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Abstract
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1 Introduction and preliminaries
For any given partial ordering � of a set χ , real-valued functions φ defined on χ , which
satisfy φ(x) ≤ φ(y) whenever x � y, are variously referred to as ‘monotonic’, ‘isotonic’, or
‘order-preserving’. We consider a partial ordering of majorization.

For two vectors x, y ∈R
m we say that x majorizes y or y is majorized by x and write y ≺ x

if

k∑

i=

y[i] ≤
k∑

i=

x[i] for k = , . . . , m –  and
m∑

i=

yi =
m∑

i=

xi.

Here x[i] and y[i] denote the elements of x and y sorted in decreasing order. Majorization
on vectors determines the degree of similarity between the vector elements.

For the concept of majorization, the order-preserving functions were first systematically
studied by Schur (see [, ], p.). In his honor, such functions are said to be ‘convex in the
sense of Schur’, ‘Schur convex’, or ‘S-convex.’

Many of the inequalities that arise from a majorization can be obtained simply by identi-
fying an appropriate order-preserving function. Historically, such inequalities have often
been proved by direct methods without an awareness that a majorization underlies the
validity of the inequality. The classical example of this is the Hadamard determinant in-
equality, where the underlying majorization was discovered by Schur.

Instead of discussing a partial order on vectors in R
m, it is natural to consider ordering

matrices. Majorization in its usual sense applies to vectors with fixed element totals. For
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m × n matrices, several avenues of generalization are open. Two matrices can be consid-
ered as being ordered if one is obtainable from the other by postmultiplication by a doubly
stochastic matrix. This relates m × n matrices with fixed row totals. There are, however,
several variations on this approach that merit attention.

An important tool in the study of majorization is the next theorem, due to Hardy et
al. [], which gives connections with matrix theory, more specifically with doubly stochas-
tic matrices, i.e. nonnegative square matrices with all rows and columns sums being equal
to one.

Theorem  Let x = (x, . . . , xm), y = (y, . . . , ym) ∈ R
m. Then the following statements are

equivalent:
(i) y ≺ x;

(ii) there is a doubly stochastic matrix A such that y = xA;
(iii) the inequality

∑m
i= φ(yi) ≤ ∑m

i= φ(xi) holds for each convex continuous function
φ : R →R.

For many purposes, the condition y = xA is more convenient than the partial sums con-
ditions defining majorization.

Sherman [] considered a weighted relation of majorization,

k∑

i=

biyi ≤
l∑

j=

ajxj

for nonnegative weights aj and bi and proved a more general result which includes the row
stochastic k × l matrix, i.e. matrix A = (aij) ∈Mkl(R) such that

aij ≥  for all i = , . . . , k, j = , . . . , l,

l∑

j=

aij =  for all i = , . . . , k.

By AT = (aji) ∈Mlk(R) we denote the transpose of A.
Sherman’s result can be formulated as the following theorem (see []).

Theorem  Let x ∈ [α,β]l , y ∈ [α,β]k , a ∈ [,∞)l , b ∈ [,∞)k and

y = xAT and a = bA (.)

for some row stochastic matrix A ∈Mkl(R). Then for every convex function φ : [α,β] →R

we have

k∑

i=

biφ(yi) ≤
l∑

j=

ajφ(xj). (.)

If φ is concave, then the reverse inequality in (.) holds.
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Notice that if we set k = l and aj = bi for all i, j = , . . . , k, the condition a = bA ensures the
stochasticity on columns, so in that case we deal with doubly stochastic matrices. Then,
as a special case of Sherman’s inequality, we get a weighted version of the majorization
inequality:

k∑

i=

aiφ(yi) ≤
k∑

i=

aiφ(xi).

Denoting Ak =
∑k

i= ai and putting y = y = · · · = yk = 
Ak

∑k
i= aixi, we obtain Jensen’s

inequality in the form

φ

(


Ak

k∑

i=

aixi

)
≤ 

Ak

k∑

i=

aiφ(xi).

Particularly, for Ak = , we have

φ

( k∑

i=

aixi

)
≤

k∑

i=

aiφ(xi). (.)

On the other hand, the proof of Sherman’s inequality (.) is based on Jensen’s inequal-
ity (.). Since the matrix A ∈ Mkl(R) is row stochastic and (.) holds, for every convex
function φ : [α,β] →R we have

k∑

i=

biφ(yi) =
k∑

i=

biφ

( l∑

j=

xjaij

)
≤

k∑

i=

bi

l∑

j=

aijφ(xj)

=
l∑

j=

( k∑

i=

biaij

)
φ(xj) =

l∑

j=

ajφ(xj).

In this paper, we consider a difference of Sherman’s inequality

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

and establish generalizations of Sherman’s inequality (.) which hold for n-convex func-
tions which are in special cases convex in the usual sense. Moreover, we obtain an exten-
sion to real, not necessarily nonnegative entries of the vectors a, b, and the matrix A. Some
related results can be found in [, ].

The notion of n-convexity was defined in terms of divided differences by Popoviciu.
Divided differences are a very important notion by dealing with the functions when dis-
cussing the degree of smoothness. A function φ : [α,β] → R is n-convex, n ≥ , if its
nth order divided differences [x, . . . , xn;φ] are nonnegative for all choices of (n + ) dis-
tinct points xi ∈ [α,β], i = , . . . , n. Thus, a -convex function is nonnegative, a -convex
function is nondecreasing, and a -convex function is convex in the usual sense. If φ is
n-convex, then without loss of generality we can assume that φ is n-times differentiable
and φ(n) ≥  (see []).
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The techniques that we use in the paper are based on classical real analysis and the
application of the Abel-Gontscharoff interpolation. The Abel-Gontscharoff interpolation
problem in the real case was introduced in  by Whittaker [] and subsequently by
Gontscharoff [] and Davis []. The next theorem presents the Abel-Gontscharoff inter-
polating polynomial for two points with integral remainder (see []).

Theorem  Let n, m ∈N, n ≥ ,  ≤ m ≤ n – , and φ ∈ Cn([α,β]). Then

φ(t) = Qn–(α,β ,φ, t) + R(φ, u),

where Qn– is the Abel-Gontscharoff interpolation for two points of degree n – , i.e.

Qn–(α,β ,φ, t) =
m∑

s=

(t – α)s

s!
φ(s)(α)

+
n–m–∑

r=

[ r∑

s=

(t – α)m++s(α – β)r–s

(m +  + s)!(r – s)!

]
φ(m++r)(β)

and the remainder is given by

R(φ, u) =
∫ β

α

Gmn(u, t)φ(n)(t) dt,

where Gmn(u, t) is Green’s function defined by

Gmn(u, t) =


(n – )!

⎧
⎨

⎩

∑m
s=

(n–
s

)
(u – α)s(α – t)n–s–, α ≤ t ≤ u;

–
∑n–

s=m+
(n–

s
)
(u – α)s(α – t)n–s–, u ≤ t ≤ β .

(.)

Remark  Further, for α ≤ t, u ≤ β the following inequalities hold:

(–)n–m– ∂ sGmn(u, t)
∂us ≥ ,  ≤ s ≤ m,

(–)n–s ∂
sGmn(u, t)

∂us ≥ , m +  ≤ s ≤ n – .

2 Generalizations of Sherman’s theorem
Applying interpolation by the Abel-Gontscharoff polynomial we derive an identity related
to generalized Sherman’s inequality.

Theorem  Let x ∈ [α,β]l , y ∈ [α,β]k , a ∈R
l and b ∈R

k be such that (.) holds for some
matrix A ∈Mkl(R) whose entries satisfy the condition

∑l
j=aij = , i = , . . . , k. Let n, m ∈N,

n ≥ ,  ≤ m ≤ n – , φ ∈ Cn([α,β]), and Gmn be defined by (.). Then

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

=
m∑

s=

φ(s)(α)
s!

( l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

)
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+
n–m–∑

r=

r∑

s=

(–)r–s(β – α)r–sφ(m++r)(β)
(m +  + s)!(r – s)!

( l∑

j=

aj(xj – α)m++s –
k∑

i=

bi(yi – α)m++s

)

+
∫ β

α

( l∑

j=

ajGmn(xj, t) –
k∑

i=

biGmn(yi, t)

)
φ(n)(t) dt. (.)

Proof Using Theorem  we can represent every function φ ∈ Cn([α,β]) in the form

φ(u) =
m∑

s=

(u – α)s

s!
φ(s)(α)

+
n–m–∑

r=

[ r∑

s=

(u – α)m++s(–)r–s(β – α)r–s

(m +  + s)!(r – s)!

]
φ(m++r)(β)

+
∫ β

α

Gmn(u, t)φ(n)(t) dt. (.)

By an easy calculation, applying (.) in
∑l

j= ajφ(xj) –
∑k

i= biφ(yi), we get

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

=
m∑

s=

φ(s)(α)
s!

( l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

)

+
n–m–∑

r=

r∑

s=

(–)r–s(β – α)r–sφ(m++r)(β)
(m +  + s)!(r – s)!

( l∑

j=

aj(xj – α)m++s –
k∑

i=

bi(yi – α)m++s

)

+
∫ β

α

( l∑

j=

ajGmn(xj, t) –
k∑

i=

biGmn(yi, t)

)
φ(n)(t) dt.

Since (.) holds,

φ(s)(α)
s!

( l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

)
=  for s = , .

Therefore, (.) follows. �

The following theorem extends Sherman’s result to convex functions of higher order and
to real, not necessarily nonnegative entries of the vectors a, b, and the matrix A.

Theorem  Suppose that all the assumptions of Theorem  hold. Additionally, let φ be
n-convex on [α,β] and

k∑

i=

biGmn(yi, t) ≤
l∑

j=

ajGmn(xj, t), t ∈ [α,β]. (.)
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Then

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

≥
m∑

s=

φ(s)(α)
s!

( l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

)

+
n–m–∑

r=

r∑

s=

(–)r–s(β – α)r–sφ(m++r)(β)
(m +  + s)!(r – s)!

×
( l∑

j=

aj(xj – α)m++s –
k∑

i=

bi(yi – α)m++s

)
. (.)

If the reverse inequality in (.) holds, then the reverse inequality in (.) holds.

Proof Since φ ∈ Cn([α,β]) is n-convex, φ(n) ≥  on [α,β]. Hence, we can apply Theorem 
to get (.). �

Notice that when we take into account Sherman’s condition of nonnegativity of the vec-
tors a, b, and the matrix A, the assumption (.) is equivalent to the requirement that
Gmn(·, t), t ∈ [α,β], must be convex on [α,β]. So, for n =  and  ≤ m ≤ , the assumption
(.) is immediately satisfied and then the inequality (.) holds. Moreover, in that case,
the right-hand side of (.) is equal to zero, so we have

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi) ≥ ,

i.e. we get Sherman’s inequality as a direct consequence. For an arbitrary n ≥  and  ≤
m ≤ , we use Remark , i.e. we consider the following inequality:

(–)n– ∂Gmn(u, t)
∂u ≥ .

Hence, the convexity of Gmn(·, t) depends on the parity of n. If n is even, then ∂Gmn(u,t)
∂u ≥ ,

i.e. Gmn(·, t) is convex and assumption (.) is satisfied. Moreover, the inequality (.)
holds. For odd n we get the reverse inequality. For all other choices, the following gen-
eralization holds.

Theorem  Suppose that all assumptions of Theorem  hold. Additionally, let n, m ∈ N,
n ≥ ,  ≤ m ≤ n – , and φ ∈ Cn([α,β]) be n-convex.

(i) If n – m is odd, then the inequality (.) holds.
(ii) If n – m is even, then the reverse inequality in (.) holds.

Proof (i) By Remark , the following inequality holds:

(–)n–m– ∂Gmn(u, t)
∂u ≥ , α ≤ u, t ≤ β .
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In case n – m is odd (n – m –  is even), we have

∂Gmn(u, t)
∂u ≥ ,

i.e. Gmn(·, t), t ∈ [α,β], is convex on [α,β]. Then by Sherman’s theorem we have

k∑

i=

biGmn(yi, s) ≤
l∑

j=

ajGmn(xj, s),

i.e. the assumption (.) is satisfied. Hence, applying Theorem  we get (.).
(ii) Similarly we can prove this part. �

Theorem  Suppose that all assumptions of Theorem  hold. Additionally, let n, m ∈ N,
n ≥ ,  ≤ m ≤ n – , φ ∈ Cn([α,β]) be n-convex and F : [α,β] →R be defined by

F(t) =
m∑

s=

φ(s)(α)
s!

(t – α)s

+
n–m–∑

r=

r∑

s=

(–)r–s(β – α)r–s

(m +  + s)!(r – s)!
φ(m++r)(β)(t – α)m++s. (.)

(i) If (.) holds and F is convex, then the inequality (.) holds.
(ii) If the reverse of (.) holds and F is concave, then the reverse inequality in (.) holds.

Proof (i) Let (.) holds. If F is convex, then by Sherman’s theorem we have

l∑

j=

ajF(xj) –
k∑

i=

biF(yi) ≥ ,

which, changing the order of summation, can be written in the form

m∑

s=

φ(s)(α)
s!

( l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

)

+
n–m–∑

r=

r∑

s=

(–)r–s(β – α)r–sφ(m++r)(β)
(m +  + s)!(r – s)!

×
( l∑

j=

aj(xj – α)m++s –
k∑

i=

bi(yi – α)m++s

)

≥ .

Therefore, the right-hand side of (.) is nonnegative and the inequality (.) immediately
follows.

(ii) Similarly we can prove this part. �

Remark  Note that the function t 	→ (t – α)p is convex on [α,β] for each p = , . . . , n – ,
i.e.

∑l
j= aj(xj – α)p –

∑k
i= bi(yi – α)p ≥ , for each p = , . . . , n – .
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(i) If (.) holds and in addition φ(s)(α) ≥  for s = , . . . , m and φ(m++s)(β) ≥  if r – s is
even and φ(m++s)(β) ≤  if r – s is odd for s = , . . . , r and r = , . . . , n – m – , then
the right-hand side of (.) is nonnegative, i.e. the inequality (.) holds.

(ii) If the reverse of (.) holds and in addition φ(s)(α) ≤  for s = , . . . , m and
φ(m++s)(β) ≤  if r – s is even, and φ(m++s)(β) ≥  if r – s is odd for s = , . . . , r and
r = , . . . , n – m – , then the right-hand side of (.) is negative, i.e. the reverse
inequality in (.) holds.

3 Upper bound for generalized Sherman’s inequality
In the previous section, under special conditions which are imposed in Theorem  and
Remark , we obtained the following estimations for Sherman’s difference:

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

≥
m∑

s=

φ(s)(α)
s!

( l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

)

+
n–m–∑

r=

r∑

s=

(–)r–s(β – α)r–sφ(m++r)(β)
(m +  + s)!(r – s)!

×
( l∑

j=

aj(xj – α)m++s –
k∑

i=

bi(yi – α)m++s

)

≥ . (.)

In this section we present upper bounds for obtained generalization. In the proofs of
some estimations we use recent results related to the Čebyšev functional, which for two
Lebesgue integrable functions f , g : [a, b] → R is defined by

T(f , g) =


b – a

∫ b

a
f (t)g(t) dt –


b – a

∫ b

a
f (t) dt · 

b – a

∫ b

a
g(t) dt.

With ‖ · ‖p,  ≤ p ≤ ∞, we denote the usual Lebesgue norms on space Lp[a, b].

Theorem  ([], Theorem ) Let f : [a, b] → R be a Lebesgue integrable function and
g : [a, b] →R be an absolutely continuous function with (· – a)(b – ·)[g ′] ∈ L[a, b]. Then

∣∣T(f , g)
∣∣ ≤ √


[
T(f , f )

] 
 √

b – a

(∫ b

a
(x – a)(b – x)

[
g ′(x)

] dx
) 


. (.)

The constant √
 in (.) is the best possible.

Theorem  ([], Theorem ) Assume that g : [a, b] → R is monotonic nondecreasing on
[a, b] and f : [a, b] →R is absolutely continuous with f ′ ∈ L∞[a, b]. Then

∣∣T(f , g)
∣∣ ≤ 

(b – a)
∥∥f ′∥∥∞

∫ b

a
(x – a)(b – x) dg(x). (.)

The constant 
 in (.) is the best possible.
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To avoid many notations, we define the function F : [α,β] →R by

F (t) =
l∑

j=

ajGmn(xj, t) –
k∑

i=

biGmn(yi, t), (.)

under assumptions of Theorem . We also consider the Čebyšev functional

T(F ,F ) =


β – α

∫ β

α

F(t) dt –
(


β – α

∫ β

α

F (t) dt
)

.

Theorem  Suppose that all the assumptions of Theorem  hold. Additionally, let
(· – α)(β – ·)(φ(n+)) ∈ L[α,β] and F be defined as in (.). Then the following identity
holds:

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

=
m∑

s=

φ(s)(α)
s!

[ l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

]

+
n–m–∑

r=

r∑

s=

(–)r–s(β – α)r–sφ(m++r)(β)
(s +  + m)!(r – s)!

[ l∑

j=

aj(xj – α)m++s –
k∑

i=

bi(yi – α)m++s

]

+
φ(n–)(β) – φ(n–)(α)

β – α

∫ β

α

F (t) dt + Rn(α,β ;φ), (.)

where the remainder Rn(α,β ;φ) satisfies the estimation

∣∣Rn(α,β ;φ)
∣∣ ≤

√
β – α


[
T(F ,F )

] 


∣∣∣∣
∫ β

α

(t – α)(β – t)
[
φ(n+)(t)

] dt
∣∣∣∣




.

Proof By applying Theorem  for f →F and g → φ(n) we get

∣∣∣∣


β – α

∫ β

α

F (t)φ(n)(t) dt –


β – α

∫ β

α

F (t) dt · 
β – α

∫ β

α

φ(n)(t) dt
∣∣∣∣

≤ √

[
T(F ,F )

] 
 √

β – α

∣∣∣∣
∫ β

α

(t – α)(β – t)
[
φ(n+)(t)

] dt
∣∣∣∣




.

Therefore we have

∫ β

α

F (t)φ(n)(t) dt =
φ(n–)(β) – φ(n–)(α)

β – α

∫ β

α

F (t) dt + Rn(α,β ;φ),

where the remainder Rn(α,β ;φ) satisfies the estimation. Now from the identity (.) we
obtain (.). �

The following Grüss type inequality also holds.
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Theorem  Suppose that all the assumptions of Theorem  hold. Additionally, let
φ(n+) ≥  on [α,β] and F be defined as in (.). Then the identity (.) holds and the
remainder R(φ; a, b) satisfies the bound

∣∣Rn(α,β ;φ)
∣∣ ≤ ∥∥F ′∥∥∞

{
φ(n–)(β) + φ(n–)(α)


–

φ(n–)(β) – φ(n–)(α)
β – α

}
. (.)

Proof Applying Theorem  for f →F and g → φ(n) we obtain

∣∣∣∣


β – α

∫ β

α

F (t)φ(n)(t) dt –


β – α

∫ β

α

F (t) dt · 
β – α

∫ β

α

φ(n)(t) dt
∣∣∣∣

≤ 
(β – α)

∥∥F ′∥∥∞

∫ β

α

(t – α)(β – t)φ(n+)(t) dt. (.)

Since

∫ β

α

(t – α)(β – t)φ(n+)(t) dt

=
∫ β

α

[
t – (α + β)

]
φ(n)(t) dt

= (β – α)
[
φ(n–)(β) + φ(n–)(α)

]
– 

(
φ(n–)(β) – φ(n–)(α)

)
,

using the identities (.) and (.) we deduce (.). �

We present an upper bound for generalized Sherman’s inequality which is an Ostrowski
type inequality.

Theorem  Suppose that all the assumptions of Theorem  hold. Let (p, q) be a pair of
conjugate exponents, that is,  ≤ p, q ≤ ∞, 

p + 
q = . Then

∣∣∣∣∣

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

–
m∑

s=

φ(s)(α)
s!

[ l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

]

–
n–m–∑

r=

r∑

s=

(–)r–s(β – α)r–sφ(m++r)(β)
(m +  + s)!(r – s)!

×
( l∑

j=

aj(xj – α)m++s –
k∑

i=

bi(yi – α)m++s

)∣∣∣∣∣

≤ ∥∥φ(n)∥∥
p

(∫ β

α

∣∣∣∣∣

l∑

j=

ajGmn(xj, t) –
k∑

i=

biGmn(yi, t)

∣∣∣∣∣

q

dt

) 
q

. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and the best possible for
p = .
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Proof Applying the well-known Hölder inequality to the identity (.) we have

∣∣∣∣∣

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

–
m∑

s=

φ(s)(α)
s!

( l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

)

–
n–m–∑

r=

r∑

s=

(–)r–s(β – α)r–sφ(m++r)(β)
(m +  + s)!(r – s)!

×
( l∑

j=

aj(xj – α)m++s –
k∑

i=

bi(yi – α)m++s

)∣∣∣∣∣

=

∣∣∣∣∣

∫ β

α

( l∑

j=

ajGmn(xj, t) –
k∑

i=

biGmn(yi, t)

)
φ(n)(t) dt

∣∣∣∣∣

≤ ∥∥φ(n)∥∥
p

(∫ β

α

∣∣F (t)
∣∣q dt

) 
q

, (.)

where F (t) is defined as in (.).
For the proof of the sharpness of the constant (

∫ β

α
|F (t)|q dt)


q let us find a function φ

for which the equality in (.) is obtained.
For  < p < ∞ take φ to be such that

φ(n)(t) = sgnF (t)
∣∣F (t)

∣∣ 
p– .

For p = ∞ take

φ(n)(t) = sgnF (t).

For p =  we prove that

∣∣∣∣
∫ β

α

F (t)φ(n)(t) dt
∣∣∣∣ ≤ max

t∈[α,β]

∣∣F (t)
∣∣
(∫ β

α

∣∣φ(n)(t)
∣∣dt

)
(.)

is the best possible inequality.
Suppose that |F (t)| attains its maximum at t ∈ [α,β].
First we assume that F (t) > . For ε small enough we define φε(t) by

φε(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

, α ≤ t ≤ t,


εn! (t – t)n, t ≤ t ≤ t + ε,

n! (t – t)n–, t + ε ≤ t ≤ β .

Then for ε small enough

∣∣∣∣
∫ β

α

F (t)φ(n)(t)
∣∣∣∣ =

∣∣∣∣
∫ t+ε

t

F (t)

ε

dt
∣∣∣∣ =


ε

∫ t+ε

t

F (t) dt.
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Now from the inequality (.) we have


ε

∫ t+ε

t

F (t) dt ≤F (t)
∫ t+ε

t


ε

dt = F (t).

Since

lim
ε→


ε

∫ t+ε

t

F (t) dt = F (t)

the statement follows.
In the case F (t) < , we define φε(t) by

φε(t) :=

⎧
⎪⎪⎨

⎪⎪⎩


n! (t – t – ε)n–, α ≤ t ≤ t,

– 
εn! (t – t – ε)n, t ≤ t ≤ t + ε,

, t + ε ≤ t ≤ β ,

and the rest of the proof is the same as above. �

In the sequel we consider a particular case of Green’s function Gmn(u, t) defined by (.).
For n = , m = , we have

G(u, t) =

⎧
⎨

⎩
u – t, α ≤ t ≤ u,

, u ≤ t ≤ β ,
(.)

and

l∑

j=

ajG(xj, t) –
k∑

i=

biG(yi, t)

=
∑

j

aj(xj – t) –
∑

i

bi(yi – t), j ∈ {j; xj ≥ t}, i ∈ {i; yi ≥ t}. (.)

As an easy consequence of Theorem , choosing n =  and m = , we get the following
corollary.

Corollary  Let φ ∈ C([α,β]), x ∈ [α,β]l , y ∈ [α,β]k , a ∈ R
l , and b ∈ R

k be such that
(.) holds for some matrix A ∈ Mkl(R) whose entries satisfy the condition

∑l
j=aij = ,

i = , . . . , k. Let (p, q) be a pair of conjugate exponents, that is,  ≤ p, q ≤ ∞, 
p + 

q = . Then

∣∣∣∣∣

l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

∣∣∣∣∣

≤ ∥∥φ′′∥∥
p

(∫ β

α

∣∣∣∣∣

l∑

j=

ajG(xj, t) –
k∑

i=

biG(yi, t)

∣∣∣∣∣

q

dt

) 
q

. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and the best possible
for p = .
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Remark  If additionally suppose that vectors a, b, and matrix A are nonnegative and φ

is convex, then the difference
∑l

j= ajφ(xj) –
∑k

i= biφ(yi) is nonnegative and we have

 ≤
l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

≤ ∥∥φ′′∥∥
p

(∫ β

α

∣∣∣∣∣

l∑

j=

ajG(xj, t) –
k∑

i=

biG(yi, t)

∣∣∣∣∣

q

dt

) 
q

. (.)

In the sequel we consider some particular cases of this result.
(i) If k = l and all weights bi and aj are equal, we get the following estimate for the

weighted majorization inequality:

 ≤
k∑

i=

aiφ(xi) –
k∑

i=

aiφ(yi)

≤ ∥∥φ′′∥∥
p

(∫ β

α

∣∣∣∣∣

k∑

i=

aiG(xi, t) –
k∑

i=

aiG(yi, t)

∣∣∣∣∣

q

dt

) 
q

. (.)

(ii) If we denote Ak =
∑k

i= ai and put y = y = · · · = yk = 
Ak

∑k
i= aixi = x̄, from (.) as

an easy consequence we get estimate for Jensen’s inequality:

 ≤
k∑

i=

aiφ(xi) – Akφ(x̄)

≤ ∥∥φ′′∥∥
p

(∫ β

α

∣∣∣∣∣

k∑

i=

aiG(xi, t) – AkG(x̄, t)

∣∣∣∣∣

q

dt

) 
q

.

Specially, setting Ak = , we have x̄ =
∑k

i= aixi and

 ≤
k∑

i=

aiφ(xi) – φ(x̄)

≤ ∥∥φ′′∥∥
p

(∫ β

α

∣∣∣∣∣

k∑

i=

aiG(xi, t) – G(x̄, t)

∣∣∣∣∣

q

dt

) 
q

.

(iii) For k = , a = a = , x = α, and x = β , we have

 ≤ φ(α) + φ(β) – φ

(
α + β



)

≤ ∥∥φ′′∥∥
p

(∫ β

α

(
G(α, t) + G(β , t) – G

(
α + β


, t

))q

dt
) 

q
,

where

G(α, t) + G(β , t) – G

(
α + β


, t

)
=

⎧
⎨

⎩
t – α, α ≤ t ≤ α+β

 ,

β – t, α+β

 ≤ t ≤ β .
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Specially, for p = , q = ∞, we obtain

 ≤ φ(α) + φ(β)


– φ

(
α + β



)
≤ 


(
φ′(β) – φ′(α)

)
(β – α),

where the constant 
 is the best possible in the sense that it cannot be replaced by a

smaller constant.

4 Applications
In this section we discuss the application of Corollary , i.e. the inequality (.), to the
lower and upper bounds estimations of some relationships between well-known means.

Let  < α < β , x ∈ [α,β]l , and a ∈ [,∞)l whose entries satisfy the condition
∑l

j= aj = .
The weighted power mean of order s ∈R is defined by

Ms(a; x) =

⎧
⎨

⎩
(
∑l

j=ajxs
j )


s , s = ,

∏l
j=xaj

j , s = .

The classical weighted means are defined as

M(a; x) = G(a; x) =
l∏

j=

xaj
j , the geometric mean,

M(a; x) = A(a; x) =
l∑

j=

ajxj, the arithmetic mean,

M–(a; x) = H(a; x) =


∑l
j=

aj
xj

, the harmonic mean.

In an analogous way, for y ∈ [α,β]k , b ∈ [,∞)k with
∑k

i= bi = , we define

Ms(b; y) =

⎧
⎨

⎩
(
∑k

i=biys
i)


s , s = ,

∏k
i=ybi

i , s = ,

and then accordingly the classical weighted means G(b; y), A(b; y), and H(b; y).

Corollary  Let s ≥  and  < α < β . Let x ∈ [α,β]l , y ∈ [α,β]k , a ∈ [,∞)l , and b ∈ [,∞)k

be such that (.) holds for some row stochastic matrix A ∈Mkl(R) and the entries of a and
b satisfy the condition

∑l
j= aj =

∑k
i= bi = . Then

 ≤ Ms
s(a; x) – Ms

s(b; y) ≤ s(s – )
(∫ β

α

tp(s–) dt
) 

p
‖G‖q,

 ≤ G(b; y)
G(a; x)

≤ exp

[(∫ β

α

(

t

)p

dt
) 

p
‖G‖q

]
,

 ≤ H(b; y) – H(b; y)
H(a; x)H(b; y)

≤
(∫ β

α

(

t

)p

dt
) 

p
‖G‖q,

where G(t) denotes the difference (.).
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The constants on the right-hand side of inequalities are sharp for  < p ≤ ∞ and the best
possible for p = .

Proof Applying (.) to the function φ(x) = xs, φ(x) = xs

s(s–) , φ(x) = – ln x, and φ(x) = 
x ,

respectively. �

Remark  Particular cases of the previous results for p = , q = ∞:

 ≤ Ms
s(a; x) – Ms

s(b; y) ≤ s
(
βs– – αs–)‖G‖∞,

 ≤ G(b; y)
G(a; x)

≤ exp

(
β – α

αβ
‖G‖∞

)
,

 ≤ H(b; y) – H(a; x)
H(a; x)H(b; y)

≤
(

β – α

αβ

)
‖G‖∞.

Replacing xj → 
xj

, yi → 
yi

, we have A(a; x) → 
H(a;x) , A(b; y) → 

H(b;y) , and the last inequal-
ity becomes

 ≤ A(a; x) – A(b; y) ≤ (
β – α)‖G̃‖∞,

where G̃(t) =
∑

j aj( 
xj

– t) –
∑

i bi( 
yi

– t), j ∈ {j; 
xj

≥ t}, i ∈ {i; 
yi

≥ t}.

Corollary  Let  < α < β and x ∈ [α,β]l , y ∈ [α,β]k , a ∈ [,∞)l , and b ∈ [,∞)k be such
that (.) holds for some row stochastic matrix A ∈Mkl(R) and the entries of a and b satisfy
the condition

∑l
j= aj =

∑k
i= bi = . Then

 ≤
∏l

j= xajxj
j

∏k
i= ybiyi

i

≤ exp

[(∫ β

α

(

p

)p

dt
) 

p
‖G‖q

]
,

 ≤
l∑

j=

ajexj –
k∑

i=

bieyi ≤
(∫ β

α

etp dt
) 

p
‖G‖q,

 ≤
∏l

j=( + exj )aj

∏k
i=( + eyi )bi

≤ exp

((∫ β

α

(
et

( + et)

)p

dt
) 

p
‖G‖q

)
,

where G(t) denotes the difference (.).
The constants on the right-hand side of inequalities are sharp for  < p ≤ ∞ and the best

possible for p = .

Proof Apply (.) to the functions φ(x) = x ln x, φ(x) = ex, and φ(x) = ln( + ex), respec-
tively. �

Remark  Particular cases of the previous results for p = , q = ∞:

 ≤
∏l

j= xajxj
j

∏k
i= ybiyi

i

≤
(

β

α

)‖G‖∞
,

 ≤
l∑

j=

ajexj –
k∑

i=

bieyi ≤ (
eβ – eα

)‖G‖∞,
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 ≤
∏l

j=( + exj )aj

∏k
i=( + eyi )bi

≤ exp

[
eβ – eα

( + eβ )( + eα)
‖G‖∞

]
.

If we consider a particular case of our result given in Remark (ii) and apply it to convex
functions from the previous two corollaries, we could obtain some new upper bounds for
Jensen’s inequality. Related estimates are given in [–].

Finally, we indicate one more interesting application.
Using (.), under the assumptions of Theorem , we define the linear functional A :

Cn([α,β]) →R by

A(φ) =
l∑

j=

ajφ(xj) –
k∑

i=

biφ(yi)

–
m∑

s=

φ(s)(α)
s!

[ l∑

j=

aj(xj – α)s –
k∑

i=

bi(yi – α)s

]

–
n–m–∑

r=

r∑

m=

(–)r–s(β – α)r–sφ(m++r)(β)
(m +  + s)!(r – s)!

×
[ l∑

j=

aj(xj – α)m++s –
k∑

i=

bi(yi – α)m++s

]
.

It is obvious that if φ ∈ Cn([α,β]) is n-convex, then A(φ) ≥ . Using the linearity and pos-
itivity of this functional we may derive corresponding mean-value theorems. Moreover,
we may produce new classes of exponentially convex functions and as a result we get new
means of the Cauchy type applying the same method as given in [, ].

5 Conclusions
In this paper we give generalizations of Sherman’s inequality from which the classical ma-
jorization inequality, as well as Jensen’s inequality, follows as a special case. The obtained
results hold for convex functions of higher order, which are in a special case convex in the
usual sense. Moreover, the obtained generalizations represent an extension to real, not
necessarily nonnegative entries of the vectors a, b, and the matrix A. The methods used
are based on classical real analysis and the application of the Abel-Gontscharoff formula
and Green’s function and can be extended to the investigation of other inequalities.
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