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Abstract
In this article, we first define a kind of generalized singular integral operator and
discuss its properties. Then we propose a kind of boundary value problem for an
inhomogeneous partial differential system in R4. Finally, the integral representation of
the solution to a boundary value problem for the inhomogeneous partial differential
system is obtained using the above singular integral operator.
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1 Introduction
Partial differential equations are encountered in many problems of physics, mechanics,
mathematical finance, mathematical biology, and other branches of mathematics [, ]. It
has been a popular topic since the s. So boundary value problems for partial differen-
tial system have always been an important and meaningful topics. There are many scholars
who studied on it, such as Keldysh [], Wen [, ], Čanić and Kim [], Taira [], and so
on. In addition, singular integral operators are the core components of solutions of the
boundary value problems for a partial differential system and a degenerate partial differ-
ential system. So, for many years, many scholars and experts have studied some properties
of all kinds of singular integral operators, and they obtained the integral representations
of solutions of some partial differential equations. For example, Vekua [] first discussed
in detail some properties of the Teodorescu operator, and Hile [] studied some proper-
ties of the Teodorescu operator in Rn. Then Gilbert et al. [] and Meng [] studied its
many properties in high dimensional complex space. Gürlebeck and Sprössig [], and
Yang [] discussed its properties and corresponding boundary value problems in the real
quaternion analysis.

In this article, we will study the Riemann boundary value problem for a kind of inhomo-
geneous partial differential system of first order equations in R using the Clifford analysis
approach. In Section , we recall some basic knowledge of Clifford analysis. In Section ,
we construct a singular integral operator and study some of its properties. In Section , we
first propose the Riemann boundary value problem for a kind of inhomogeneous partial
differential system, then we obtain an integral representation of the solution to the Rie-
mann boundary value problem using the relation between the theory of Clifford-valued
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generalized holomorphic functions and that of the inhomogeneous partial differential sys-
tem’s solutions.

2 Preliminaries
Let {e, e, e, e} be an orthogonal basis of the Euclidean space R and Cl, be the Clifford
algebra with basis

{e, e, e, e, ee, ee, ee, eee},

where e is the real scalar identity element, e, e, e satisfy the following multiplication
rule:

e
i = –e, eiej = –ejei, i, j = , , , i �= j.

If we denote ee = e, ee = e, ee = e, eee = e, then an arbitrary element of the
Clifford algebra space Cl, can be written as a =

∑
j= ajej, aj ∈ R. The Clifford conjugation

is defined by ā = a –
∑

j= ajej + ae. The norm for an element a ∈ Cl, is taken to be

|a| =
√∑

j= |aj|. Moreover, if aā = āa = |a| and |a| �= , then we have

a · ā
|a| =

ā
|a| · a = .

Thus, we say that a is reversible if aā = āa = |a| and |a| �= . Obviously, its inverse element
can be written as a– = ā

|a| .
Suppose � ⊂ R is a bounded connected domain and the boundary ∂� is a differen-

tiable, oriented, and compact Liapunov surface. An arbitrary element x ∈ � is denoted
by x = xe + xe + xe + xe. The function w which is defined in � with values in the
Clifford algebra space Cl, can be expressed as w =

∑
j= wj(x)ej, herein wj(x) (j = , . . . , )

are real-functions defined on �.
Let C(m)(�, Cl,) = {w|w : � → Cl,, w(x) =

∑
j= wj(x)ej, wj(x) ∈ C(m)(�, R)}. We intro-

duce the generalized Cauchy-Riemann operator on C()(�, Cl,) as follows:

∂xw =
∑

i=

ei
∂w
∂xi

=
∑

i=

∑

j=

eiej
∂wj

∂xi
,

w∂x =
∑

i=

∂w
∂xi

ei =
∑

i=

∑

j=

ejei
∂wj

∂xi
.

w is called a left (right) Clifford holomorphic function, if ∂xw(x) =  (w(x)∂x = ) in �. w is
called a left (right) generalized Clifford holomorphic function, if ∂xw(x) = c(x) (w(x)∂x =
c(x)) in �, herein c(x) =

∑
j= cj(x)ej. Usually a left Clifford holomorphic function and a

left generalized Clifford holomorphic function are called a Clifford holomorphic func-
tion and a generalized Clifford holomorphic function for short, respectively. And w(x) ∈
Lp,σ (R, Cl,) means that w(x) ∈ Lp(B, Cl,), w(σ )(x) = |x|–σ w( x̄

|x| ) ∈ Lp(B, Cl,), in which
B = {x||x| < }, σ is a real number, ‖w‖p,σ = ‖w‖Lp(B) + ‖w(σ )‖Lp(B), p ≥ .
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Definition . Suppose that the functions u, v, ϕ are defined in � with values in Cl,,
and u, v ∈ L(�, Cl,). If for arbitrary ϕ ∈ C∞

 (�, Cl,), u, v satisfy
∫

�

(ϕ∂x)v(x) dx +
∫

�

ϕ(x)u(x) dx = ,

then u is called a generalized derivative of the function v, where we denote u = ∂xv.

Lemma . ([]) Let �, ∂� be as stated above. If f ∈ C(m)(�, Cl,), then for each x ∈ �,
we have


π

∫

∂�

f (y) dσyE(x, y) –


π

∫

�

(f ∂y)E(x, y) dy = f (x),

where E(x, y) = ȳ–x̄
|y–x| .

Lemma . ([]) If σ,σ > ,  ≤ γ ≤ , then we have

∣
∣σ

γ
 – σ

γ

∣
∣ ≤ |σ – σ|γ .

Lemma . ([]) Suppose � is a bounded domain in R, and let α′, β ′ satisfy  < α′,β ′ < ,
α′ + β ′ > . Then for all x, x ∈ R and x �= x, we have

∫

�

|t – x|–α′ |t – x|–β ′
dt ≤ M

(
α′,β ′)|x – x|–α′–β ′ .

3 Some properties of the singular integral operator
In this section, we will discuss some properties of the singular integral operator as follows:

(
T[g]

)
(x) = –


π

∫

B

(ȳ – x̄)g(y)
|y – x| dy –


π

∫

B

ȳ
|y| – x̄

| ȳ
|y| – x| g

(
ȳ

|y|
)


|y| dy

=
(
T[g]

)
(x) +

(
T[g]

)
(x), (.)

where B = {x||x| < }.

Theorem . Assume B to be as stated above. If g ∈ Lp(B, Cl,),  < p < +∞, then
() |(T[g])(x)| ≤ M(p)‖g‖Lp(B),
() |(T[g])(x()) – (T[g])(x())| ≤ M(p)‖g‖Lp(B)|x() – x()|β , x(), x() ∈ R,
() ∂x(T[g])(x) = g(x), x ∈ B, ∂x(T[g])(x) = , x ∈ R\B,

where  < β = p–
p < .

Proof () By the Hölder inequality, we have

∣
∣
(
T[g]

)
(x)

∣
∣ ≤ J‖g‖Lp(B)

[∫

B


|y – x|q |dy|

] 
q

.

When x ∈ B, because of p > , 
p + 

q = , then  < q < 
 . Thus

∫
B


|y–x|q |dy| is bounded.

Hence we suppose
∫

B


|y – x|q |dy| ≤ J.
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When x ∈ R – B, by Lemma . and the generalized spherical coordinate, we have

[∫

B


|y – x|q |dy|

] 
q

≤ J

[∫ d+

d

ρ–q dρ

] 
q

≤ J,

where ρ = |y – x|, d = d(x, B).
Therefore, for arbitrary x ∈ R, we can obtain

∣
∣
(
T[g]

)
(x)

∣
∣ ≤ M(p)‖g‖Lp(B), x ∈ R,

where M(p) = max{JJ, JJ}.
() For arbitrary x(), x() ∈ R, x() �= x(), by the Hile lemma [] and the Hölder inequality,

we can obtain

∣
∣
(
T[g]

)(
x()) –

(
T[g]

)(
x())∣∣

≤ J

∫

B

∣
∣g(y)

∣
∣
∣
∣
∣
∣

ȳ – x̄()

|y – x()| –
ȳ – x̄()

|y – x()|
∣
∣
∣
∣|dy|

≤ J

∫

B

∣
∣g(y)

∣
∣
∑

k= |y – x()|–k|y – x()|k–

|y – x()||y – x()| |dy|∣∣x() – x()∣∣

≤ J‖g‖Lp(B)

∑

k=

[∫

B


|y – x()|kq|y – x()|(–k)q |dy|

] 
q ∣
∣x() – x()∣∣

= J‖g‖Lp(B)
∣
∣x() – x()∣∣

∑

k=

I

q

k .

We suppose α′ = kq, β ′ = ( – k)q (k = , , ). From  ≤ q < 
 , we have

α′ = kq ≤ q < , β ′ = ( – k)q ≤ q < ,

α′ + β ′ = q >  (k = , , ).

Hence, by Lemma ., we have

Ik =
∫

B


|y – x()|kq|y – x()|(–k)q |dy|

≤ M
(
α′,β ′)∣∣x() – x()∣∣–q (k = , , ).

So we have

∣
∣
(
T[g]

)(
x()) –

(
T[g]

)(
x())∣∣ ≤ J‖g‖Lp(B)

∣
∣x() – x()∣∣+ –q

q = M(p)‖g‖Lp(B)|x – x|β ,

where M(p) = J,  < β = p–
p < .

() For arbitrary ϕ ∈ C∞
 (B, Cl,), by Definition ., Lemma ., and the Fubini theorem,

we have
∫

B
(ϕ∂x)

(
T[g]

)
(x) dx

=
∫

B
(ϕ∂x)

[

–


π

∫

B

ȳ – x̄
|y – x| g(y) dy

]

dx
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=
∫

B

[


π

∫

B
(ϕ∂x)

x̄ – ȳ
|x – y| dx

]

g(y) dy

=
∫

B

[


π

∫

∂B
ϕ(x) dσx

x̄ – ȳ
|x – y| – ϕ(y)

]

g(y) dy

= –
∫

B
ϕ(y)g(y) dy = –

∫

B
ϕ(x)g(x) dx.

Hence, in the sense of generalized derivatives, ∂x(T[g])(x) = g(x), x ∈ B. It is easy to see
∂x(T[g])(x) = , x ∈ R\B. �

Theorem . Let B be as stated above. If g ∈ Lp,(R, Cl,),  < p < +∞, then we have the
following results:

() |(T[g])(x)| ≤ M(p)‖g()‖Lp(B), x ∈ R,
() |(T[g])(x()) – (T[g])(x())| ≤ M(p)‖g()‖Lp(B)|x() – x()|β , x(), x() ∈ R,
() ∂x(T[g])(x) = , x ∈ B, ∂x(T[g])(x) = g(x), x ∈ R\B,

where  < β = p–
p < .

Proof () By the Hölder inequality, we have

∣
∣
(
T[g]

)
(x)

∣
∣ =

∣
∣
∣
∣–


π

∫

B

ȳ
|y| – x̄

| ȳ
|y| – x| g

(
ȳ

|y|
)


|y| dy

∣
∣
∣
∣

≤ J

∫

B


| ȳ
|y| – x|

∣
∣
∣
∣g

(
ȳ

|y|
)∣

∣
∣
∣


|y| |dy|

= J

∫

B


| ȳ
|y| – x||y| |y|–

∣
∣
∣
∣g

(
ȳ

|y|
)∣

∣
∣
∣|dy|

≤ J

[∫

B

(

|y|–
∣
∣
∣
∣g

(
ȳ

|y|
)∣

∣
∣
∣

)p

|dy|
] 

p
[∫

B


| ȳ
|y| – x|q|y|q

|dy|
] 

q

= J
∥
∥g()∥∥

Lp(B)

(
O(x)

) 
q , (.)

where 
p + 

q = .
Next we will discuss O(x) in two cases.
(i) When |x| ≥ 

 , since

|y|–q
∣
∣
∣
∣

ȳ
|y| – x

∣
∣
∣
∣

–q

= |y|–q|y|q|y|–q
∣
∣
∣
∣

ȳ
|y| – x

∣
∣
∣
∣

–q

|x|q|x|–q

= |y|–q
[

|y|–q
∣
∣
∣
∣

ȳ
|y| – x

∣
∣
∣
∣

–q∣∣
∣
∣

x̄
|x|

∣
∣
∣
∣

–q]

|x|–q

≤ J|y|–q
∣
∣
∣
∣y

(
ȳ

|y| – x
)

x̄
|x|

∣
∣
∣
∣

–q

|x|–q

= J|y|–q
∣
∣
∣
∣

x̄
|x| – y

∣
∣
∣
∣

–q

|x|–q,
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we have

O(x) ≤
∫

B
J|y|–q

∣
∣
∣
∣

x̄
|x| – y

∣
∣
∣
∣

–q

|x|–q|dy|

= J|x|–q
∫

B
|y|–q

∣
∣
∣
∣

x̄
|x| – y

∣
∣
∣
∣

–q

|dy|.

Let α′ = q, β ′ = q, by  < q < 
 . we have

 < α′ < ,  < β ′ < , α′ + β ′ = q > .

Thus, by Lemma ., we have

O(x) ≤ JM
(
α′,β ′)|x|–q

∣
∣
∣
∣

x̄
|x|

∣
∣
∣
∣

–q

≤ JM
(
α′,β ′)–q = J. (.)

(ii) When |x| < 
 , by |y| ≤ , we have | – yx| ≥ 

 . Thus

O(x) =
∫

B

∣
∣
∣
∣

ȳ
|y| – x

∣
∣
∣
∣

–q

|y|–q|dy|

=
∫

B
|y|q|y|–q

∣
∣
∣
∣

ȳ
|y| – x

∣
∣
∣
∣

–q

|y|–q|dy|

≤ J

∫

B
|y|–q

∣
∣
∣
∣y

(
ȳ

|y| – x
)∣

∣
∣
∣

–q

|dy|

= J

∫

B
|y|–q| – yx|–q|dy|

≤ J

∫

B
|y|–qq|dy| ≤ J

∫

B
|y|–q|dy| ≤ J. (.)

Therefore, by (.)-(.), we have

∣
∣
(
T[g]

)
(x)

∣
∣ ≤ M(p)

∥
∥g()∥∥

Lp(B),

where M(p) = max{JJ

q

, JJ

q

}.
() By the Hile lemma [], we have

∣
∣
(
T[g]

)(
x()) –

(
T[g]

)(
x())∣∣

≤ J

∫

B

∣
∣
∣
∣

y
|y| – x̄()

| ȳ
|y| – x()| –

y
|y| – x̄()

| ȳ
|y| – x()|

∣
∣
∣
∣

∣
∣
∣
∣g

(
ȳ

|y|
)∣

∣
∣
∣


|y| |dy|

≤ J

∫

B

∑

k=

|x() – x()|
| ȳ
|y| – x()|k| ȳ

|y| – x()|–k

∣
∣
∣
∣g

(
ȳ

|y|
)∣

∣
∣
∣


|y| |dy|.

Again, because of

∣
∣
∣
∣

ȳ
|y| – x()

∣
∣
∣
∣

–k

= |y|k|y|–k
∣
∣
∣
∣

ȳ
|y| – x()

∣
∣
∣
∣

–k

= |y|k∣∣ – yx()∣∣–k ,
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∣
∣
∣
∣

ȳ
|y| – x()

∣
∣
∣
∣

–(–k)

= |y|–k∣∣ – yx()∣∣–(–k),

by the Hölder inequality, we have

∣
∣
(
T[g]

)(
x()) –

(
T[g]

)(
x())∣∣

≤ J

∑

k=

∫

B

∣
∣ – yx()∣∣–k∣∣ – yx()∣∣–(–k)|y|–

∣
∣
∣
∣g

(
ȳ

|y|
)∣

∣
∣
∣|dy|∣∣x() – x()∣∣

≤ J
∣
∣x() – x()∣∣

∥
∥g()∥∥

Lp(B)

∑

k=

[∫

B

∣
∣ – yx()∣∣–kq∣∣ – yx()∣∣–(–k)q|dy|

] 
q

= J
∣
∣x() – x()∣∣

∥
∥g()∥∥

Lp(B)

∑

k=

[
Õk

(
x(), x())] 

q , (.)

where

Õk
(
x(), x()) =

∫

B

∣
∣ – yx()∣∣–kq∣∣ – yx()∣∣–(–k)q|dy|.

In the following, we discuss Õk(x(), x()) in four cases.
(i) When |x()| ≤ 

 , |x()| ≤ 
 , we have | – yx()| ≥ 

 , | – yx()| ≥ 
 and |x() – x()| ≤ .

Hence

Õk
(
x(), x()) ≤

∫

B
kq(–k)q|dy| = q

∫

B
|dy| = J.

From |x()| – |x()| ≤ ,  ≤ β =  – 
p < , we have |x() – x()| ≤ |x() – x()|β . Therefore, by

(.), we have

∣
∣
(
T[g]

)(
x()) –

(
T[g]

)(
x())∣∣

≤ J
∣
∣x() – x()∣∣β

∥
∥g()∥∥

L(p)(B)

∑

k=

J

q



= J
∥
∥g()∥∥

Lp(B)

∣
∣x() – x()∣∣β . (.)

(ii) When |x()| ≥ 
 , |x()| ≤ 

 , we have | – yx()| ≥ 
 , 

|x()| ≤ , |x()|
|x()| ≤ . Thus

Õk
(
x(), x()) ≤ (–k)q

∫

B

∣
∣ – yx()∣∣–kq|dy|

= (–k)q
∫

B

∣
∣ – yx()∣∣–kq∣∣x()∣∣–kq∣∣x()∣∣kq|dy|

≤ J(–k)q∣∣x()∣∣–kq
∫

B

∣
∣
∣
∣
(
 – yx()) x̄()

|x()|
∣
∣
∣
∣

–kq

|dy|

= J(–k)q∣∣x()∣∣–kq
∫

B

∣
∣
∣
∣

x̄()

|x()| – y
∣
∣
∣
∣

–kq

|dy|,
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where

(


|x()|
)kq

= kq
(


|x()|

)kq

≤ kq
(


|x()|

)q

= (k–)q
(


|x()|

)q

.

Again, since


|x()| =

(


|x()|
)β(


|x()|

)–β

=


|x()|β
(

x̄()

|x()|
)–β

=


|x()|β
∣
∣
∣
∣
x̄()(x() – x())(x̄() – x̄())

|x()||x() – x()|
∣
∣
∣
∣

–β

≤ J


|x()|β
∣
∣
∣
∣
x̄()(x() – x())

|x()|
∣
∣
∣
∣

–β 
|x() – x()|–β

= J
∣
∣x()∣∣–β

∣
∣
∣
∣ –

x̄()x()

|x()|
∣
∣
∣
∣

–β ∣
∣x() – x()∣∣β–

≤ J
∣
∣x()∣∣–β

(

 +
|x()|
|x()|

)–β ∣
∣x() – x()∣∣β–

≤ J
∣
∣x() – x()∣∣β–,

we have

(


|x()|
)kq

≤ (k–)q(J
∣
∣x() – x()∣∣β–)q ≤ J

∣
∣x() – x()∣∣(β–)q.

Again from  < q < 
 , we have kq <  (k = , , ). Thus

∫
B | x̄()

|x()| – y|–kq|dy| is bounded.
Hence, we obtain

Õk
(
x(), x()) ≤ J

∣
∣x() – x()∣∣(β–)q.

Therefore, by (.), we have

∣
∣
(
T[g]

)(
x()) –

(
T[g]

)(
x())∣∣

≤ J
∣
∣x() – x()∣∣

∥
∥g()∥∥

L(p)(B)

∑

k=

(
J

∣
∣x() – x()∣∣(β–)q) 

q

= J
∥
∥g()∥∥

Lp(B)

∣
∣x() – x()∣∣β . (.)

(iii) When |x()| ≤ 
 , |x()| ≥ 

 , we have | – yx()| ≥ 
 , 

|x()| ≤ , |x()|
|x()| ≤ . Similar to (ii),

we have

∣
∣
(
T[g]

)(
x()) –

(
T[g]

)(
x())∣∣ = J

∥
∥g()∥∥

Lp(B)

∣
∣x() – x()∣∣β . (.)

(V) When |x()| ≥ 
 , |x()| ≥ 

 , we have 
|x()| ≤ , 

|x()| ≤ .
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Since

∣
∣ – yx()∣∣–kq =

∣
∣ – yx()∣∣–kq∣∣x()∣∣kq∣∣x()∣∣–kq

=
∣
∣ – yx()∣∣–kq

(
x̄()

|x()|
)–kq∣

∣x()∣∣–kq

≤ J

∣
∣
∣
∣y –

x̄()

|x()|
∣
∣
∣
∣

–kq∣
∣x()∣∣–kq

and

∣
∣ – yx()∣∣–(–k)q =

∣
∣ – yx()∣∣–(–k)q∣∣x()∣∣(–k)q∣∣x()∣∣–(–k)q

≤ J

∣
∣
∣
∣y –

x̄()

|x()|
∣
∣
∣
∣

–(–k)q∣
∣x()∣∣–(–k)q,

we have

Õk
(
x(), x()) ≤ J

∫

B

∣
∣
∣
∣y –

x̄()

|x()|
∣
∣
∣
∣

–kq∣∣
∣
∣y –

x̄()

|x()|
∣
∣
∣
∣

–(–k)q

|dy|.

Suppose α′ = kq, β ′ = ( – k)q, then  < α′ < q < ,  < β ′ < q < , α′ + β ′ = q ≥ .
Thus, by Lemma ., we have

Õk
(
x(), x()) ≤ J

∣
∣
∣
∣

x̄()

|x()| –
x̄()

|x()|
∣
∣
∣
∣

–q

= J

( |x̄()|x()| – x̄()|x()||
|x()||x()|

)–q

= J

(
x̄()|x()| – x̄()|x()| + x̄()|x()| – x̄()|x()|

|x()||x()|
)–q

≤ J

(


|x()| +
|x()| + |x()|
|x()||x()|

)–q∣
∣x() – x()∣∣–q

= J

(


|x()| +


|x()| +


|x()||x()|
)–q∣

∣x() – x()∣∣–q

≤ J
∣
∣x() – x()∣∣–q.

Therefore, by (.), we have

∣
∣
(
T[g]

)(
x()) –

(
T[g]

)(
x())∣∣

≤ J
∣
∣x() – x()∣∣

∥
∥g()∥∥

L(p)(B)

∑

k=

(
J

∣
∣x() – x()∣∣–q) 

q

= J
∥
∥g()∥∥

Lp(B)

∣
∣x() – x()∣∣+ (–q)

q

= J
∥
∥g()∥∥

Lp(B)

∣
∣x() – x()∣∣β , (.)

where  < β =  + (–q)
q = p–

p < .
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Therefore, by (.)-(.), we obtain

∣
∣
(
T[g]

)(
x()) –

(
T[g]

)(
x())∣∣ ≤ M(p)

∥
∥g()∥∥

Lp(B)

∣
∣x() – x()∣∣β ,

where M(p) = max{J, J, J, J}.
() This case is similar to Theorem ., and it is easy to prove. �

Remark . Let B be as stated above. If g ∈ Lp,(R, Cl,),  < p < +∞, then we have the
following results:

() |(T[g])(x)| ≤ M(p)‖g‖p,, x ∈ R,
() |(T[g])(x()) – (T[g])(x())| ≤ M(p)‖g‖p,|x() – x()|β , x(), x() ∈ R,
() ∂x(T[g])(x) = g(x), x ∈ R\∂B,

where  < β < .

4 Integral representation of solution to inhomogeneous partial differential
system

In this section, we will discuss the inhomogeneous partial differential system of first order
equations as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wx
– wx

– wx
– wx

= c(x),
wx

+ wx
+ wx

+ wx
= c(x),

wx
– wx

+ wx
+ wx

= c(x),
wx

– wx
– wx

+ wx
= c(x),

wx
+ wx

– wx
– wx

= c(x),
wx

+ wx
+ wx

– wx
= c(x),

wx
– wx

+ wx
– wx

= c(x),
wx

+ wx
– wx

+ wx
= c(x),

(.)

where wj(x), cj(x) (j = , , , . . . , ) are real-value functions.

Problem P Let B ⊂ R be as stated above. The Riemann boundary value problem for
system (.) is to find a solution w(x) of (.) that satisfies the boundary condition

w+(τ ) = w–(τ )G + f (τ ), τ ∈ ∂B, (.)

where w±(τ ) = limx∈B± ,x→τ w(x), B+ = B, B– = R\B, G is a Clifford constant, G– exists, and
f ∈ Hν

∂B ( < ν < ).

In fact,

∂xw =
∑

i=

ei

∑

j=

ej
∂wj

∂xi
=

∑

j=

(

eej
∂wj

∂x
+ eej

∂wj

∂x
+ eej

∂wj

∂x
+ eej

∂wj

∂x

)

= (wx e + wx e + wx e + wx e) + (wx e – wx e – wx e – wx e)

+ (wx e + wx e – wx e – wx e) + (wx e + wx e + wx e – wx e)

+ (wx e – wx e + wx e + wx e) + (wx e – wx e – wx e + wx e)
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+ (wx e + wx e – wx e + wx e) + (wx e – wx e + wx e – wx e)

= (wx – wx – wx – wx )e + (wx + wx + wx + wx )e

+ (wx – wx + wx + wx )e + (wx – wx – wx + wx )e

+ (wx + wx – wx – wx )e + (wx + wx + wx – wx )e

+ (wx – wx + wx – wx )e + (wx + wx – wx + wx )e. (.)

Let

g(x) = c(x)e + c(x)e + c(x)e + c(x)e

+ c(x)e + c(x)e + c(x)e + c(x)e

=
∑

j=

ci(x)ei. (.)

By (.) and (.), the inhomogeneous partial differential system (.) can be trans-
formed to the following equation:

∂xw =
∑

i=

ci(x)ei = g(x). (.)

Therefore Problem P as stated above can be transformed to Problem Q.

Problem Q Let B ⊂ R be as stated above. The Riemann boundary value problem for
system (.) is to find a solution w(x) of (.) that satisfies the boundary condition

w+(τ ) = w–(τ )G + f (τ ), τ ∈ ∂B,

where w±(τ ) = limx∈B± ,x→τ w(x), B+ = B, B– = R\B, G is a Clifford constant, G– exists, and
f ∈ Hν

∂B ( < ν < ).

Theorem . Let B be as stated above. Find a Clifford-valued function u(x) satisfying the
system ∂xu =  (x ∈ R\∂B) and vanishing at infinity with the boundary condition

u+(τ ) = u–(τ )G + f (τ ), τ ∈ ∂B, (.)

where u±(τ ) = limx∈B± ,x→τ u(x), G is a Clifford constant, G– exists, and f ∈ Hλ
∂B ( < λ < ).

Then the solution can be expressed as

u(x) =

{ 
π

∫
∂B

ȳ–x̄
|y–x| dσyf (y), x ∈ B+,


π

∫
∂B

ȳ–x̄
|y–x| dσyf (y)G–, x ∈ B–.

Proof Define

ϕ(x) =

{
u(x), x ∈ B+,
u(x)G, x ∈ B–.
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Then it is obvious ∂xϕ(x) = , and the Riemann boundary condition (.) is equivalent to

ϕ+(τ ) = ϕ–(τ ) + f (τ ), τ ∈ ∂B.

Suppose ψ(x) = 
π

∫
∂�x

ȳ–x̄
|y–x| dσyf (y), then ∂xψ(x) = . And by the Plemelj formula [],

we have

ψ+(τ ) – ψ–(τ ) = f (τ ), τ ∈ ∂B.

Hence ϕ+(τ ) – ψ+(τ ) = ϕ–(τ ) – ψ–(τ ) (τ ∈ ∂B). Thus by the Liouville theorem and the
extension theorem [], we obtain ϕ(x) = ψ(x). So, the solution can be expressed as

u(x) =

{ 
π

∫
∂B

ȳ–x̄
|y–x| dσyf (y), x ∈ B+,


π

∫
∂B

ȳ–x̄
|y–x| dσyf (y)G–, x ∈ B–. �

Theorem . Let B be as stated above, g ∈ Lp,(R, Cl,),  < p < +∞. Find a Clifford-
valued function w(x) satisfying the system ∂xw = g(x) (x ∈ R\∂B) and vanishing at infinity
with the boundary condition

w+(τ ) = w–(τ )G + f (τ ), τ ∈ ∂B, (.)

where w±(τ ) = limx∈B± ,x→τ w(x), G is a Clifford constant, G– exists, and f ∈ Hλ
∂B ( < λ < ).

Then the solution has the form

w(x) = �(x) +
(
T[g]

)
(x),

in which ∂x�(x) =  and

�(x) =

{ 
π

∫
∂B

ȳ–x̄
|y–x| dσyf̃ (y), x ∈ B+,


π

∫
∂B

ȳ–x̄
|y–x| dσyf̃ (y)G–, x ∈ B–,

where f̃ = f + (T[g])(G – ), (T[g])(x) is the same as (.).

Proof By Remark ., we know

∂xw = ∂
[
�(x) +

(
T[g]

)
(x)

]
= g(x).

The boundary condition (.) is equivalent to

(
� + T[g]

)+(τ ) =
(
� + T[g]

)–(τ )G + f (τ ), τ ∈ ∂B. (.)

Again from Remark ., we know that (T[g])(x) has Hölder continuity in R. Thus (T[g])+ =
(T[g])– = T[g]. So (.) is equivalent to

�+(τ ) = �–(τ )G +
(
T[g]

)
(τ )(G – ) + f (τ ). (.)
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Suppose f̃ = f + T[g](G – ), then (.) has the following form:

�+(τ ) = �–(τ )G + f̃ (τ ), τ ∈ ∂B. (.)

Again from Theorem ., the solutions which satisfy the system ∂x�(x) =  and boundary
condition (.) can be represented in the form

�(x) =

{ 
π

∫
∂B

ȳ–x̄
|y–x| dσyf̃ (y), x ∈ B+,


π

∫
∂B

ȳ–x̄
|y–x| dσyf̃ (y)G–, x ∈ B–.

Remark . From Theorem ., the solution of Problem P can be expressed as

w(x) = �(x) +
(
T[g]

)
(x),

in which ∂x�(x) =  and

�(x) =

{ 
π

∫
∂�x

ȳ–x̄
|y–x| dσyf̃ (y), x ∈ B+,


π

∫
∂B

ȳ–x̄
|y–x| dσyf̃ (y)G–, x ∈ B–,

where f̃ = f + T[g](G – ). �
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