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Abstract
In this paper, we study the blow-up and global solutions of the following nonlinear
reaction-diffusion equations under Neumann boundary conditions:

⎧
⎨

⎩

(g(u))t = ∇ · (a(u)b(x)∇u) + f (x,u) in D× (0, T ),
∂u
∂n = 0 on ∂D× (0, T ),
u(x, 0) = u0(x) > 0 in D,

where D ⊂ R
N (N ≥ 2) is a bounded domain with smooth boundary ∂D. By

constructing auxiliary functions and using maximum principles and a first-order
differential inequality technique, sufficient conditions for the existence of the
blow-up solution, an upper bound for the ‘blow-up time’, an upper estimate of the
‘blow-up rate’, sufficient conditions for the existence of global solution, and an upper
estimate of the global solution are specified under some appropriate assumptions on
the functions a, b, f , g, and initial value u0.

MSC: 35K55; 35B05; 35K57

Keywords: blow-up; global existence; reaction-diffusion equation

1 Introduction
In this paper, we study the blow-up and global solutions for the following nonlinear
reaction-diffusion equations under Neumann boundary conditions:

⎧
⎪⎨

⎪⎩

(g(u))t = ∇ · (a(u)b(x)∇u) + f (x, u) in D × (, T),
∂u
∂n =  on ∂D × (, T),
u(x, ) = u(x) >  in D,

(.)

where D ⊂ R
N (N ≥ ) is a bounded domain with smooth boundary ∂D, ∂/∂n represents

the outward normal derivative on ∂D, u is the initial value, T is the maximal existence
time of u, and D is the closure of D. In order to study the blow-up problem of (.) by using
maximum principles, we make the following assumptions about the functions a, b, f , g ,
and u. Set R+ := (, +∞). Throughout the paper, we assume that a(s) is a positive C(R+)
function, b(x) is a positive C(D) function, f (x, s) is a nonnegative C(D × R

+) function,
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g(s) is a C(R+) function, g ′(s) >  for any s ∈ R
+, and u(x) is a positive C(D) function.

Under these assumptions, the classical parabolic equation theory ensures that there exists
a unique classical solution u(x, t) for problem (.) with some T >  and the solution is
positive over D × [, T). Moreover, by regularity theorem [], u ∈ C(D × (, T)) ∩ C(D ×
[, T)).

During the past decades, the problems of the blow-up and global solutions for nonlinear
reaction-diffusion equations have received considerable attention. The contributions in
the filed can be found in [–] and the references therein. Many authors discussed the
blow-up and global solutions for nonlinear reaction-diffusion equations under Neumann
boundary conditions and obtained a lot of interesting results; we refer the reader to [–].
Some particular cases of (.) have been investigated already. Lair and Oxley [] studied
the following problem:

⎧
⎪⎨

⎪⎩

ut = ∇ · (a(u)∇u) + f (u) in D × (, T),
∂u
∂n =  on ∂D × (, T),
u(x, ) = u(x) >  in D,

(.)

where D is a bounded domain of RN (N ≥ ) with smooth boundary ∂D. Necessary and
sufficient conditions characterized by functions a and f were given for the existence of
blow-up and global solutions. Zhang [] discussed the following problem:

⎧
⎪⎨

⎪⎩

(g(u))t = �u + f (u) in D × (, T),
∂u
∂n =  on ∂D × (, T),
u(x, ) = u(x) >  in D,

(.)

where D is a bounded domain of RN (N ≥ ) with smooth boundary ∂D. Sufficient con-
ditions were developed there for the existence of blow-up and global solutions. Ding and
Guo [] considered the following problem:

⎧
⎪⎨

⎪⎩

(g(u))t = ∇ · (a(u)∇u)�u + f (u) in D × (, T),
∂u
∂n =  on ∂D × (, T),
u(x, ) = u(x) >  in D,

(.)

where D is a bounded domain of RN (N ≥ ) with smooth boundary ∂D. Sufficient con-
ditions were given there for the existence of blow-up and global solutions. Meanwhile,
an upper bound of the ‘blow-up time’, an upper estimate of ‘blow-up rate’, and an upper
estimate of the global solution were also obtained.

The object of this paper is the blow-up and global solutions for problem (.). Since
the reaction function f (x, u) contains not only the concentration variable u but also the
space variable x, it seems that the methods of [–] are not applicable to problem (.).
In this paper, we investigate problem (.) by constructing auxiliary functions completely
different from those in [–] and technically using maximum principles and a first-
order differential inequality technique. We obtain some existence theorems for a blow-up
solution, an upper bound of ‘blow-up time’, an upper estimate of ‘blow-up rate’, existence
theorems for a global solution, and an upper estimate of the global solution. Our results
can be considered as extensions and supplements of those obtained in [–].
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We proceed as follows. In Section  we study the blow-up solution of problem (.). Sec-
tion  is devoted to the global solution of (.). A few examples are presented in Section 
to illustrate the applications of the abstract results.

2 Blow-up solution
Our main result for the blow-up solution is stated in the following theorem.

Theorem . Let u be a solution of problem (.). Assume that the following conditions
(i)-(iv) are satisfied:

(i) for any s ∈R
+,

(
a(s)
g ′(s)

)′
≥ ,

[


a(s)

(
a(s)
g ′(s)

)′
+


g ′(s)

]′
+

[


a(s)

(
a(s)
g ′(s)

)′
+


g ′(s)

]

≥ ; (.)

(ii) for any (x, s) ∈ D ×R
+,

(
f (x, s)g ′(s)

a(s)

)

s
–

f (x, s)g ′(s)
a(s)

≥ ; (.)

(iii)

∫ +∞

M

g ′(s)
es ds < +∞, M := max

D
u(x); (.)

(iv)

β := min
D

∇ · (a(u)b(x)∇u) + f (x, u)
eu

> . (.)

Then the solution u to problem (.) must blow up in a finite T , and

T ≤ 
β

∫ +∞

M

g ′(s)
es ds, (.)

u(x, t) ≤ H–(β(T – t)
)
, ∀(x, t) ∈ D × [, T), (.)

where

H(z) :=
∫ +∞

z

g ′(s)
es ds, z > , (.)

and H– is the inverse function of H .

Proof Consider the auxiliary function

�(x, t) := g ′(u)ut – βeu. (.)

For brevity of notation, we write g in place of g(u), suppressing the symbol u. We find that

∇� = g ′′ut∇u + g ′∇ut – βeu∇u, (.)

�� = g ′′′ut|∇u| + g ′′∇u · ∇ut + g ′′ut�u + g ′�ut – βeu|∇u| – βeu�u, (.)



Ding Journal of Inequalities and Applications  (2016) 2016:86 Page 4 of 11

and

�t = g ′′(ut) + g ′(ut)t – βeuut

= g ′′(ut) + g ′
(

ab
g ′ �u +

a′b
g ′ |∇u| +

a
g ′ ∇b · ∇u +

f
g ′

)

t
– βeuut

= g ′′(ut) +
(

a′b –
abg ′′

g ′

)

ut�u + ab�ut +
(

a′′b –
a′bg ′′

g ′

)

ut|∇u|

+ a′b(∇u · ∇ut) +
(

a′ –
ag ′′

g ′

)

ut(∇b · ∇u) + a(∇b · ∇ut)

+
(

fu –
fg ′′

g ′ – βeu
)

ut . (.)

It follows from (.) and (.) that

ab
g ′ �� – �t =

(
abg ′′′

g ′ +
a′bg ′′

g ′ – a′′b
)

ut|∇u| +
(


abg ′′

g ′ – a′b
)

(∇u · ∇ut)

+
(


abg ′′

g ′ – a′b
)

ut�u – β
abeu

g ′ |∇u| – β
abeu

g ′ �u – g ′′(ut)

+
(

ag ′′

g ′ – a′
)

ut(∇b · ∇u) – a(∇b · ∇ut) +
(

fg ′′

g ′ – fu + βeu
)

ut . (.)

By (.) we have

�u =
g ′

ab
ut –

a′

a
|∇u| –


b

(∇b · ∇u) –
f

ab
. (.)

Substituting (.) into (.), we get

ab
g ′ �� – �t =

(
abg ′′′

g ′ –
a′bg ′′

g ′ – a′′b +
(a′)b

a

)

ut|∇u| +
(


abg ′′

g ′ – a′b
)

(∇u · ∇ut)

–
(g ′)

a

(
a
g ′

)′
(ut) –

ag ′′

g ′ ut(∇b · ∇u) +
(

a′f
a

–
fg ′′

g ′ – fu

)

ut

+
(

β
a′beu

g ′ – β
abeu

g ′

)

|∇u| + β
aeu

g ′ (∇b · ∇u)

+ β
f eu

g ′ – a(∇b · ∇ut). (.)

In view of (.), we have

∇ut =

g ′ ∇� –

g ′′

g ′ ut∇u + β
eu

g ′ ∇u. (.)

Substitution of (.) into (.) results in

ab
g ′ �� +

[

b
(

a
g ′

)′
∇u +

a
g ′ ∇b

]

· ∇� – �t

=
(

abg ′′′

g ′ +
a′bg ′′

g ′ – a′′b +
(a′)b

a
– 

ab(g ′′)

(g ′)

)

ut|∇u|
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+
(

β
abg ′′eu

(g ′) – β
a′beu

g ′ – β
abeu

g ′

)

|∇u| –
(g ′)

a

(
a
g ′

)′
(ut)

+
(

a′f
a

–
fg ′′

g ′ – fu

)

ut + β
f eu

g ′ . (.)

With (.), we have

ut =

g ′ � + β

eu

g ′ . (.)

Substituting (.) into (.), we obtain

ab
g ′ �� +

[

b
(

a
g ′

)′
∇u +

a
g ′ ∇b

]

· ∇�

+
{

ab
[


a

(
a
g ′

)′]′
|∇u| +

a
(g ′)

(
fg ′

a

)

u

}

� – �t

= –βabeu
{[


a

(
a
g ′

)′
+


g ′

]′
+

[

a

(
a
g ′

)′
+


g ′

]}

|∇u| –
(g ′)

a

(
a
g ′

)′
(ut)

– β
aeu

(g ′)

[(
fg ′

a

)

u
–

fg ′

a

]

. (.)

By assumptions (.) and (.) the right-hand side of (.) is nonpositive, that is,

ab
g ′ �� +

[

b
(

a
g ′

)′
∇u +

a
g ′ ∇b

]

· ∇�

+
{

ab
[


a

(
a
g ′

)′]′
|∇u| +

a
(g ′)

(
fg ′

a

)

u

}

� – �t ≤  in D × (, T). (.)

Now by (.) we have

min
D

�(x, ) = min
D

{
g ′(u)(u)t – βeu

}

= min
D

{∇ · (a(u)b(x)∇u
)

+ f (x, u) – βeu
}

= min
D

{

eu

[∇ · (a(u)b(x)∇u) + f (x, u)
eu

– β

]}

= . (.)

It follows from (.) that

∂�

∂n
= g ′′ut

∂u
∂n

+ g ′ ∂ut

∂n
– βeu ∂u

∂n
= g ′

(
∂u
∂n

)

t
=  on ∂D × (, T). (.)

The assumptions concerning the functions a, b, f , g , and u in Section  imply that we can
use maximum principles to (.)-(.). Combining (.)-(.) and applying maximum
principles [], it follows that the minimum of � in D × [, T) is zero. Thus, we have

� ≥  in D × [, T),

that is, the differential inequality

g ′(u)
eu ut ≥ β . (.)
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Suppose that x ∈ D and u(x) = M. At the x, integrate (.) over [, t] to get

∫ t



g ′(u)
eu ut dt =

∫ u(x,t)

M

g ′(s)
es ds ≥ βt, (.)

which implies that u must blow up in finite time. Actually, if u is a global solution of (.),
then for any t > , it follows from (.) that

∫ +∞

M

g ′(s)
es ds ≥

∫ u(x,t)

M

g ′(s)
es ds ≥ βt. (.)

Letting t → +∞ in (.) yields

∫ +∞

M

g ′(s)
es ds = +∞,

which contradicts with assumption (.). This shows that u must blow up in a finite time
t = T . Furthermore, letting t → T in (.), we have

T ≤ 
β

∫ +∞

M

g ′(s)
es ds.

Integrating inequality (.) over [t, s] ( < t < s < T ) yields, for each fixed x, that

H
(
u(x, t)

) ≥ H
(
u(x, t)

)
– H

(
u(x, s)

)
=

∫ +∞

u(x,t)

g ′(s)
es ds –

∫ +∞

u(x,s)

g ′(s)
es ds

=
∫ u(x,s)

u(x,t)

g ′(s)
es ds =

∫ s

t

g ′(u)
eu ut dt ≥ β(s – t).

Passing to the limit as s → T– gives

H
(
u(x, t)

) ≥ β(T – t).

Since H is a decreasing function, we have

u(x, t) ≤ H–(β(T – t)
)
.

The proof is complete. �

3 Global solution
The following theorem is the main result for the global solution.

Theorem . Let u be a solution of problem (.). Assume that the following conditions
(i)-(iv) are satisfied:

(i) for any s ∈R
+,

(
a(s)
g ′(s)

)′
≤ ,

[


a(s)

(
a(s)
g ′(s)

)′
–


g ′(s)

]′
–

[


a(s)

(
a(s)
g ′(s)

)′
–


g ′(s)

]

≤ ; (.)
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(ii) for any (x, s) ∈ D ×R
+,

(
f (x, s)g ′(s)

a(s)

)

s
+

f (x, s)g ′(s)
a(s)

≤ ; (.)

(iii)

∫ +∞

m

g ′(s)
e–s ds = +∞, m := min

D
u(x); (.)

(iv)

α := max
D

∇ · (a(u)b(x)∇u) + f (x, u)
e–u

> . (.)

Then the solution u of (.) must be a global solution, and

u(x, t) ≤ G–(αt + G
(
u(x, t)

))
, ∀(x, t) ∈ D ×R

+, (.)

where

G(z) :=
∫ z

m

g ′(s)
e–s ds, z ≥ m, (.)

and G– is the inverse function of G.

Proof Construct the auxiliary function

�(x, t) := g ′(u)ut – αe–u. (.)

By using the same reasoning process with that of (.)-(.), we have

ab
g ′ �� +

[

b
(

a
g ′

)′
∇u +

a
g ′ ∇b

]

· ∇�

+
{

ab
[


a

(
a
g ′

)′]′
|∇u| –

a
(g ′)

(
fg ′

a

)

u

}

� – �t

= –αabe–u
{[


a

(
a
g ′

)′
–


g ′

]′
–

[

a

(
a
g ′

)′
–


g ′

]}

|∇u| –
(g ′)

a

(
a
g ′

)′
(ut)

– α
ae–u

(g ′)

[(
fg ′

a

)

u
+

fg ′

a

]

. (.)

From assumptions (.) and (.) we see that the right-hand side of (.) is nonnegative,
that is,

ab
g ′ �� +

[

b
(

a
g ′

)′
∇u +

a
g ′ ∇b

]

· ∇�

+
{

ab
[


a

(
a
g ′

)′]′
|∇u| –

a
(g ′)

(
fg ′

a

)

u

}

� – �t ≥  in D × (, T). (.)



Ding Journal of Inequalities and Applications  (2016) 2016:86 Page 8 of 11

By (.) we have

max
D

�(x, ) = max
D

{
g ′(u)(u)t – αe–u

}

= max
D

{∇ · (a(u)b(x)∇u
)

+ f (x, u) – αe–u
}

= max
D

{

e–u

[∇ · (a(u)b(x)∇u) + f (x, u)
e–u

– α

]}

= . (.)

Repeating the arguments for (.), we have

∂�

∂n
=  on ∂D × (, T). (.)

Combining (.)-(.) and applying the maximum principles again, we get that the max-
imum of � in D × [, T) is zero. Hence, we have

� ≤  in D × [, T),

that is, the differential inequality

g ′(u)
e–u ut ≤ α. (.)

For each fixed x ∈ D, integrate (.) over [, t] to produce

∫ t



g ′(u)
e–u ut dt =

∫ u(x,t)

u(x)

g ′(s)
e–s ds ≤ αt, (.)

which shows that u must be a global solution. In fact, suppose that u blows up at finite
time T , that is,

lim
t→T–

u(x, t) = +∞.

Passing to the limit as t → T– in (.) gives
∫ +∞

u(x)

g ′(s)
e–s ds ≤ αT

and
∫ +∞

m

g ′(s)
e–s ds =

∫ u(x)

m

g ′(s)
e–s ds +

∫ +∞

u(x)

g ′(s)
e–s ds ≤

∫ u(x)

m

g ′(s)
e–s ds + αT < +∞,

which is a contradiction. This shows that u is global. Moreover, (.) implies that

∫ u(x,t)

u(x)

g ′(s)
e–s ds =

∫ u(x,t)

m

g ′(s)
e–s ds –

∫ u(x)

m

g ′(s)
e–s ds = G

(
u(x, t)

)
– G

(
u(x)

) ≤ αt.

Since G is an increasing function, we have

u(x, t) ≤ G–(αt + G
(
u(x)

))
.

The proof is complete. �
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4 Applications
When g(u) ≡ u, b(x) ≡ , and f (x, u) ≡ f (u), problem (.) is problem (.) studied by Lair
and Oxley []. When a(u) ≡ , b(x) ≡ , and f (x, u) ≡ f (u), problem (.) is problem
(.) discussed by Zhang []. When b(x) ≡  and f (x, u) ≡ f (u), problem (.) is prob-
lem (.) considered by Ding and Guo []. In these three cases, the conclusions of The-
orems . and . still hold. In this sense, our results extend and supplement the results of
[–].

In what follows, we present several examples to demonstrate applications of Theo-
rems . and ..

Example . Let u be a solution of the following problem:

⎧
⎪⎨

⎪⎩

(e u
 + u)t = ∇ · (( + e u

 )( + ‖x‖)∇u) + eu – ‖x‖ in D × (, T),
∂u
∂n =  on ∂D × (, T),
u(x, ) =  + ( – ‖x‖) in D,

where D = {x = (x, x, x) | ‖x‖ = x
 + x

 + x
 < } is the unit ball of R. Now we have

g(u) = e
u
 + u, a(u) =  + e

u
 , b(x) =  + ‖x‖,

f (x, u) = eu – ‖x‖, u(x) =  +
(
 – ‖x‖).

In order to determine the constant β , we assume that

s = ‖x‖.

Then  ≤ s ≤  and

β = min
D

∇ · (a(u)b(x)∇u) + f (x, u)
eu

= min
D

{(
e––(–‖x‖)

+ e– 
 – 

 (–‖x‖))(
– + ‖x‖)

+ e– 
 – 

 (–‖x‖)‖x‖( + ‖x‖)( – ‖x‖) +  – ‖x‖e––(–‖x‖)}

= min
≤s≤

{(
e––(–s) + e– 

 – 
 (–s))(– + s)

+ e– 
 – 

 (–s)
s( + s)( – s) +  – se––(–s)}

= ..

It is easy to check that (.)-(.) hold. By Theorem ., u must blow up in a finite time T ,
and

T ≤ 
β

∫ +∞

M

g ′(s)
es ds =


.

∫ +∞



e s
 + 
es ds = .,

u(x, t) ≤ H–(β(T – t)
)

= ln


(
√

 + .(T – t) – )
.
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Example . Let u be a solution of the following problem:

⎧
⎪⎨

⎪⎩

(ln(eu – ) – u)t = ∇ · ( 
eu– ( + ‖x‖)∇u) + e–u( + ‖x‖) in D × (, T),

∂u
∂n =  on ∂D × (, T),
u(x, ) =  + ( – ‖x‖) in D,

where D = {x = (x, x, x) | ‖x‖ = x
 + x

 + x
 < } is the unit ball of R. Now we have

g(u) = ln
(
eu – 

)
– u, a(u) =


eu – 

, b(x) =  + ‖x‖,

f (x, u) = e–u( + ‖x‖), u(x) =  +
(
 – ‖x‖).

By setting

s = ‖x‖,

we have  ≤ s ≤  and

α = min
D

∇ · (a(u)b(x)∇u) + f (x, u)
e–u

= min
D

{


(e+(–‖x‖) – )

[(
– + ‖x‖)e+(–‖x‖)(

e+(–‖x‖)
– 

)

– ‖x‖( + ‖x‖)( – ‖x‖)e+(–‖x‖)
+

(
 + ‖x‖)(e+(–‖x‖)

– 
)]

}

= min
≤s≤

{


(e+(–s) – )

[
(– + s)e+(–s)(

e+(–s)
– 

)

– s( + s)( – s)e+(–s)
+ ( + s)

(
e+(–s)

– 
)]

}

= ..

Again, it is easy to check that (.)-(.) hold. By Theorem ., u must be a global solution,
and

u(x, t) ≤ G–(αt + G
(
u(x)

))
= ln

[
 + e.t(e+(–‖x‖)

– 
)]

.
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