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Abstract
In this paper, we consider the robust portfolio selection problem which has a data
uncertainty described by the (p,w)-norm in the objective function. We show that the
robust formulation of this problem is equivalent to a linear optimization problem.
Moreover, we present some numerical results concerning our robust portfolio
selection problem.
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1 Introduction
Portfolio selection is the problem of allocating capital over a number of available assets
in order to maximize the return on the investment while minimizing the risk. The first
systematic approach to the problem of asset allocation under uncertainty is attributed to
Markowitz []. An underlying assumption of Markowitz’s model is that precise estimates
of μi and σi have been obtained. Consequently, μi and σi are treated as known constants;
however, asset returns are variable. It is reasonable to conclude that a model which treats
returns as known constants will produce a portfolio whose realized return is different from
the optimal portfolio return given by the objective function value. In particular, when the
realized asset returns are less than the estimates used to optimize the model, the realized
portfolio return will be less than the optimal portfolio return given by the objective. There-
fore, it is worthwhile exploring alternative frameworks, such as robust optimization, for
application to the portfolio selection problem.

Although the distributions of asset returns are uncertain, in the robust optimization
framework, we may assert that μ or σ , or both, belong to an uncertainty set, the bounds of
which we can define. Most robust portfolio models describe asset returns by ellipsoidal un-
certainty sets, based on the methodology of Ben-Tal and Nemirovski [–] and El Ghaoui
and Lebret [], in which the user defined parameter � adjusts the guaranteed and achieved
robustness of the portfolio. Previously, robustness has been evaluated based upon perfor-
mance, particularly the worst case performance, then compared to the worst case perfor-
mance of a non-robust model such as the expected value-variance model. In addition to
the worst case performance, we suggest that it is also important to evaluate robustness
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based upon whether a model yields portfolios that achieve their guaranteed robustness
in practice. In , Lobo and Boyd [] presented several different methods for model-
ing the uncertainty sets for the expected returns vector and covariance matrices, such as
box or ellipsoidal sets. Each robust model was a semi-definite program solved via interior
point methods. Their results focused on the performance of the solution method rather
than on the robustness of the optimal portfolios. Goldfarb and Iyengar [] defined asset
returns by robust factor models in which the uncertainty was modeled by ellipsoidal sets.
The robustness was evaluated based on performance, particularly in worst case scenarios,
and compared to the expected value-variance portfolio model. Results showed the worst
case performance of the robust model was approximately % better than the non-robust
model; thus, they concluded that robust portfolios were more apt to withstand noisy data.
For more about the robust portfolio selection problems with the ellipsoidal sets, we refer
to [–].

Recently, Bertsimas and Sim [] proposed a different approach for robust linear opti-
mization with polyhedral (as opposed to ellipsoidal) uncertainty sets. An attractive aspect
of their method is that the new robust formulation is also a linear optimization problem.
They also extended their methods to discrete optimization problems in a tractable way. In
, Bertsimas et al. [] characterized the robust counterpart of a linear programming
problem with an uncertainty set. They also showed that the approach of [] follows from
their conclusion by considering a norm, called the D-norm, and its dual. Recently, Wang
and Luo [] considered the linear optimization problem which has a data uncertainty
described by the (p, w)-norm. They showed that the (p, w)-norm includes the polyhedral
norms L, L∞, and the D-norm as special cases not only to make up for the disadvantages
of the uncertain parameters of all possible values that will give the same weight, but also to
consider the robust cost of the robust optimization model which is mentioned in [, ].
They also provided probabilistic guarantees on the feasibility of an optimal robust solu-
tion when the uncertain coefficients obey independent and identically distributed normal
distributions.

Motivated and inspired by the work mentioned above, in this paper, we consider the ro-
bust portfolio selection problem with an uncertainty set described by the (p, w)-norm. We
see that the robust formulation of this problem is a linear optimization problem. More-
over, we present some numerical results about our robust portfolio selection problem.

Here is the structure of this paper. In Section , we consider the robust portfolio selec-
tion problem which has data uncertainty described by (p, w)-norm in the objective func-
tion and we show that the robust formulation of this problem is equivalent to a linear
optimization problem. In Section , we present some computational results on the per-
formance of our robust portfolio selection problem. Section  concludes with a summary
of this paper.

2 Robust portfolio selection
In this section, we discuss the formulation of the robust counterpart to the portfolio
optimization problem. First of all, we consider the robust portfolio selection problem
which has a data uncertainty described by the (p, w)-norm in the objective function. Then
we show that the robust formulation of this problem is equivalent to a linear program-
ming.
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It is well known that the classical portfolio selection problem can be formulated as fol-
lows:

max
n∑

i=

rixi – φ

n∑

i=

σ 
i x

i

s.t.
n∑

i=

xi = , (.)

xi ≥ ,

where ri is the return of ith stock, xi is the wealth invested in stock i, σi is the standard
deviation of the return for the ith stock, and φ is a parameter that controls the tradeoff
between risk and return.

Next, we assume r̃i is uncertain, which is a random variable that has an arbitrary inde-
pendent symmetric distribution in the interval [ri – σi, ri + σi] and ri is the expected return
for the ith stock. Then the robust counterpart of problem (.) is defined as follows:

max
n∑

i=

r̃ixi – φ

n∑

i=

σ 
i x

i

s.t.
n∑

i=

xi = ,

xi ≥ ,

r̃i ∈ [ri – σi, ri + σi].

(.)

To make (.) more tractable, we add an artificial variable z and rewrite the problem as
follows:

max z

s.t. z ≤
n∑

i=

r̃ixi – φ

n∑

i=

σ 
i x

i ,

n∑

i=

xi = , (.)

xi ≥ ,

r̃i ∈ [ri – σi, ri + σi].

We denote by J the set of coefficients ri, i ∈ J , that are subject to parameter uncertainty;
i.e., r̃i, i ∈ J takes values according to a symmetric distribution with mean equal to the
nominal value ri in the interval [ri – σi, ri + σi]. For every i, we introduce a parameter p,
which takes values in the interval [, |J|]. The case is unlikely that all of the ri, i ∈ J , will
change, which is proposed by []. Our goal is to protect for the cases that up to �p� of
these coefficients are allowed to change and take the worst case values at the same time.
Next, we introduce the following definition of the (p, w)-norm.
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Definition . (see []) For a given nonzero vector w ∈ Rn with wj > , j = , . . . , n, we
define the (p, w)-norm as

‖y‖p,w = max
{S|S⊆J ,|S|≤�p�}

{∑

j∈S

wj|yj|
}

with y ∈ Rn.

Remark . (see [])
() ‖y‖p,w is indeed a norm.
() If

- y ≥ y ≥ · · · ≥ yn ≥ ,
- w = w = · · · = w
p� = , w�p� = p – 
p�, wi ≤ w�p�, �p� < i ≤ n,

then the (p, w)-norm degenerates into D-norm studied by Bertsimas et al. [], i.e.,

‖y‖p = max
{S∪t|S⊆J ,|S|≤
p�,t∈J\S}

{∑

j∈S

|yj| +
(
p – 
p�)|yt|

}
.

() If w = (, . . . , )T and p = n, then (p, w)-norm degenerates into L and one has
‖y‖p,w = ‖y‖n,e =

∑n
i= yi, i = , . . . , n.

() If w = (, . . . , )T and p = , then (p, w)-norm degenerates into L∞ and
‖y‖p,w = ‖y‖,e = max |yi|, i = , . . . , n.

Next, we will solve instead the following problem of (.) with the (p, w)-norm:

max z

s.t. z ≤
n∑

i=

rixi – β(x, p),

n∑

i=

xi = ,

xi ≥ ,

(.)

where

β(x, p) = max
{S|S⊆N ,|S|=�p�}

{∑

j∈S

σjwjxj

}
,

and in this setting, p is the protection level of the actual portfolio return.
We need the following proposition to reformulate (.) as a linear optimization problem.

Proposition . Given a vector x∗, the protection function,

β
(
x∗, p

)
= max

{S|S⊆J ,|S|=�p�}

{∑

j∈S

σjwjx∗
j

}
(.)
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is equivalent to the following linear optimization problem:

β
(
x∗, p

)
= max

∑

j∈J

σjwjx∗
j qj

s.t.
∑

j∈J

qj ≤ �p�,

 ≤ qj ≤ , ∀j ∈ J ,

wj ≥ , ∀j ∈ J .

(.)

Proof An optimal solution of problem (.) obviously consists of �p� variables at , which
is equivalent to a subset {S|S ⊆ J , |S| = �p�}. The objective function of problem (.) con-
verts to

∑
j∈S σjwjx∗

j , which is equivalent to problem (.). �

Next we will reformulate problem (.) as a linear optimization problem.

Theorem . Problem (.) is equivalent to the following linear optimization problem:

max z

s.t. z ≤
n∑

i=

rixi –
∑

j∈J

tj – q�p�,

tj + q ≥ σjwjxj, ∀j ∈ J ,
n∑

i=

xi = ,

xi ≥ , i = , . . . , n,

tj ≥ , ∀j ∈ J ,

q ≥ ,

wj ≥ , ∀j ∈ J .

(.)

Proof First, we consider the dual problem of (.):

min
∑

j∈J

tj + q�p�

s.t. tj + q ≥ σjwjxj, ∀j ∈ J ,

tj ≥ , ∀j ∈ J , (.)

q ≥ ,

wj ≥ , ∀j ∈ J .

Since problem (.) is feasible and bounded for all p ∈ [, |J|], by strong duality, we know
that the dual problem (.) is also feasible and bounded and their objective values coincide.
By the proposition, we see that β(x∗, p) is equivalent to the objective function value of (.).
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Substituting into problem (.), we see that problem (.) equals the linear programming
problem (.). �

3 Computational results
In this section, the experimental results show that our approach can get better risk-
adjusted returns than Bertsimas and Sim [] with the same protection level, while the
risk deviation is significantly smaller than Bertsimas and Sim [] and our method can
capture the balance between risks and benefits that is similar to the mean-variance model,
and also it is more simple to get its linear structure.

Assume that x∗ is the optimal solution of problem (.). In this paper, we also consider
 stocks, and let

r∗
i = λ∗ + iδ, λ∗ = ., δ =

.


,
[
r∗

 ≈ ., r∗
 = .

]
,

σi =


δ
√

in(n + ) ≈ .
√

i, [σ = .,σ = .].

Optimization results. Assume that x∗(p) is an optimal solution of problem (.) corre-
sponding to the protection level p, the standard deviation is

St(p) =
√∑

i∈N

(
σ 

i
)(

w
i
)(

x∗
i (p)

).

We will use Matlab  and Cplex . to solve this problem.
Figure  illustrates the performance of the robust solution as a function of the protec-

tion level p. The stable returns we get is similar to the expected revenues in the case of
anti-interference, it is the result which investors want to see. Furthermore, when p ≥ ,
the risk-adjusted returns and expectations are all insensitive to the protection level. The

Figure 1 Expected return and risk adjusted return with (p, w)-norm uncertainty.
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Figure 2 Expected return and risk adjusted return with Bertsimas and Sim approach.

Table 1 (p, w)-Norm uncertainty approach

p p-exp. return p-min. return p-max. return p-dev

0 1.2000 0.9115 1.4885 0.2885
5 1.1847 1.1108 1.2586 0.0186
10 1.1785 1.1298 1.2272 0.0123
15 1.1739 1.1349 1.2130 0.0094
20 1.1689 1.1409 1.1968 0.0063
25 1.1671 1.1444 1.1898 0.0047
30 1.1617 1.1435 1.1799 0.0036
35 1.1582 1.1449 1.1715 0.0025
40 1.1510 1.1501 1.1519 8.8294e–004
45 1.1513 1.1504 1.1523 9.2802e–004

situation of p =  is similar to the results of Soyster [], but our approach reduces the
computation complexity and can get a stable objective value under a small protective level.
Figure  is the simulation result of Bertsimas and Sim []. Comparing with Figure , we
know that Figure  does not show the situation of phase transitions, and its risk-adjusted
returns and expected returns maintain a consistent trend. The more important aspect is
that the objective value in Figure  is better than Figure .

As we can see from Figure , Figure , Table , Table , comparing the results of Figure 
and Figure  we see that our approach can get better risk-adjusted returns than Bertsimas
and Sim [] with the same protection level, while the risk deviation is significantly smaller
than Bertsimas and Sim []. For instance, when p = , the risk-adjusted return of our
approach is ., and the risk deviation is ., while the result of Bertsimas and Sim
[] are . and .. On the other hand, from Figure , we can see that the solutions
of our method and the approach of Bertsimas and Sim [], are more balanced than the
ellipsoidal method, and the solutions of these methods have all diversities.

According to Table , Table , and Table , we obtain some related empirical results of
the robust portfolio problem under the (p, w)-norm, D-norm, and ellipsoid uncertainty
sets. The robust counterpart of (p, w)-norm has smaller deviation and the results come
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Table 2 Bertsimas and Sim approach

p D-exp. return D-min. return D-max. return D-dev

0 1.2000 0.9115 1.4885 0.2885
5 1.1844 1.0896 1.2793 0.0254
10 1.1776 1.1075 1.2478 0.0192
15 1.1716 1.1147 1.2285 0.0151
20 1.1678 1.1165 1.2190 0.0126
25 1.1678 1.1114 1.2241 0.0126
30 1.1678 1.1063 1.2293 0.0126
35 1.1678 1.1012 1.2344 0.0126
40 1.1678 1.0960 1.2395 0.0126
45 1.1503 1.1267 1.1740 0.0236

Figure 3 Solutions of (p, w)-norm uncertainty approach.

Figure 4 Solutions of Bertsimas and Sim approach.
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Figure 5 Solutions of ellipsoidal method.

Table 3 Ellipsoidal method

θ S-exp. return S-min. return S-max. return S-dev

0 1.2000 0.9104 1.4896 0.2896
1 1.1836 0.9492 1.1481 0.0235√
150 1.1503 1.1267 1.1740 0.0236

quicker as one gets a stable robust value. This example shows that our method capturing
the balance between risks and benefits is similar to the mean-variance model, and it is
more simple to get its linear structure.

4 Conclusions
In this paper, we consider the robust portfolio selection problem which has data uncer-
tainty described by the (p, w)-norm not only to make up for the disadvantages of the un-
certain parameters of all possible values that will give the same weight, but also to consider
the robust cost of the robust optimization model which is mentioned in []. We see that
the robust formulation of this problem is a linear optimization problem. Moreover, we
present some numerical results concerning our robust portfolio selection problem.
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