] have proved the bounded-
ness of fractional integrals on Herz spaces. Inspired by the study of variable exponent
analysis and on Herz spaces the first author has defined Herz spaces with variable expo-
nent [, ]. Later he has proved the boundedness of fractional integrals on Herz spaces
with variable exponent []. Almeida and Drihem [] have also independently proved the
boundedness.

Based on the Muckenhoupt theory [] the modern harmonic analysis has been greatly
developed. Recently the generalized Muckenhoupt weights with variable exponent have
been considered [–]. In particular, Cruz-Uribe, Fiorenza and Neugebauer [] and
Diening and Hästö [] have independently proved the equivalence between the Muck-
enhoupt condition and the boundedness of the Hardy-Littlewood maximal operator on
weighted Lebesgue spaces in the variable exponent setting. We also note that Cruz-
Uribe and Wang [] have obtained the boundedness of fractional integrals on weighted
Lebesgue spaces with variable exponent applying the extrapolation theorem.
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In this paper we define weighted Herz spaces with variable exponent and prove the
boundedness of fractional integrals on those spaces under proper assumptions on weights
and exponents. Our argument is based on the theory on Banach function spaces and on
the Muckenhoupt theory with variable exponent. The authors have also considered other
problems on boundedness of some operators on weighted Herz spaces with variable ex-
ponent in the recent preprints [, ].

In this paper we use the following symbols and notation:
. For any measurable set E, |E| denotes the Lebesgue measure and χE means the

characteristic function.
. A locally integrable and positive function defined on R

n is said to be a weight. We
write w(E) :=

∫
E w(x) dx for a weight w and a measurable set E.

. If there exists a positive constant C independent of the main parameters such that
A ≤ CB, then we write A � B.

2 Preliminaries
2.1 Variable Lebesgue spaces
Based on the fundamental papers and books [, , , ] we introduce Lebesgue spaces
with variable exponent. Let p(·) : Rn → [,∞) be a measurable function. The variable ex-
ponent Lebesgue space Lp(·)(Rn) is the set of all complex-valued measurable functions f
defined on R

n satisfying

ρp(f ) :=
∫

Rn

∣
∣f (x)

∣
∣p(x) dx < ∞.

It is well known that the variable exponent Lebesgue space Lp(·)(Rn) becomes a Banach
space equipped with a norm given by

‖f ‖Lp(·) := inf

{

λ >  : ρp

(
f
λ

)

≤ 
}

.

Denote by P(Rn) the set of all measurable functions p(·) : Rn → (,∞) such that

 < p– := ess inf
x∈Rn

p(x), p+ := ess sup
x∈Rn

p(x) < ∞. ()

A measurable function p(·) defined on R
n is said to be globally log-Hölder continuous if

it satisfies

∣
∣p(x) – p(y)

∣
∣ � 

– log(|x – y|)
(
x, y ∈R

n, |x – y| ≤ /
)
, ()

∣
∣p(x) – p∞

∣
∣� 

log(e + |x|)
(
x ∈R

n) ()

for some real number p∞. The set of p(·) satisfying () and () is denoted by LH(Rn). It is
also well known that the Hardy-Littlewood maximal operator M, defined by

Mf (x) := sup
B:ball,x∈B


|B|

∫

B

∣
∣f (y)

∣
∣dy

is bounded on Lp(·)(Rn) whenever p(·) ∈P(Rn) ∩ LH(Rn) [–].
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2.2 The Muckenhoupt weights with variable exponent
Let p(·) ∈ P(Rn) and w be a weight. The weighted variable exponent Lebesgue space
Lp(·)(w) is the set of all complex-valued measurable functions f such that fw/p(·) ∈ Lp(·)(Rn).
The space Lp(·)(w) is a Banach space equipped with the norm

‖f ‖Lp(·)(w) :=
∥
∥fw/p(·)∥∥

Lp(·) .

Below p′(·) is the conjugate exponent of p(·) given by /p(·) + /p′(·) = . Now we define
the Muckenhoupt classes. We begin with the classical Muckenhoupt A weight.

Definition  A weight is said to be a Muckenhoupt A weight if Mw(x) � w(x) holds for
almost every x ∈R

n. The set A consists of all Muckenhoupt A weights.

The original Muckenhoupt Ap class with constant exponent p ∈ (,∞) established by
Muckenhoupt [] can be generalized in terms of a variable exponent as follows.

Definition  Suppose p(·) ∈P(Rn). A weight w is said to be an Ap(·) weight if

sup
B:ball


|B|

∥
∥w/p(·)χB

∥
∥

Lp(·)
∥
∥w–/p(·)χB

∥
∥

Lp′(·) < ∞.

Our symbol Ap(·) slightly differs from that in [, , ] where the space Lp(·)(w) is defined
as the set consisting of all f such that fw ∈ Lp(·)(Rn). If p(·) equals a constant p ∈ (,∞)
in Definition , then we see immediately that the definition is equivalent to the classical
Muckenhoupt class Ap [].

Diening and Hästö [] have pointed out that Definition  does not directly imply the
monotone property of the class Ap(·). In order to obtain the property they have generalized
the Muckenhoupt class as follows.

Definition  Suppose p(·) ∈P(Rn). A weight w is said to be an Ãp(·) weight if

sup
B:ball

|B|–pB‖wχB‖L
∥
∥w–χB

∥
∥

Lp′(·)/p(·) < ∞,

where pB := ( 
|B|

∫
B


p(x) dx)– is the harmonic average of p(·) over B. The set Ãp(·) consists of

all Ãp(·) weights.

Based on the definition Ãp(·) Diening and Hästö [], Lemma ., have proved the next
monotone property.

Theorem  Suppose p(·), q(·) ∈P(Rn)∩LH(Rn) and p(·) ≤ q(·). Then we have A ⊂ Ãp(·) ⊂
Ãq(·).

We next state the relation between the generalized Muckenhoupt conditions and the
boundedness of the Hardy-Littlewood maximal operator on weighted Lebesgue spaces in
the variable exponent setting.

Theorem  Suppose p(·) ∈P(Rn)∩LH(Rn). Then the following three conditions are equiv-
alent:



Izuki and Noi Journal of Inequalities and Applications  (2016) 2016:199 Page 4 of 15

(A) w ∈ Ap(·).
(B) w ∈ Ãp(·).
(C) The Hardy-Littlewood maximal operator is bounded on the weighted variable

Lebesgue space Lp(·)(w).

Cruz-Uribe, Fiorenza and Neugebauer [] have proved (A) ⇔ (C). On the other hand,
Diening and Hästö [] have proved (B) ⇔ (C). By Theorem  we can identify Ap(·) and
Ãp(·), provided that p(·) ∈P(Rn)∩LH(Rn). Combining Theorems  and  we get the mono-
tone property for the class Ap(·), that is, the next corollary is true.

Corollary  If p(·), q(·) ∈P(Rn) ∩ LH(Rn) and p(·) ≤ q(·), then we have

A ⊂ Ap(·) ⊂ Aq(·).

In order to state the boundedness of fractional integrals on weighted function spaces we
shall define the class A(p(·), p(·)) as follows.

Definition  Let  < β < n and p(·), p(·) ∈ P(Rn) such that /p(x) ≡ /p(x) – β/n.
A weight w is said to be an A(p(·), p(·)) weight if

‖wχB‖Lp(·)
∥
∥w–χB

∥
∥

Lp′
(·) � |B|– β

n

holds for all balls B ⊂ R
n.

Lemma  Let  < β < n and p(·), p(·) ∈ P(Rn) such that /p(x) ≡ /p(x) – β/n. Then
w ∈ A(p(·), p(·)) if and only if wp(·) ∈ A+p(·)/p′

(·).

Proof Cruz-Uribe and Wang [], Proposition ., have proved a result similar to the
lemma. Komori and Matsuoka [] have also considered the case with constant exponent.
We will prove the lemma by referring to [, ].

Note that

p(·)
 + p(·)

p′
(·)

=



p(·) + 

p′
(·)

=


 – β

n

by the assumption on p(·) and p(·). Below we fix a ball B ⊂R
n arbitrarily. It is easy to see

that


|B|

∥
∥(

wp(·))(+ p(·)
p′

(·) )–

χB
∥
∥

L
+ p(·)

p′
(·)

∥
∥(

wp(·))–(+ p(·)
p′

(·) )–

χB
∥
∥

L
(+ p(·)

p′
(·) )′

=


|B|
∥
∥w

p(·)(+ p(·)
p′

(·) )–

χB
∥
∥

L
+ p(·)

p(·)′

∥
∥w

–p(·)(+ p(·)
p′

(·) )–

χB
∥
∥

L
(+ p(·)

p′
(·) )′

=


|B| ‖wχB‖


–β/n
Lp(·)

∥
∥w–χB

∥
∥


–β/n

Lp′
(·) ()

holds.



Izuki and Noi Journal of Inequalities and Applications  (2016) 2016:199 Page 5 of 15

If w ∈ A(p(·), p(·)), then we have


|B|

∥
∥
(
wp(·))(+ p(·)

p′
(·) )–

χB
∥
∥

L
+ p(·)

p′
(·)

∥
∥
(
wp(·))–(+ p(·)

p′
(·) )–

χB
∥
∥

L
(+ p(·)

p′
(·) )′

=


|B| ‖wχB‖


–β/n
Lp(·)

∥
∥w–χB

∥
∥


–β/n

Lp′
(·) � .

This implies that wp(·) ∈ A+ p(·)
p′

(·)
.

If wp(·) ∈ A+ p(·)
p′

(·)
, then, by (), we see that

‖wχB‖Lp(·)
∥
∥w–χB

∥
∥

Lp′
(·)

=
∥
∥(

wp(·))(+ p(·)
p′

(·) )–

χB
∥
∥–β/n

L
+ p(·)

p′
(·)

∥
∥(

wp(·))–(+ p(·)
p′

(·) )–

χB
∥
∥–β/n

L
(+ p(·)

p′
(·) )′

� |B|–β/n

holds. Hence we have w ∈ A(p(·), p(·)). This completes the proof. �

2.3 Herz spaces with variable exponent
Let � ⊂R

n be a measurable set and w a positive and locally integrable function on �. The
set Lp(·)

loc (�, w) consists of all functions f satisfying the following condition: for all compact
sets E ⊂ � there exists a constant λ >  such that

∫

E

∣
∣
∣
∣
f (x)
λ

∣
∣
∣
∣

p(x)

w(x) dx < ∞.

Let l ∈ Z. We use the following notations in order to define Herz spaces:

Bl :=
{

x ∈ R
n : |x| ≤ l}, Rl := Bl \ Bl–, χl := χRl .

Definition  Let p(·) ∈ P(Rn),  < q < ∞, and α ∈ R. The homogeneous weighted Herz
space K̇α,q

p(·)(w) is the collection of f ∈ Lp(·)
loc (Rn \ {}, w) such that

‖f ‖K̇α,q
p(·)(w) :=

( ∞∑

k=–∞
αkq‖f χk‖Lp(·)(w)

)/q

< ∞. ()

Herz spaces with variable exponent were initially defined by the first author [, ]. The
weighted case has been recently studied by the authors [, ].

2.4 Weighted Banach function spaces
We introduce Banach function space and state fundamental properties of it based on the
book [] by Bennett and Sharpley. We additionally show some properties of Banach func-
tion spaces in terms of the boundedness of the Hardy-Littlewood maximal operator. We
will also consider the weighted case based on [] by Karlovich and Spitkovsky.
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Definition  Let M be the set of all complex-valued measurable functions defined on
R

n, and X a linear subspace of M.
. The space X is said to be a Banach function space if there exists a functional

‖ · ‖X : M→ [,∞] satisfying the following properties: Let f , g, fj ∈M (j = , , . . .),
then
(a) f ∈ X holds if and only if ‖f ‖X < ∞.
(b) Norm property:

i. Positivity: ‖f ‖X ≥ .
ii. Strict positivity: ‖f ‖X =  holds if and only if f (x) =  for almost every

x ∈ R
n.

iii. Homogeneity: ‖λf ‖X = |λ| · ‖f ‖X holds for all λ ∈C.
iv. Triangle inequality: ‖f + g‖X ≤ ‖f ‖X + ‖g‖X .

(c) Symmetry: ‖f ‖X = ‖|f |‖X .
(d) Lattice property: If  ≤ g(x) ≤ f (x) for almost every x ∈R

n, then ‖g‖X ≤ ‖f ‖X .
(e) Fatou property: If  ≤ fj(x) ≤ fj+(x) for all j and fj(x) → f (x) as j → ∞ for

almost every x ∈R
n, then limj→∞ ‖fj‖X = ‖f ‖X .

(f ) For every measurable set F ⊂R
n such that |F| < ∞, ‖χF‖X is finite. Additionally

there exists a constant CF >  depending only on F so that
∫

F |h(x)|dx ≤ CF‖h‖X holds for all h ∈ X .
. Suppose that X is a Banach function space equipped with a norm ‖ · ‖X . The

associated space X ′ is defined by

X ′ :=
{

f ∈M : ‖f ‖X′ < ∞}
,

where

‖f ‖X′ := sup
g

{∣
∣
∣
∣

∫

Rn
f (x)g(x) dx

∣
∣
∣
∣ : ‖g‖X ≤ 

}

.

The proof of the following fundamental lemma is found in [].

Lemma  Let X be a Banach function space. Then the following hold:
. The associated space X ′ is also a Banach function space.
. (The Lorentz-Luxemburg theorem.) (X ′)′ = X holds, in particular, the norms ‖ · ‖(X′)′

and ‖ · ‖X are equivalent.
. (The generalized Hölder inequality.) If f ∈ X and g ∈ X ′, then we have

∫

Rn

∣
∣f (x)g(x)

∣
∣dx ≤ ‖f ‖X‖g‖X′ .

An easy application of the generalized Hölder inequality gives us the following lemma.

Lemma  If X is a Banach function space, then we have that for all balls B,

 ≤ 
|B| ‖χB‖X‖χB‖X′ .
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Kováčik and Rákosník [] have proved that the generalized Lebesgue space Lp(·)(Rn)
with variable exponent p(·) is a Banach function space and the associate space is Lp′(·)(Rn)
with norm equivalence.

If we assume some conditions for the boundedness of the Hardy-Littlewood maximal
operator M on X, then the norm ‖ ·‖X has properties similar to the classical Muckenhoupt
weights.

Lemma  Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal
operator M is weakly bounded on X, that is,

‖χ{Mf >λ}‖X � λ–‖f ‖X ()

is true for all f ∈ X and all λ > . Then we have

sup
B:ball


|B| ‖χB‖X‖χB‖X′ < ∞. ()

The proof of Lemma  is found in the first author’s paper [], Lemmas . and ., and
[], Lemmas G’ and H.

Remark  If M is bounded on X, that is, ‖Mf ‖X � ‖f ‖X holds for all f ∈ X, then we can
easily check that () holds. On the other hand, if M is bounded on the associate space X ′,
then Lemma  shows that () is true.

Below we define weighted Banach function space and give some of its property. Let X
be a Banach function space. The set Xloc(Rn) consists of all measurable functions f such
that f χE ∈ X for any compact set E with |E| < ∞. Given a function W such that  < W (x) <
∞ for almost every x ∈ R

n, W ∈ Xloc(Rn) and W – ∈ (X ′)loc(Rn), we define the weighted
Banach function space

X
(
R

n, W
)

:= {f ∈M : fW ∈ X}.

Then the following hold.

Lemma 
. The weighted Banach function space X(Rn, W ) is a Banach function space equipped

the norm

‖f ‖X(Rn ,W ) := ‖fW‖X .

. The associate space of X(Rn, W ) is a Banach function space and equals X ′(Rn, W –).

The properties above naturally arise from those of the usual Banach function spaces and
the proof is found in [].

Remark  Let p(·) ∈ P(Rn). Comparing the definition of X(Rn, W ) with weighted
Lebesgue spaces Lp(·)(wp(·)) and Lp′(·)(w–p′(·)) respectively, we obtain the following:

. If we take X = Lp(·)(Rn) and W = w, then we have Lp(·)(Rn, w) = Lp(·)(wp(·)).
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. If we take X = Lp′(·)(Rn) and W = w–, then we have Lp′(·)(Rn, w–) = Lp′(·)(w–p′(·)).
Therefore Lemma  yields

(
Lp(·)(wp(·)))′ =

(
Lp(·)(

R
n, w

))′ = Lp′(·)(
R

n, w–) = Lp′(·)(w–p′(·)).

The next lemma has been initially proved by the first author [] in the case that X =
Lp(·)(Rn), however, his argument depends on Diening’s work []. Cruz-Uribe, Hernández
and Martell [] have recently given its alternative proof based on the Rubio de Francia
algorithm [–]. As is mentioned in the authors’ preprint [], the proof due to [] is
self-contained and valid for general Banach function spaces X.

Lemma  Let X be a Banach function space. Suppose that M is bounded on the associate
space X ′. Then there exists a constant  < δ <  such that for all balls B ⊂ R

n and all mea-
surable sets E ⊂ B,

‖χE‖X

‖χB‖X
�

( |E|
|B|

)δ

.

Proof For the reader’s convenience we shall give the proof based on []. Let A :=
‖M‖X′→X′ and define a function

Rg(x) :=
∞∑

k=

Mkg(x)
(A)k

(
g ∈ X ′), ()

where

Mkg :=

⎧
⎪⎪⎨

⎪⎪⎩

|g| (k = ),

Mg (k = ),

M(Mk–g) (k ≥ ).

For every g ∈ X, the function Rg satisfies the following properties:
. |g(x)| ≤ Rg(x) for almost every x ∈R

n.
. ‖Rg‖X′ ≤ ‖g‖X′ , namely the operator R is bounded on X ′.
. M(Rg)(x) ≤ ARg(x), that is, Rg is a Muckenhoupt A weight. We note that the

constant A appearing in the right-hand side is independent of g and x.
We can write Rg(S) =

∫
S Rg(x) dx for every measurable set S ⊂ R

n because Rg is a weight.
Thus by virtue of [], Chapter , we can take positive constants C and δ <  depending
only on A and n so that, for all balls B and all measurable sets E ⊂ B,

Rg(E)
Rg(B)

≤ C
( |E|

|B|
)δ

holds. Now we fix g ∈ X ′ with ‖g‖X′ ≤  arbitrarily. By virtue of generalized Hölder’s in-
equality we have

∫

Rn

∣
∣χE(x)g(x)

∣
∣dx ≤ Rg(E) ≤ C

( |E|
|B|

)δ

· Rg(B) ≤ C
( |E|

|B|
)δ

· ‖χB‖X‖Rg‖X′

�
( |E|

|B|
)δ

‖χB‖X .
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Therefore by the duality we get

‖χE‖X � sup
g

{∣
∣
∣
∣

∫

Rn
χE(x)g(x) dx

∣
∣
∣
∣ : g ∈ X ′,‖g‖X′ ≤ 

}

�
( |E|

|B|
)δ

‖χB‖X .

This completes the proof of the lemma. �

3 The main results
3.1 Remarks on boundedness of fractional integrals on Lebesgue spaces
Definition  Given p(·) ∈P(Rn) and a weight w, we say (p(·), w) is an M-pair if the max-
imal operator M is bounded on Lp(·)(wp(·)) and on Lp′(·)(w–p′(·)).

Let  < β < n. Then the fractional integral operator Iβ is defined by

Iβ f (x) :=
∫

Rn

f (y)
|x – y|n–β

dy.

Cruz-Uribe and Wang [], Corollary ., have obtained the following boundedness of Iβ

on weighted variable exponent Lebesgue spaces.

Theorem  Let p(·) ∈ P(Rn) ∩ LH(Rn),  < β < n/p+
 and σ := (n/β)′. Define p(·) by

/p(·) ≡ /p(·) – β/n. Then for all weights w such that (p(·)/σ , wσ ) is an M-pair, Iβ is
bounded from Lp(·)(wp(·)) to Lp(·)(wp(·)).

Let w ∈ A(p(·), p(·)). Note that p(·)/σ =  + p(·)/p′
(·). Lemma  and the equivalence

wp(·) ∈ A+p(·)/p′
(·) = Ap(·)/σ ⇐⇒ w–σ (p(·)/σ )′ ∈ A(p(·)/σ )′

imply that M is bounded on Lp(·)/σ (wσ ·p(·)/σ ) and on L(p(·)/σ )′ (w–σ (p(·)/σ )′ ). Therefore,
(p(·)/σ , wσ ) is an M-pair whenever

w ∈ A
(
p(·), p(·)), p(·), p(·) ∈P

(
R

n) ∩ LH
(
R

n) and  < β < n/p+
 .

Hence we have the following corollary.

Corollary  Let p(·) ∈ P(Rn) ∩ LH(Rn) and  < β < n/p+
 . Define p(·) by /p(·) ≡

/p(·) – β/n. If w ∈ A(p(·), p(·)), then Iβ is bounded from Lp(·)(wp(·)) to Lp(·)(wp(·)).

3.2 Boundedness of fractional integrals on Herz spaces
Let p(·) ∈ P(Rn) ∩ LH(Rn) and wp(·) ∈ A. Then the monotone property yields wp(·) ∈
Ap(·). Hence the Hardy-Littlewood maximal operator M is bounded on Lp(·)(wp(·)). On
the other hand, by the definition of Ap(·) it is easy to see that wp(·) ∈ Ap(·) implies w–p′

(·) ∈
Ap′

(·). Thus M is bounded on Lp′
(·)(w–p′

(·)). Therefore applying Remark , Lemma , and
the Lorentz-Luxemburg theorem we can take constants δ, δ ∈ (, ) such that

‖χE‖Lp(·)(wp(·))

‖χB‖Lp(·)(wp(·))
=

‖χE‖
(Lp′

(·)(w–p′
(·)))′

‖χB‖
(Lp′

(·)(w–p′
(·)))′

�
( |E|

|B|
)δ

, ()
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‖χE‖(Lp(·)(wp(·)))′

‖χB‖(Lp(·)(wp(·)))′
�

( |E|
|B|

)δ

()

for all balls B and all measurable sets E ⊂ B. Now we take a positive number β so that
 < β < n(δ + δ). Then we can take a real number α such that –nδ < α < nδ – β because
the choice of β shows –nδ < nδ – β . Using p(·) and β , we additionally define p(·) so
that /p(·) ≡ /p(·) – β/n holds. We see that p(·) satisfies p(·) ∈ P(Rn) ∩ LH(Rn) and
 < β < n/p+

 . Applying the monotone property again we have wp(·) ∈ A ⊂ A+p(·)/p′
(·).

Thus by Lemma  we get w ∈ A(p(·), p(·)).
Therefore in the setting as above we can apply Corollary  to obtain the boundedness

of the fractional integral operator Iβ on Herz spaces.

Theorem  Let  < q ≤ q < ∞, p(·) ∈ P(Rn) ∩ LH(Rn), wp(·) ∈ A, δ, δ ∈ (, ) be the
constants appearing in () and () respectively,  < β < n(δ + δ) and –nδ < α < nδ – β .
Define p(·) by /p(·) ≡ /p(·) –β/n. Then the fractional integral operator Iβ is a bounded
operator from K̇α,q

p(·)(w
p(·)) to K̇α,q

p(·)(w
p(·)).

Proof Let f ∈ K̇α,q
p(·)(w

p(·)). Then, by the Jensen inequality, we have

∥
∥Iβ f

∥
∥q

K̇α,q
p(·)(wp(·)) =

( ∞∑

k=–∞
αqk∥∥(

Iβ f
)
χk

∥
∥q

Lp(·)(wp(·))

) q
q

≤
∞∑

k=–∞
αqk∥∥(

Iβ f
)
χk

∥
∥q

Lp(·)(wp(·)). ()

Let fj := f χj for any j ∈ Z. Then f =
∑∞

j=–∞ fj. So we have

∥
∥Iβ f

∥
∥q

K̇α,q
p(·)(wp(·)) ≤

∞∑

k=–∞
αqk∥∥(

Iβ f
)
χk

∥
∥q

Lp(·)(wp(·))

≤
∞∑

k=–∞
αqk

( ∑

j≤k–

∥
∥
(
Iβ fj

)
χk

∥
∥

Lp(·)(wp(·))

)q

+
∞∑

k=–∞
αqk

( k+∑

j=k–

∥
∥(

Iβ fj
)
χk

∥
∥

Lp(·)(wp(·))

)q

+
∞∑

k=–∞
αqk

( ∑

j≥k+

∥
∥(

Iβ fj
)
χk

∥
∥

Lp(·)(wp(·))

)q

=: U + U + U. ()

Step . We estimate U. By the definition of Iβ and the generalized Hölder inequality, we
obtain

∣
∣(Iβ fj

)
(x)

∣
∣χk(x) � χk(x)

∫

Rn
|x – y|β–n∣∣fj(y)

∣
∣dy

� k(β–n)‖fj‖Lp(·)(wp(·))‖χj‖(Lp(·)(wp(·)))′χk(x).
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By taking the Lp(·)(wp(·))-norm and using Lemma , we have

∥
∥
(
Iβ fj

)
χk

∥
∥

Lp(·)(wp(·))

� k(β–n)‖fj‖Lp(·)(wp(·))‖χj‖(Lp(·)(wp(·)))′ ‖χBk ‖Lp(·)(wp(·))

= kβ‖fj‖Lp(·)(wp(·))‖χj‖(Lp(·)(wp(·)))′
–kn‖χBk ‖Lp(·)(wp(·))

� kβ‖fj‖Lp(·)(wp(·))‖χj‖(Lp(·)(wp(·)))′ ‖χBk ‖–
(Lp(·)(wp(·)))′ .

By (), we see that

∥
∥
(
Iβ fj

)
χk

∥
∥

Lp(·)(wp(·))

� kβ‖fj‖Lp(·)(wp(·))‖χj‖(Lp(·)(wp(·)))′ ‖χBk ‖–
L(p(·)(wp(·)))′

= kβ‖fj‖Lp(·)(wp(·))‖χj‖(Lp(·)(wp(·)))′ ‖χBj‖–
(Lp(·)(wp(·)))′

‖χBj‖(Lp(·)(wp(·)))′

‖χBk ‖(Lp(·)(wp(·)))′

� kβnδ(j–k)‖fj‖Lp(·)(wp(·))‖χj‖(Lp(·)(wp(·)))′ ‖χBj‖–
(Lp(·)(wp(·)))′ . ()

By the obvious inequality jβχBj (x) � (Iβ fBj )(x) and the boundedness of Iβ : Lp(·)(wp(·)) →
Lp(·)(wp(·)), we have

‖χBj‖Lp(·)(wp(·)) � –jβ∥
∥IβχBj

∥
∥

Lp(·)(wp(·)) � –jβ‖χBj‖Lp(·)(wp(·)).

By using Lemma  again, we obtain

‖χBj‖Lp(·)(wp(·)) � –jβ‖χBj‖Lp(·)(wp(·)) � j(n–β)‖χBj‖–
(Lp(·)(wp(·)))′

� j(n–β)‖χj‖–
(Lp(·)(wp(·)))′ . ()

Combining () and () and using Lemma , we get

∥
∥
(
Iβ fj

)
χk

∥
∥

Lp(·)(wp(·))

� kβnδ(j–k)j(n–β)‖fj‖Lp(·)(wp(·))‖χBj‖–
Lp(·)(wp(·))‖χBj‖–

(Lp(·)(wp(·)))′

= (β–nδ)(k–j)‖fj‖Lp(·)(wp(·))
(
–jn‖χBj‖Lp(·)(wp(·))‖χBj‖(Lp(·)(wp(·)))′

)–

� (β–nδ)(k–j)‖fj‖Lp(·)(wp(·)).

Thus we get U �
∑∞

k=–∞(
∑

j≤k– αj(β–nδ+α)(k–j)‖fj‖Lp(·)(wp(·)))
q . Note that β – nδ +

α < . We consider the two cases ‘ < q < ∞’ and ‘ < q ≤ ’.
If  < q < ∞, then, by using the Hölder inequality, we obtain

U �
∞∑

k=–∞

( ∑

j≤k–

αj(β–nδ+α)(k–j)‖fj‖Lp(·)(wp(·))

)q

�
∞∑

k=–∞

( ∑

j≤k–

αjq (β–nδ+α)(k–j)q/‖fj‖q
Lp(·)(wp(·))

)( ∑

j≤k–

(β–nδ+α)(k–j)q′
/

)q/q′
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�
∞∑

k=–∞

∑

j≤k–

αjq (β–nδ+α)(k–j)q/‖fj‖q
Lp(·)(wp(·))

=
∞∑

j=–∞
αjq‖fj‖q

Lp(·)(wp(·))

∑

k≤j–

(β–nδ+α)(k–j)q/

� ‖f ‖q
K̇α,q

p(·)(wp(·))
.

If  < q ≤ , then by using the Jensen inequality we obtain

U �
∞∑

k=–∞

( ∑

j≤k–

αj(β–nδ+α)(k–j)‖fj‖Lp(·)(wp(·))

)q

�
∞∑

k=–∞

∑

j≤k–

αjq (β–nδ+α)(k–j)q‖fj‖q
Lp(·)(wp(·))

=
∞∑

j=–∞
αjq‖fj‖q

Lp(·)(wp(·))

∑

k≤j–

(β–nδ+α)(k–j)q

� ‖f ‖q
K̇α,q

p(·)(wp(·))
.

Step . We estimate U. Using Corollary  and – ≤ k – j ≤ , it is easy to see that

U =
∞∑

k=–∞
αqk

( k+∑

j=k–

∥
∥(

Iβ fj
)
χk

∥
∥

Lp(·)(wp(·))

)q

=
∞∑

k=–∞

( k+∑

j=k–

α(k–j)αj‖fj‖Lp(·)(wp(·))

)q

� ‖f ‖q
K̇α,q

p(·)(wp(·))
.

Step . We estimate U. Using the generalized Hölder inequality, we have, for every j, k ∈
Z with j ≥ k + ,

∣
∣Iβ (fj)χk(x)

∣
∣� j(–n+β)

∫

Bj

∣
∣f (y)

∣
∣dy · χk(x)

� j(–n+β)‖fw‖Lp(·)‖χj‖Lp′
(·)(w–p′

(·))
χk(x).

By taking the Lp(·)(wp(·))-norm and (), we have

∥
∥
(
Iβ fj

)
χk

∥
∥

Lp(·)(wp(·)) ()

� j(–n+β)‖fjw‖Lp(·)‖χj‖Lp′
(·)(w–p′

(·))
‖χk‖Lp(·)(wp(·))

� j(–n+β)‖fjw‖Lp(·)‖χj‖Lp′
(·)(w–p′

(·))
‖χj‖Lp(·)(wp(·))

‖χk‖Lp(·)(wp(·))

‖χj‖Lp(·)(wp(·))

� j(–n+β)nδ(k–j)‖fjw‖Lp(·)‖χj‖Lp′
(·)(w–p′

(·))
‖χj‖Lp(·)(wp(·)). ()
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By the definition of A(p(·), p(·)), we obtain

‖χj‖Lp′
(·)(w–p′

(·))
‖χj‖Lp(·)(wp(·)) � ‖χBj‖Lp′

(·)(w–p′
(·))

‖χBj‖Lp(·)(wp(·))

�
∥
∥w–χBj

∥
∥

Lp′
(·)‖wχBj‖Lp(·)

� jn(–β/n).

Hence we have

∥
∥(

Iβ fj
)
χk

∥
∥

Lp(·)(wp(·))

� j(–n+β)nδ(k–j)‖fjw‖Lp(·)‖χj‖Lp′
(·)(w–p′

(·))
‖χj‖Lp(·)(wp(·))

� j(–n+β)nδ(k–j)jn(–β/n)‖fjw‖Lp(·)

= nδ(k–j)‖fjw‖Lp(·) .

Therefore we see that

U =
∞∑

k=–∞
αqk

( ∑

j≥k+

∥
∥(

Iβ fj
)
χk

∥
∥

Lp(·)(wp(·))

)q

�
∞∑

k=–∞
αqk

( ∑

j≥k+

nδ(k–j)‖fjw‖Lp(·)

)q

�
∞∑

k=–∞

( ∑

j≥k+

(α+nδ)(k–j)αj‖fjw‖Lp(·)

)q

.

Note that α + nδ > . We consider the two cases: ‘ < q < ∞’ and ‘ < q ≤ ’.
If  < q < ∞, then by using the Hölder inequality we obtain

U �
∞∑

k=–∞

( ∑

j≥k+

(α+nδ)(k–j)αj‖fjw‖Lp(·)

)q

�
∞∑

k=–∞

( ∑

j≥k+

(α+nδ)(k–j)q/αqj‖fjw‖q
Lp(·)

)( ∑

j≥k+

(α+nδ)(k–j)q′
/

)q/q′


�
∞∑

j=–∞
αqj‖fjw‖q

Lp(·)
∑

k≤j–

(α+nδ)(k–j)q/

� ‖f ‖q
K̇α,q

p(·)(wp(·))
.

If  < q ≤ , then by using the Jensen inequality we obtain

U �
∞∑

k=–∞

( ∑

j≥k+

(α+nδ)(k–j)αj‖fjw‖Lp(·)

)q

�
∞∑

k=–∞

∑

j≥k+

(α+nδ)(k–j)q αqj‖fjw‖q
Lp(·)
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�
∞∑

j=–∞
αqj‖fjw‖q

Lp(·)
∑

k≤j–

(α+nδ)(k–j)q

� ‖f ‖q
K̇α,q

p(·)(wp(·))
.

Consequently we have proved the theorem. �

3.3 The non-homogeneous case
In this paper we have defined the weighted Herz space with variable exponent and proved
the boundedness of the fractional integrals on the spaces in the homogeneous case. Our
argument is also valid for the non-homogeneous case.

Definition  Let p(·) ∈P(Rn),  < q < ∞, and α ∈R. For non-negative integer k, let

Ck :=

⎧
⎨

⎩

Rk (k ≥ ),

B (k = ).

The non-homogeneous weighted Herz space Kα,q
p(·)(w) is the collection of f ∈ Lp(·)

loc (Rn, w)
such that

‖f ‖Kα,q
p(·)(w) :=

( ∞∑

k=

αkq‖f χCk ‖Lp(·)(w)

)/q

< ∞.

Theorem  Let  < q ≤ q < ∞, p(·) ∈ P(Rn) ∩ LH(Rn), wp(·) ∈ A, δ, δ ∈ (, ) be the
constants appearing in () and () respectively,  < β < n(δ + δ), and –nδ < α < nδ – β .
Define p(·) by /p(·) ≡ /p(·) –β/n. Then the fractional integral operator Iβ is a bounded
operator from Kα,q

p(·)(w
p(·)) to Kα,q

p(·)(w
p(·)).

Remark  In the main theorems we have assumed that wp(·) ∈ A to obtain the bound-
edness of Iβ . One may think that the condition wp(·) ∈ A is too strong. In this paper we
could not prove the main theorems under weaker conditions on w.
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