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Abstract
The split equality problem has board applications in many areas of applied
mathematics. Many researchers studied this problem and proposed various
algorithms to solve it. From the literature we know that most algorithms for the split
equality problems came from the idea of the projected Landweber algorithm
proposed by Byrne and Moudafi (Working paper UAG, 2013), and few algorithms
came from the idea of the alternating CQ-algorithm given by Moudafi (Nonlinear
Anal. 79:117-121, 2013). Hence, it is important and necessary to give new algorithms
from the idea of the alternating CQ-algorithm. In this paper, we first present a hybrid
projected Landweber algorithm to study the split equality problem. Next, we propose
a hybrid alternating CQ-algorithm to study the split equality problem. As applications,
we consider the split feasibility problem and linear inverse problem. Finally, we give
numerical results for the split feasibility problem to demonstrate the efficiency of the
proposed algorithms.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We denote the strong
convergence and weak convergence of {xn}n∈N to x ∈ H by xn → x and xn ⇀ x, respectively.
The symbols N and R are used to denote the sets of positive integers and real numbers,
respectively. For each x ∈ H , there is a unique element x̄ ∈ C such that ‖x– x̄‖ = miny∈C ‖x–
y‖. In this study, we set PCx = x̄, and PC is called the metric projection from H onto C.

Let H and H be two real Hilbert spaces. Let A : H → H and A∗ : H → H be two
linear and bounded operators. Then A∗ is called the adjoint of A if 〈Az, w〉 = 〈z, A∗w〉 for all
z ∈ H and w ∈ H. It is known that the adjoint operator of a linear and bounded operator
on a Hilbert space always exists and is linear, bounded, and unique. Further, we know that
‖A‖ = ‖A∗‖.

Let H, H, and H be real Hilbert spaces. Let C and Q be nonempty closed convex sub-
sets of H and H, respectively. Let A : H → H and B : H → H be linear and bounded
operators with adjoint operators A∗ and B∗, respectively. The following problem is the
split equality problem, which was studied by Moudafi [, ]:

(SEP) Find x̄ ∈ C and ȳ ∈ Q such that Ax̄ = Bȳ.
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Let � := {(x, y) ∈ C × Q : Ax = By} be the solution set of problem (SEP). Further, we ob-
served that (x, y) is a solution of the split equality problem if and only if

{
x = PC(x – ρA∗(Ax – By)),
y = PQ(y + ρB∗(Ax – By)),

for all ρ >  and ρ >  (for details, see []).
As mentioned by Moudafi [], the interest of the split equality problem covers many

situations, for instance, in decomposition methods for PDEs, game theory, and intensity
modulated radiation therapy (IMRT). For details, see [, , ]. To solve problem (SEP),
Moudafi [] proposed the alternating CQ-algorithm:

(ACQA)

{
xn+ := PC(xn – ρnA∗(Axn – Byn)),
yn+ := PQ(yn + ρnB∗(Axn+ – Byn)), n ∈N,

where H = R
N , H = R

M , PC is the metric projection mapping from H onto C, and PQ is
the metric projection mapping from H onto Q, ε > , A is a J × N matrix, B is a J × M
matrix, λA and λB are the spectral radii of A∗A and B∗B, respectively, and {ρn} is a sequence
in (ε, min{ 

λA
, 

λB
} – ε).

In , Byrne and Moudafi [] presented a simultaneous algorithm, which was called
the projected Landweber algorithm, to study the split equality problem

(PLA)

{
xn+ := PC(xn – ρnA∗(Axn – Byn)),
yn+ := PQ(yn + ρnB∗(Axn – Byn)), n ∈ N,

where H = R
N , H = R

M , PC is the metric projection mapping from H onto C, and PQ is
the metric projection mapping from H onto Q, ε > , A is a J × N matrix, B is a J × M
matrix, λA and λB are the spectral radii of A∗A and B∗B, respectively, and {ρn} is a sequence
in (ε, 

λA+λB
).

Besides, we also observed that Chen et al. [] gave the following modification of (ACQA)
by using the Tikhonov regularization method and proved a convergence theorem under
suitable conditions:

(TRA)

{
xn+ := PC(( – εnρn)xn – ρnA∗(Axn – Byn)),
yn+ := PQ(( – εnρn)yn + ρnB∗(Axn+ – Byn)), n ∈N,

where {εn}n∈N is a sequence in (,∞). Besides, many researchers studied problem (SEP)
and gave various algorithms. For more details about the algorithms for the split equality
problem, we refer to [, ] and related references.

Besides, from the literature we know that most algorithms in the literature come from
the idea of the projected Landweber algorithm, and few algorithms come from the idea of
the alternating CQ-algorithm. Hence, it is important and necessary to give new algorithms
from the idea of the alternating CQ-algorithm. In this paper, motivated by the works men-
tioned on the split equality problem, we present a hybrid projected Landweber algorithm
and a hybrid alternating CQ-algorithm to study the split equality problem and give con-
vergence theorems for the proposed algorithms. As applications, we consider the split fea-
sibility problem and linear inverse problem in real Hilbert spaces. Finally, we give numer-
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ical results for the split feasibility problem to demonstrate the efficiency of the proposed
algorithms.

2 Main results
In the sequel, we need the following lemma, which is a crucial tool for our results.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H , and
let PC be the metric projection from H onto C. Then:

(i) 〈x – PCx, PCx – y〉 ≥  for all x ∈ H and y ∈ C;
(ii) ‖x – PCx‖ + ‖PCx – y‖ ≤ ‖x – y‖ for all x ∈ H and y ∈ C;

(iii) ‖PCx – PCy‖ ≤ 〈x – y, PCx – PCy〉 for all x, y ∈ H .

2.1 Hybrid projected Landweber algorithm
Let H, H, and H be real Hilbert spaces with inner product 〈·, ·〉Hi and norm ‖ · ‖Hi ,
i = , , . For simplicity, we write 〈·, ·〉 and ‖ · ‖. Let C and Q be nonempty closed con-
vex subsets of H and H, respectively. Let A : H → H and B : H → H be linear and
bounded operators with adjoint operators A∗ and B∗, respectively. Choose δ ∈ (, ). Let
� be the solution set of the split equality problem and suppose that � �= ∅. Let {ρn}n∈N be
a sequence in (,∞).

Now we present a hybrid projected Landweber algorithm to study the split equality
problem.

Algorithm . For given xn ∈ H and yn ∈ H, find the approximate solution by the fol-
lowing iterative process.

Step . Compute the next iterate (un, vn) as follows:

{
un = PC[xn – ρnA∗(Axn – Byn)],
vn = PQ[yn + ρnB∗(Axn – Byn)],

where ρn >  satisfies

ρ
n
(∥∥A∗(Axn – Byn) – A∗(Aun – Bvn)

∥∥ +
∥∥B∗(Axn – Byn) – B∗(Aun – Bvn)

∥∥)
≤ δ‖xn – un‖ + δ‖yn – vn‖,  < δ < . (.)

Step . If xn = un and yn = vn, then (xn, yn) is a solution of problem (SEP) and stop. Other-
wise, go to Step .

Step . Compute the next iterate (xn+, yn+) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D(n,) := xn – un + ρn[A∗(Aun – Bvn) – A∗(Axn – Byn)],
D(n,) := yn – vn – ρn[B∗(Aun – Bvn) – B∗(Axn – Byn)],
αn := 〈xn–un ,D(n,)〉+〈yn–vn ,D(n,)〉

‖D(n,)‖+‖D(n,)‖ ,

xn+ = PC[xn – αnD(n,)],
yn+ = PQ[yn – αnD(n,)].

Next, update n := n +  and go to Step .
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Remark . If  < ρn ≤
√

δ√
(‖A‖+‖B‖) , then (.) holds.

Proof Without loss of generality, we may assume that xn �= un and yn �= vn. We know
that

ρ
n · (∥∥A∗(Axn – Byn) – A∗(Aun – Bvn)

∥∥ +
∥∥B∗(Axn – Byn) – B∗(Aun – Bvn)

∥∥)
≤ ρ

n · (∥∥A∗∥∥ +
∥∥B∗∥∥) · ∥∥(Axn – Byn) – (Aun – Bvn)

∥∥

≤ ρ
n · (∥∥A∗∥∥ +

∥∥B∗∥∥) · (‖A‖ · ‖xn – un‖ + ‖B‖ · ‖yn – vn‖
)

≤ ρ
n · (‖A‖ + ‖B‖) · (‖A‖ · ‖xn – un‖ + ‖B‖ · ‖yn – vn‖)

≤ ρ
n · (‖A‖ + ‖B‖) · (‖xn – un‖ + ‖yn – vn‖)

≤  · δ

(‖A‖ + ‖B‖) · (‖A‖ + ‖B‖) · (‖xn – un‖ + ‖yn – vn‖)
= δ · (‖xn – un‖ + ‖yn – vn‖).

Therefore, the proof is completed. �

Theorem . Let {ρn}n∈N be a sequence in (, /(‖A‖ + ‖B‖)) such that (.) holds and
assume that lim infn→∞ ρn( – ρn(‖A‖ + ‖B‖)) > . Then, for the sequence {(xn, yn)}n∈N in
Algorithm ., there exists (x̄, ȳ) ∈ � such that xn ⇀ x̄ and yn ⇀ ȳ as n → ∞.

Proof Take any n ∈ N and let n be fixed. Take any (ū, v̄) ∈ � and let (ū, v̄) be fixed. Then
ū ∈ C, v̄ ∈ Q, and Aū = Bv̄. First, we set

{
εn, := ρn[A∗(Aun – Bvn) – A∗(Axn – Byn)],
εn, := ρn[B∗(Axn – Byn) – B∗(Aun – Bvn)].

Then

〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉
= 〈xn – un, xn – un + εn,〉 + 〈yn – vn, yn – vn + εn,〉
= ‖xn – un‖ + 〈xn – un, εn,〉 + ‖yn – vn‖ + 〈yn – vn, εn,〉

=


‖xn – un‖ + 〈xn – un, εn,〉 +



‖xn – un‖

+


‖yn – vn‖ + 〈yn – vn, εn,〉 +



‖yn – vn‖

≥ 

‖xn – un‖ + 〈xn – un, εn,〉 +



‖εn,‖

+


‖yn – vn‖ + 〈yn – vn, εn,〉 +



‖εn,‖

=


‖xn – un + εn,‖ +



‖yn – vn + εn,‖

=


‖D(n,)‖ +



‖D(n,)‖. (.)
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By (.) we know that

αn :=
〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉

‖D(n,)‖ + ‖D(n,)‖ ≥ 


. (.)

Next, by Lemma . we know that

‖xn – αnD(n,) – xn+‖ + ‖xn+ – ū‖ ≤ ‖xn – αnD(n,) – ū‖ (.)

and

‖yn – αnD(n,) – yn+‖ + ‖yn+ – v̄‖ ≤ ‖yn – αnD(n,) – v̄‖. (.)

Hence, by (.),

‖xn – ū‖ – ‖xn+ – ū‖

≥ ‖xn – ū‖ – ‖xn – αnD(n,) – ū‖ + ‖xn+ – xn + αnD(n,)‖

≥ ‖xn – ū‖ – ‖xn – αnD(n,) – ū‖

= ‖xn – ū‖ – ‖xn – ū‖ – α
n‖D(n,)‖ + αn〈xn – ū, D(n,)〉

= αn〈xn – ū, D(n,)〉 – α
n‖D(n,)‖. (.)

Similarly, we have

‖yn – v̄‖ – ‖yn+ – v̄‖ ≥ αn〈yn – v̄, D(n,)〉 – α
n‖D(n,)‖. (.)

By (.) and (.) we get

‖xn+ – ū‖ + ‖yn+ – v̄‖

≤ ‖xn – ū‖ + ‖yn – v̄‖ – αn〈xn – ū, D(n,)〉 – αn〈yn – v̄, D(n,)〉
+ α

n
(‖D(n,)‖ + ‖D(n,)‖). (.)

Next, we know that

〈un – ū, D(n,)〉 + 〈vn – v̄, D(n,)〉
=

〈
un – ū, xn – un + ρn

[
A∗(Aun – Bvn) – A∗(Axn – Byn)

]〉
+

〈
vn – v̄, yn – vn – ρn

[
B∗(Aun – Bvn) – B∗(Axn – Byn)

]〉
=

〈
un – ū, xn – un – ρnA∗(Axn – Byn)

〉
+

〈
un – ū,ρnA∗(Aun – Bvn)

〉
+

〈
vn – v̄, yn – vn + ρnB∗(Axn – Byn)

〉
–

〈
vn – v̄,ρnB∗(Aun – Bvn)

〉
. (.)

By Lemma .,

〈
un – ū, xn – ρnA∗(Axn – Byn) – un

〉 ≥  (.)
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and

〈
vn – v̄, yn + ρnB∗(Axn – Byn) – vn

〉 ≥ . (.)

Besides, we also have

〈
un – ū, A∗(Aun – Bvn)

〉
–

〈
vn – v̄, B∗(Aun – Bvn)

〉
= 〈Aun – Aū, Aun – Bvn〉 – 〈Bvn – Bv̄, Aun – Bvn〉
= 〈Aun – Bvn – Aū + Bv̄, Aun – Bvn〉
= 〈Aun – Bvn, Aun – Bvn〉
= ‖Aun – Bvn‖ ≥ . (.)

So, by (.), (.), (.), and (.) we determine that

〈un – ū, D(n,)〉 + 〈vn – v̄, D(n,)〉 ≥ , (.)

which implies that

〈xn – ū, D(n,)〉 + 〈yn – v̄, D(n,)〉 ≥ 〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉. (.)

By (.), (.), and (.),

‖xn+ – ū‖ + ‖yn+ – v̄‖

≤ ‖xn – ū‖ + ‖yn – v̄‖ – αn〈xn – ū, D(n,)〉 – αn〈yn – v̄, D(n,)〉
+ α

n
(‖D(n,)‖ + ‖D(n,)‖)

≤ ‖xn – ū‖ + ‖yn – v̄‖ – αn
(〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉

)
+ α

n
(‖D(n,)‖ + ‖D(n,)‖)

= ‖xn – ū‖ + ‖yn – v̄‖ – αn
(〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉

)
≤ ‖xn – ū‖ + ‖yn – v̄‖. (.)

So, {‖xn – ū‖ +‖yn – v̄‖} is a decreasing sequence, and limn→∞ ‖xn – ū‖ +‖yn – v̄‖ exists.
Further, {xn}n∈N and {yn}n∈N are bounded sequences, and

lim
n→∞〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉 = . (.)

Besides, we know that

〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉
= 〈xn – un, xn – un + εn,〉 + 〈yn – vn, yn – vn + εn,〉
= ‖xn – un‖ + 〈xn – un, εn,〉 + ‖yn – vn‖ + 〈yn – vn, εn,〉, (.)
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which implies that

‖xn – un‖ + ‖yn – vn‖

= 〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉 – 〈xn – un, εn,〉 – 〈yn – vn, εn,〉
≤ 〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉 + ‖xn – un‖ · ‖εn,‖ + ‖yn – vn‖ · ‖εn,‖

≤ 〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉 +


(‖xn – un‖ + ‖εn,‖ + ‖yn – vn‖ + ‖εn,‖)

≤ 〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉 +
 + δ


· (‖xn – un‖ + ‖yn – vn‖). (.)

Hence, by (.) we derive that

( – δ)
(‖xn – un‖ + ‖yn – vn‖) ≤ 〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉. (.)

By (.) and (.) we know that

lim
n→∞‖xn – un‖ = lim

n→∞‖yn – vn‖ = . (.)

By Lemma . again,

‖un – ū‖ =
∥∥PC

[
xn – ρnA∗(Axn – Byn)

]
– PC[ū]

∥∥

≤ ∥∥xn – ρnA∗(Axn – Byn) – ū
∥∥

≤ ‖xn – ū‖ + ρ
n‖A‖ · ‖Axn – Byn‖ – ρn〈Axn – Byn, Axn – Aū〉. (.)

Similarly,

‖vn – v̄‖ ≤ ‖yn – v̄‖ + ρ
n‖B‖ · ‖Axn – Byn‖ + ρn〈Axn – Byn, Byn – Bv̄〉. (.)

By (.) and (.),

‖un – ū‖ + ‖vn – v̄‖

≤ ‖xn – ū‖ + ‖yn – v̄‖ + ρ
n
(‖A‖ + ‖B‖) · ‖Axn – Byn‖

– ρn〈Axn – Byn, Axn – Aū〉 + ρn〈Axn – Byn, Byn – Bv̄〉
= ‖xn – ū‖ + ‖yn – v̄‖ – ρn

(
 – ρn

(‖A‖ + ‖B‖)) · ‖Axn – Byn‖. (.)

We also have

‖un – ū‖ + ‖vn – v̄‖ = ‖un – xn‖ + 〈un – xn, xn – ū〉 + ‖xn – ū‖

+ ‖vn – yn‖ + 〈vn – yn, yn – v̄〉 + ‖yn – v̄‖. (.)

By (.), (.), and (.) we get

lim
n→∞‖Axn – Byn‖ = . (.)
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Since {xn}n∈N and {yn}n∈N are bounded sequences, there exist subsequences {xnk }k∈N and
{ynk }k∈N of {xn}n∈N and {yn}n∈N, respectively, such that xnk ⇀ x̄ and ynk ⇀ ȳ for some x̄ ∈ H

and ȳ ∈ H. Since {xn}∞n= is a sequence in C, we know that x̄ ∈ C. Also, ȳ ∈ Q. Since xnk ⇀ x̄
and ynk ⇀ ȳ, it is easy to see that Axnk ⇀ Ax̄ and Bynk ⇀ Bȳ by using the properties of A
and B. Further, Axnk – Bynk ⇀ Ax̄ – Bȳ, and the lower semicontinuity of the squared norm
implies

‖Ax̄ – Bȳ‖ ≤ lim inf
k→∞

‖Axnk – Bynk ‖ = lim
n→∞‖Axn – Byn‖ = . (.)

Then Ax̄ = Bȳ and (x̄, ȳ) ∈ �.
Next, let {x′

nk
} and {y′

nk
} be other subsequences of {xn}n∈N and {yn}n∈N such that x′

nk
⇀ x̂

and y′
nk

⇀ ŷ, respectively. Following the same argument as before, we get that (x̂, ŷ) ∈ �.
Besides, we have

‖xn – x̄‖ + ‖yn – ȳ‖

= ‖xn – x̂‖ + ‖x̂ – x̄‖ + 〈xn – x̂, x̂ – x̄〉
+ ‖yn – ŷ‖ + ‖ŷ – ȳ‖ + 〈yn – ŷ, ŷ – ȳ〉 (.)

and

‖xn – x̂‖ + ‖yn – ŷ‖

= ‖xn – x̄‖ + ‖x̂ – x̄‖ + 〈xn – x̄, x̄ – x̂〉
+ ‖yn – ȳ‖ + ‖ŷ – ȳ‖ + 〈yn – ȳ, ȳ – ŷ〉. (.)

Clearly, limn→∞ ‖xn – x̄‖ +‖yn – ȳ‖ exists, and limn→∞ ‖xn – x̂‖ +‖yn – ŷ‖ exists. Hence,
by (.) we get

lim
n→∞

(‖xn – x̄‖ + ‖yn – ȳ‖)
= lim

k→∞
(∥∥x′

nk
– x̄

∥∥ +
∥∥y′

nk
– ȳ

∥∥)
= lim

k→∞
(∥∥x′

nk
– x̂

∥∥ +
∥∥y′

nk
– ŷ

∥∥) + ‖x̂ – x̄‖ + ‖ŷ – ȳ‖

+ lim
k→∞


〈
x′

nk
– x̂, x̂ – x̄

〉
+  lim

k→∞
〈
y′

nk
– ŷ, ŷ – ȳ

〉
= lim

k→∞
(∥∥x′

nk
– x̂

∥∥ +
∥∥y′

nk
– ŷ

∥∥) + ‖x̂ – x̄‖ + ‖ŷ – ȳ‖

= lim
n→∞

(‖xn – x̂‖ + ‖yn – ŷ‖) + ‖x̂ – x̄‖ + ‖ŷ – ȳ‖. (.)

Similarly, by (.) we have

lim
n→∞

(‖xn – x̂‖ + ‖yn – ŷ‖) = lim
n→∞

(‖xn – x̄‖ + ‖yn – ȳ‖) + ‖x̂ – x̄‖ + ‖ŷ – ȳ‖. (.)

By (.) and (.) we know that x̄ = x̂ and ȳ = ŷ. Therefore, xn ⇀ x̄ and yn ⇀ ȳ, and the
proof is completed. �
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Remark . In Theorem ., if we choose {ρn}n∈N from (, δ√
(‖A‖+‖B‖) ], then we only

need to assume that lim infn→∞ ρn > .

Proof Since ρn ∈ (, δ√
(‖A‖+‖B‖) ], we have

ρn
(‖A‖ + ‖B‖) ≤ √

 · ρn · (‖A‖ + ‖B‖) ≤ δ, ∀n ∈N, (.)

which implies that

(
 – ρn

(‖A‖ + ‖B‖)) ≥  – δ > , ∀n ∈N. (.)

Since lim infn→∞ ρn > , we may assume that there is κ such that ρn ≥ κ >  for all n ∈ N.
Hence, we determine

ρn
(
 – ρn

(‖A‖ + ‖B‖)) ≥ κ · ( – δ) > κ , ∀n ∈ N. (.)

By (.) we get the conclusion of Remark .. �

2.2 Hybrid alternating CQ-algorithm
In this subsection, we present a hybrid alternating CQ-algorithm to study the split equality
problem.

Algorithm . For given xn ∈ H and yn ∈ H, find the approximate solution by the fol-
lowing iterative process.

Step . Compute the next iterate (un, vn) as follows:

{
un = PC[xn – ρnA∗(Axn – Byn)],
vn = PQ[yn + ρnB∗(Aun – Byn)],

where ρn >  satisfies

ρ
n
(∥∥A∗(Axn – Byn) – A∗(Aun – Bvn)

∥∥ +
∥∥B∗(Aun – Byn) – B∗(Aun – Bvn)

∥∥)
≤ δ‖xn – un‖ + δ‖yn – vn‖,  < δ < . (.)

Step . If xn = un and yn = vn, then (xn, yn) is a solution of problem (SEP) and stop. Other-
wise, go to Step .

Step . Compute the next iterate (xn+, yn+) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D(n,) := xn – un + ρn[A∗(Aun – Bvn) – A∗(Axn – Byn)],
D(n,) := yn – vn – ρn[B∗(Aun – Bvn) – B∗(Aun – Byn)],
αn := 〈xn–un ,D(n,)〉+〈yn–vn ,D(n,)〉

‖D(n,)‖+‖D(n,)‖ ,

xn+ = PC[xn – αnD(n,)],
yn+ = PQ[yn – αnD(n,)].

Next, update n := n +  and go to Step .
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Remark . If  < ρn ≤
√

δ

max{√·‖A‖,
√

·‖A‖·|B‖+‖B‖} , then (.) holds.

Proof Without loss of generality, we may assume that xn �= un and yn �= vn. We have

ρ
n · (∥∥A∗(Axn – Byn) – A∗(Aun – Bvn)

∥∥ +
∥∥B∗(Aun – Byn) – B∗(Aun – Bvn)

∥∥)
≤ ρ

n · (∥∥A∗∥∥ · ∥∥(Axn – Byn) – (Aun – Bvn)
∥∥ + ‖B‖ · ‖yn – vn‖)

≤ ρ
n · (∥∥A∗∥∥ · (‖Axn – Aun‖ + ‖Byn – Bvn‖

) + ‖B‖ · ‖yn – vn‖)
≤ ρ

n · (∥∥A∗∥∥ · (‖Axn – Aun‖ + ‖Byn – Bvn‖) + ‖B‖ · ‖yn – vn‖)
≤ ρ

n · (
∥∥A∗∥∥ · ‖xn – un‖ +

(
‖A‖ · ‖B‖ + ‖B‖) · ‖yn – vn‖)

≤ δ‖xn – un‖ + δ‖yn – vn‖.

Therefore, the proof is completed. �

Theorem . Let {ρn}n∈N be a sequence in (, / max{‖A‖,‖B‖}) such that (.) holds
and assume that lim infn→∞ρn( – ρn‖A‖) >  or lim infn→∞ρn( – ρn‖B‖) > . Then, for
the sequence {(xn, yn)}n∈N in Algorithm ., there exists (x̄, ȳ) ∈ � such that xn ⇀ x̄ and
yn ⇀ ȳ as n → ∞.

Proof Take any n ∈ N and let n be fixed. Take any (ū, v̄) ∈ � and let (ū, v̄) be fixed. Then
ū ∈ C, v̄ ∈ Q, and Aū = Bv̄. First, we set

{
εn, := ρn[A∗(Aun – Bvn) – A∗(Axn – Byn)],
εn, := ρn[B∗(Aun – Byn) – B∗(Aun – Bvn)].

Then

〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉 ≥ 

‖D(n,)‖ +



‖D(n,)‖. (.)

By (.) we have that

αn :=
〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉

‖D(n,)‖ + ‖D(n,)‖ ≥ 


. (.)

Next, by Lemma . we have

‖xn – αnD(n,) – xn+‖ + ‖xn+ – ū‖ ≤ ‖xn – αnD(n,) – ū‖ (.)

and

‖yn – αnD(n,) – yn+‖ + ‖yn+ – v̄‖ ≤ ‖yn – αnD(n,) – v̄‖. (.)

Hence, by (.),

‖xn – ū‖ – ‖xn+ – ū‖ ≥ αn〈xn – ū, D(n,)〉 – α
n‖D(n,)‖. (.)
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Also, by (.),

‖yn – v̄‖ – ‖yn+ – v̄‖ ≥ αn〈yn – v̄, D(n,)〉 – α
n‖D(n,)‖. (.)

By (.) and (.) we get

‖xn+ – ū‖ + ‖yn+ – v̄‖

≤ ‖xn – ū‖ + ‖yn – v̄‖ – αn〈xn – ū, D(n,)〉 – αn〈yn – v̄, D(n,)〉
+ α

n
(‖D(n,)‖ + ‖D(n,)‖). (.)

Next, we have

〈un – ū, D(n,)〉 + 〈vn – v̄, D(n,)〉
=

〈
un – ū, xn – un + ρn

[
A∗(Aun – Bvn) – A∗(Axn – Byn)

]〉
+

〈
vn – v̄, yn – vn – ρn

[
B∗(Aun – Bvn) – B∗(Aun – Byn)

]〉
=

〈
un – ū, xn – un – ρnA∗(Axn – Byn)

〉
+

〈
un – ū,ρnA∗(Aun – Bvn)

〉
+

〈
vn – v̄, yn – vn + ρnB∗(Aun – Byn)

〉
–

〈
vn – v̄,ρnB∗(Aun – Bvn)

〉
. (.)

By Lemma .,

〈
un – ū, xn – ρnA∗(Axn – Byn) – un

〉 ≥  (.)

and

〈
vn – v̄, yn + ρnB∗(Aun – Byn) – vn

〉 ≥ . (.)

Besides, we also have

〈
un – ū, A∗(Aun – Bvn)

〉
–

〈
vn – v̄, B∗(Aun – Bvn)

〉
= ‖Aun – Bvn‖ ≥ . (.)

So, by (.), (.), (.), and (.) we determine that

〈un – ū, D(n,)〉 + 〈vn – v̄, D(n,)〉 ≥ , (.)

which implies that

〈xn – ū, D(n,)〉 + 〈yn – v̄, D(n,)〉 ≥ 〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉. (.)

By (.), (.), and (.),

‖xn+ – ū‖ + ‖yn+ – v̄‖

≤ ‖xn – ū‖ + ‖yn – v̄‖ – αn〈xn – ū, D(n,)〉 – αn〈yn – v̄, D(n,)〉
+ α

n
(‖D(n,)‖ + ‖D(n,)‖)
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≤ ‖xn – ū‖ + ‖yn – v̄‖ – αn
(〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉

)
+ α

n
(‖D(n,)‖ + ‖D(n,)‖)

= ‖xn – ū‖ + ‖yn – v̄‖ – αn
(〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉

)
≤ ‖xn – ū‖ + ‖yn – v̄‖. (.)

So, {‖xn – ū‖ + ‖yn – v̄‖} is a decreasing sequence, limn→∞ ‖xn – ū‖ + ‖yn – v̄‖ exists,
{xn}n∈N and {yn}n∈N are bounded sequences, and

lim
n→∞〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉 = . (.)

Besides, we have

〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉
= ‖xn – un‖ + 〈xn – un, εn,〉 + ‖yn – vn‖ + 〈yn – vn, εn,〉, (.)

which implies that

‖xn – un‖ + ‖yn – vn‖

≤ 〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉 +
 + δ


· (‖xn – un‖ + ‖yn – vn‖). (.)

Hence, by (.) we derive that

( – δ)
(‖xn – un‖ + ‖yn – vn‖) ≤ 〈xn – un, D(n,)〉 + 〈yn – vn, D(n,)〉. (.)

By (.) and (.) we get that

lim
n→∞‖xn – un‖ = lim

n→∞‖yn – vn‖ = . (.)

By Lemma . again,

‖un – ū‖ =
∥∥PC

[
xn – ρnA∗(Axn – Byn)

]
– PC[ū]

∥∥

≤ ∥∥xn – ρnA∗(Axn – Byn) – ū
∥∥

≤ ‖xn – ū‖ + ρ
n‖A‖ · ‖Axn – Byn‖

– ρn〈Axn – Byn, Axn – Aū〉
= ‖xn – ū‖ – ρn · ( – ρn‖A‖) · ‖Axn – Byn‖

– ρn〈Axn – Byn, Byn – Aū〉. (.)

Similarly,

‖vn – v̄‖ =
∥∥PQ

[
yn + ρnB∗(Aun – Byn)

]
– PQ[v̄]

∥∥

≤ ∥∥yn + ρnB∗(Aun – Byn) – v̄
∥∥
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≤ ‖yn – v̄‖ + ρ
n‖B‖ · ‖Aun – Byn‖

+ ρn〈Aun – Byn, Byn – Bv̄〉
= ‖yn – v̄‖ – ρn

(
 – ρn‖B‖) · ‖Aun – Byn‖

+ ρn〈Aun – Byn, Aun – Bv̄〉. (.)

We also have

〈Axn – Byn, Byn – Aū〉 = ‖Axn – Aū‖ – ‖Axn – Byn‖ – ‖Byn – Aū‖ (.)

and

〈Aun – Byn, Aun – Bv̄〉 = ‖Aun – Bv̄‖ + ‖Aun – Byn‖ – ‖Byn – Bv̄‖. (.)

By (.), (.), (.), and (.),

‖un – ū‖ + ‖vn – v̄‖

≤ ‖xn – ū‖ + ‖yn – v̄‖ – ρn
(
 – ρn‖A‖) · ‖Axn – Byn‖

– ρn
(
 – ρn‖B‖) · ‖Aun – Byn‖ + ρn

(‖Aun – Aū‖ – ‖Axn – Aū‖)
≤ ‖xn – ū‖ + ‖yn – v̄‖ – ρn

(
 – ρn‖A‖) · ‖Axn – Byn‖

– ρn
(
 – ρn‖B‖) · ‖Aun – Byn‖

+ ρn · ‖A‖ · ‖un – xn‖ · (‖Aun – Aū‖ + ‖Axn – Aū‖). (.)

We also have

‖un – ū‖ + ‖vn – v̄‖ = ‖un – xn‖ + 〈un – xn, xn – ū〉 + ‖xn – ū‖

+ ‖vn – yn‖ + 〈vn – yn, yn – v̄〉 + ‖yn – v̄‖. (.)

Case : lim infn→∞ ρn( – ρn‖A‖) > .
By (.), (.), and (.) we get

lim
n→∞‖Axn – Byn‖ = . (.)

Case : Suppose that lim infn→∞ ρn( – ρn‖B‖) > .
By (.), (.), and (.) we get

lim
n→∞‖Aun – Byn‖ = . (.)

By (.) and (.) we determine

lim
n→∞‖Axn – Byn‖ = . (.)

Next, following the same argument as the final proof of Theorem ., we get the conclu-
sion of Theorem .. �
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Remark . Suppose that {ρn}n∈N satisfy the following inequality:

 < κ ≤ ρn ≤ δ

max{√ · ‖A‖,
√

 · ‖A‖ · ‖B‖ + ‖B‖,‖B‖} .

Then {ρn}n∈N satisfy the conditions in Remark . and Theorem ..

3 Applications of the split equality problem
3.1 The split feasibility problem
Let H and H be real Hilbert spaces. Let C and Q be nonempty closed convex subsets of
H and H, respectively. Let A : H → H be a linear and bounded operator with adjoint
operator A∗. The following problem is the split feasibility problem in Hilbert spaces, which
was first introduced by Censor and Elfving []:

(SFP) Find x̄ ∈ H such that x̄ ∈ C and Ax̄ ∈ Q.

Here, let � := {x ∈ C : Ax ∈ Q} be the solution set of problem (SFP). It is worth noting
that this problem is a particular case of the split equality problem when H = H and B is
the identity mapping on H. For additional details, one can refer to [, –] and related
literature.

By Algorithm ., we get the following algorithm to study problem (SFP).

Algorithm . For given xn ∈ H and yn ∈ H, find the approximate solution by the fol-
lowing iterative process.

Step . For n ∈N, let un and vn be defined by

{
un = PC[xn – ρnA∗(Axn – yn)],
vn = PQ[yn + ρn(Aun – yn)],

where ρn >  satisfies

ρ
n
(∥∥A∗(Axn – yn) – A∗(Aun – vn)

∥∥ +
∥∥(Aun – yn) – B∗(Aun – vn)

∥∥)
≤ δ‖xn – un‖ + δ‖yn – vn‖,  < δ < . (.)

Step . If xn = un and yn = vn, then (xn, yn) is a solution of problem (SFP) and stop. Other-
wise, go to Step .

Step . Compute the next iterate (xn+, yn+) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D(n,) := xn – un + ρn[A∗(Aun – vn) – A∗(Axn – yn)],
D(n,) := yn – vn – ρn[(Aun – vn) – (Aun – yn)],
αn := 〈xn–un ,D(n,)〉+〈yn–vn ,D(n,)〉

‖D(n,)‖+‖D(n,)‖ ,

xn+ = PC[xn – αnD(n,)],
yn+ = PQ[yn – αnD(n,)].

Next, update n := n +  and go to Step .
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We get the following convergence theorem for the split feasibility problem by using The-
orem ..

Theorem . Let H and H be real Hilbert spaces. Let C and Q be nonempty closed con-
vex subsets of H and H, respectively. Let A : H → H be a linear and bounded operator
with adjoint operator A∗. Choose δ ∈ (, ). Let � be the solution set of the split feasibility
problem and suppose that � �= ∅. Let {ρn}n∈N be a sequence in (, / max{‖A‖, }) such
that (.) hold and assume that lim infn→∞ρn( – ρn‖A‖) >  or lim infn→∞ρn( – ρn) > s.
Then, for the sequence {(xn, yn)}n∈N in Algorithm ., there exists x̄ ∈ � such that xn ⇀ x̄
as n → ∞.

3.2 Linear inverse problem
In this subsection, we study an inverse problem by our algorithms and convergence the-
orems. Let H and H be real Hilbert spaces. Let C be a nonempty closed convex subset
of H, and A : H → H be a linear and bounded operator with adjoint operator A∗. Given
b ∈ H. Then we consider the following inverse problem in this section:

(IV) Find x̄ ∈ C such that Ax̄ = b.

This is a particular case of the split equality problem if H = H, Q = {b}, and B(x) = x
for all x ∈ H. Next, take any (x, y) ∈ H × H with y = b. Then, by Algorithm . we get
the following algorithm to study problem (IV).

Algorithm . For givenxn ∈ H, find the approximate solution by the following iterative
process.

Step . Compute the next iterate un as follows:

un = PC
[
xn – ρnA∗(Axn – b)

]
,

where ρn >  satisfies

ρ
n · ∥∥A∗(Axn) – A∗(Aun)

∥∥ ≤ δ‖xn – un‖,  < δ < . (.)

Step . If xn = un, then xn is a solution of problem (IV) and stop. Otherwise, go to Step .
Step . Compute the next iterate xn+ as follows:

⎧⎪⎨
⎪⎩

Dn := xn – un + ρn[A∗(Aun) – A∗(Axn)],
αn := 〈xn–un ,Dn〉

‖Dn‖ ,
xn+ = PC[xn – αnDn].

Next, update n := n +  and go to Step .

We get the following convergence theorem for the linear inverse problem by using The-
orem ..

Theorem . Let H and H be real Hilbert spaces. Let C be a nonempty closed convex
subset of H, and A : H → H be a linear and bounded operator with adjoint operator A∗.
Given b ∈ H and δ ∈ (, ). Let � be the solution set of (IV) and suppose that � �= ∅.
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Let {ρn}n∈N be a sequence in (, / max{‖A‖, }) such that (.) holds and assume that
lim infn→∞ρn( – ρn‖A‖) >  or lim infn→∞ρn( – ρn) > . Then, for the sequence {xn}n∈N
in Algorithm ., there exists x̄ ∈ � such that xn ⇀ x̄ as n → ∞.

Remark . By Algorithm . and Theorem ., we can get the related algorithms and
convergence theorems for the split feasibility problem and the inverse problems.

4 Numerical results
All codes were written in R language (version .. (--), the R Foundation for
Statistical Computing Platform: x--w-mingw/x).

Example . Let H = H = H = R
, C := {x ∈ R

 : ‖x‖ ≤ }, Q := {x = (u, v) ∈ R
 : (u –

) + (v – ) ≤ },

A :=

[
 
 

]
, B :=

[
 
 

]
.

Then problem (SEP) has a unique solution (x̄, ȳ) ∈ R
 ×R

, where x̄ := (x̄, x̄), ȳ := (ȳ, ȳ).
Indeed, x̄ = ., x̄ = ., ȳ = , ȳ = . Let ε >  and the algorithm stop if ‖xn – x̄‖ + ‖yn –
ȳ‖ < ε.

In Table , setting ε = –, x = (, )T , y = (, )T , and ρn = . for all n ∈ N, we get
the numerical results.

In Table , setting ε = –, x = (, )T , y = (, )T , and ρn = . for all n ∈ N, we get the
numerical results.

In Table , setting ε =  × –, x = (–, –)T , y = (–, )T , and ρn = . for all
n ∈N, we get the numerical results.

Table 1 ε = 10–1, x1 = (10, 10)T , y1 = (1, 1)T , ρn = 0.01

Algorithm Time (s) Iteration Approximate solution (x1
n , x2

n ) Approximate solution (y1
n , y2

n )

Algorithm 2.1 0.01 196 (0.6114674, 0.7912309) (3.0850778, 3.9920504)
Algorithm 2.2 0.00 122 (0.5970952, 0.8020906) (3.0421971, 4.0866474)
(ACQA) 1.94 58,324 (0.6132467, 0.7898914) (3.0670840, 3.9505550)
(PLA) 2.57 78,654 (0.6132467, 0.7898914) (3.0670840, 3.9505550)

Table 2 ε = 10–1, x1 = (5, 5)T , y1 = (1, 1)T , ρn = 0.01

Algorithm Time (s) Iteration Approximate solution (x1
n , x2

n ) Approximate solution (y1
n , y2

n )

Algorithm 2.1 0.82 11,168 (0.6132467, 0.7898915) (3.067084, 3.950555)
Algorithm 2.2 0.02 205 (0.6077392, 0.7940725) (3.0847143, 4.0304899)
(ACQA) 1.94 58,324 (0.6132467, 0.7898914) (3.067084, 3.950555)
(PLA) 2.28 71,521 (0.6132467, 0.7898915) (3.067084, 3.950555)

Table 3 ε = 4 × 10–2, x1 = (12, –50)T , y1 = (–40, 20)T , ρn = 0.01

Algorithm Time (s) Iteration Approximate solution (x1
n , x2

n ) Approximate solution (y1
n , y2

n )

Algorithm 2.1 0.07 527 (0.5988387, 0.8008379) (3.0167366, 4.0343372)
Algorithm 2.2 45.89 474,754 (0.5946535, 0.8039821) (2.973400, 4.020089)
(ACQA) 20.44 579,771 (0.5946535, 0.8039821) (2.973400, 4.020089)
(PLA) 22.55 585,380 (0.5946536, 0.8039821) (2.973400, 4.020089)
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