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Abstract
The perturbed system of exponents with a piecewise linear phase, consisting of
eigenfunctions of a discontinuous differential operator, is considered in this work.
Under certain conditions on the weight function of the form of a power function,
sufficient conditions for the basicity of this system are obtained in generalized
weighted Lebesgue space.
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1 Introduction
The perturbed system of exponents {eiλnt}n∈Z plays an important role in the study of spec-
tral properties of discrete differential operators and in the approximation theory. Appar-
ently, the study of basis properties (completeness, minimality, basicity) of these systems
dates back to the well-known work of Paley and Wiener []. Since then, a lot of research
has been made in this field (more details can be found in [–]). It should be noted that
similar systems are of great scientific interest in the frame theory as well, which dates back
to the seminal paper by Duffin and Schaeffer []. More details as regards these and related
facts can be found in [, , ].

Since recently, there arose a great interest in considering various problems, related to
some research fields of mechanics and mathematical physics, in generalized Lebesgue
spaces Lp(·) with a variable summability exponent p(·). Some fundamental results of clas-
sical harmonic analysis were carried over to the case of Lp(·) . More details as regards these
facts can be found in [–]. It should be noted that the application of the Fourier method
to the problems for partial differential equations in generalized Sobolev classes requires
a good knowledge of the approximative properties of perturbed exponential systems in
generalized Lebesgue spaces. Approximation-related issues in these spaces have been first
studied by Sharapudinov (see e.g. []).

A system of exponents with a piecewise linear phase is considered in this paper. When
the weight of the form of power function, the basis properties of this system are studied
in a weighted space Lp(·) ,ρ . when the weight has a power form. Sufficient conditions for
completeness, minimality and basicity are obtained in Lp(·) ,ρ . It should be noted that the
basis properties of exponential systems with a linear phase in Lp(·) have been previously
studied in [–].
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2 Background information
We will use the usual notations. N will be a set of all positive integers; Z will be a set of
all integers; Z+ = {} ∪ N ; R will be the set of all real numbers; C will stand for the field of
complex numbers; (·̄) is the complex conjugate; δnk is the Kronecker symbol; χA(·) is the
characteristic function of the set A.

Let us present some facts from the theory of Lebesgue spaces with a variable summa-
bility exponent. Let p : [–π ,π ] → [, +∞) be some Lebesgue measurable function. By L

denote the class of all functions measurable on [–π ,π ] (with respect to Lebesgue mea-
sure). Denote

Ip(f ) def≡
∫ π

–π

∣∣f (t)
∣∣p(t) dt.

Let

L ≡ {
f ∈ L : Ip(f ) < +∞}

.

With respect to the usual linear operations of addition and multiplication by a number,
L is a linear space as p+ = sup vrai[–π ,π ] p(t) < +∞. With respect to the norm

‖f ‖p(·)
def≡ inf

{
λ >  : Ip

(
f
λ

)
≤ 

}
,

L is a Banach space (see e.g. []), and we denote it by Lp(·). Let

WL def≡
{

p : p(–π ) = p(π );∃C > ,∀t, t ∈ [–π ,π ]:

|t – t| ≤ 


⇒ ∣∣p(t) – p(t)
∣∣ ≤ C

– ln |t – t|
}

.

Throughout this paper q(·) will denote the conjugate of a function p(·): 
p(t) + 

q(t) ≡ . De-
note p– = inf vrai[–π ,π ] p(t). The following generalized Hölder inequality is true

∫ π

–π

∣∣f (t)g(t)
∣∣dt ≤ c

(
p–; p+)‖f ‖p(·)‖g‖q(·),

where c(p–; p+) =  + 
p– – 

p+ . Directly from the definition we get the property which will
be used in sequel.

Property A If |f (t)| ≤ |g(t)| a.e. on (–π ,π ), then ‖f ‖p(·) ≤ ‖g‖p(·) .

It is easy to prove the following.

Statement  Let p ∈ WL, p(t) > , ∀t ∈ [–π ,π ]; {αi}m
 ⊂ R. The weight function

ρ(t) = |t|α
m∏

i=

|t – τi|αi ,
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belongs to the space Lp(·), if the following inequalities:

αi > –


p(τi)
, ∀i = , m

are satisfied, where –π = τ < τ < · · · < τm = π , τ = , τi = , ∀i = , m.

The following fact plays an important role in obtaining the main results (see e.g. []).

Property B If p(t) :  < p– ≤ p+ < +∞, then the class C∞
 (–π ,π ) (class of finite and indefi-

nitely differentiable functions) is everywhere dense in Lp(·).

By S we denote the singular integral

Sf =


π i

∫
	

f (τ )
τ – t

dτ , t ∈ 	,

where 	 ⊂ C is some piecewise Hölder curve on C. Define the weight class Lp(·),ρ(·):

Lp(·),ρ(·)
def≡ {f : ρf ∈ Lp(·)},

furnished with a norm ‖f ‖p(·),ρ(·)
def≡ ‖ρf ‖p(·). The validity of the following statement is es-

tablished in [].

Statement  Let p ∈ WL,  < p–. Then the singular operator S is acting boundedly from
Lp(·),ρ(·) to Lp(·),ρ(·) if and only if

–


p(τk)
< αk <


q(τk)

, k = , m. ()

Define the generalized weighted Hardy classes H±
p(·),ρ . By H+

p we denote the usual Hardy
class, where p ∈ [, +∞) is some number. Define H±

p(·),ρ ≡ {f ∈ H+
 : f + ∈ Lp(·),ρ(∂ω)}, where

ω = {z ∈ C : |z| < } and f + are non-tangential boundary values on ∂ω of f .

We will need the following theorem from [].

Theorem  Let p ∈ WL, p– > , and let the inequalities () be satisfied. Then, if F ∈ H+
p(·),ρ ,

then F+ ∈ Lp(·),ρ :

F(z) =


π

∫ π

–π

Kz(t)F+(t) dt, ()

where Kz(t) ≡ 
–ze–it is a Cauchy kernel. Vice versa, if F+ ∈ Lp(·),ρ , then the function F , de-

fined by (), belongs to the class H+
p(·),ρ , where F+ are non-tangential boundary values of F(·)

on ∂ω.

The weighted Hardy class mH–
p(·),ρ of functions which are analytic in C\ω̄ (ω̄ = ω ∪ ∂ω)

with their orders m ≤ m at infinity is defined similarly to the classical one. Let f (z) be the
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analytic function in C\ω̄ of finite order m ≤ m at infinity, i.e.

f (z) = f(z) + f(z),

where f(·) is a polynomial of degree m ≤ m (f(z) ≡  for m < ), f(·) is a regular part
of Laurent series expansion of f (·) in the neighborhood of an infinitely remote point. If
the function ϕ(z) ≡ f( 

z̄ ) belongs to the class H+
p(·),ρ , then we will say that the function f (·)

belongs to the class mH–
p(·),ρ .

The validity of the following theorem is proved just like in the classical case (see e.g.
[–]).

Theorem  Let p ∈ WL, p– > , and let the inequalities () be satisfied. If f ∈ H+
p(·),ρ , then

∥∥f
(
reit) – f +(

eit)∥∥
p(·),ρ → , r →  – ,

where f + are non-tangential boundary values on ∂ω of f .

A similar result also holds in class mH–
p(·),ρ (see e.g. [–]).

Theorem  Let p ∈ WL, p– > , and let the inequalities () be satisfied. If f ∈ mH–
p(·),ρ , then

∥∥f
(
reit) – f –(

eit)∥∥
p(·),ρ → , r →  + ,

where f – are non-tangential boundary values on ∂ω of f from the outside of ω.

Let us show the validity an analog of the classical theorem of Smirnov.

Theorem  Let p ∈ WL, p– > , and let the inequalities () be satisfied. If u ∈ H+
 and

u+ ∈ Lp(·),ρ , then u ∈ H+
p(·),ρ .

Indeed, assume that p ∈ WL, p– > , and let the inequality () be fulfilled. Let u ∈ H+
 and

u+ ∈ Lp(·),ρ , where u+ is s non-tangential boundary value on ∂ω of u. Then it is well known
that (see e.g. [])

u(z) =


π i

∫
∂ω

u+(τ )
τ – z

dτ .

Then by Theorem  we obtain u ∈ H+
p(·),ρ .

In obtaining main results we will essentially use the following results from [] on the
solvability of the Riemann problem in generalized weighted Hardy classes. Consider the
following non-homogeneous Riemann problem in the H+

p(·),ρ × mH–
p(·),ρ classes:

F+(τ ) – G(τ )F–(τ ) = f (τ ), τ ∈ ∂ω, ()

where f ∈ Lp(·),ρ is some function. By the solution of problem () we mean a pair of analytic
functions (F+(z); F–(z)) ∈ H+

p(·),ρ × mH–
p(·),ρ boundary values of which satisfy equation ()

almost everywhere on ∂ω.
We will suppose that the coefficient G(τ ) satisfies the following conditions:
() G± ∈ L∞(∂ω);
() θ (t) ≡ arg G(eit) is a piecewise Hölder function on [–π ,π ].
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Let {sk}r
: –π < s < · · · < sr < π be the points of discontinuity of the function θ (t) and

{hk}r
: hk = θ (sk + ) – θ (sk – ), k = , r,

be the corresponding jumps of this function at these points. Let us represent the function
θ (·) in the following form:

θ (t) ≡ θ(t) + θ(t), t ∈ [–π ,π ],

where θ(·) is a continuous part, and θ(·) is a jump function defined by the expression

θ (–π ) = , θ (t) =
∑

k:<sk<t

hk , t ∈ [–π ,π ].

Assume

h = θ (–π ) – θ (π ); h()
 = θ(π ) – θ(–π ).

Denote by {tk}l
: {tk}l

 ≡ {τk}m
 ∪ {sk}r

 the union of sets {τk}m
 and {sk}r

.
Denote by Z(z) the canonical solution of homogeneous problem

F+(τ ) – G(τ )F–(τ ) = f (τ ), τ ∈ ∂ω,

which is defined by the expressions

Z(z) ≡ Z(z)Z(z),

where

Zk(z) ≡
{

Xk(z), |z| < ,
[Xk(z)]–, |z| > , k = , ;

and the functions Xk(z) are defined by the following integrals with Schwartz kernel:

X(z) ≡ exp

{


π

∫ π

–π

ln
∣∣G(

eit)∣∣ eit + z
eit – z

dt
}

,

X(z) ≡ exp

{
i

π

∫ π

–π

θ (t)
eit + z
eit – z

dt
}

.

Assume

βk =
m∑

i=

αiχ{tk }(τi) +


π

r∑
i=

hiχ{tk}(si), k = , l.

The following theorem is established in [, ].

Theorem  Let p ∈ WL, p– > , and the inequalities () be fulfilled. If the inequalities

–


q(tk)
< βk <


p(tk)

, k = , l;
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are true, then the general solution of the Riemann problem () in classes H+
p(·),ρ × mH–

p(·),ρ
can be represented in the following form:

F(z) = Pm (z)Z(z) + F(z),

where Z(·) is the canonical solution of homogeneous problem, F(·) is the particular solution
of non-homogeneous problem () defined by

F(z) =
Z(z)
π

∫ π

–π

Kz(t)Z+(
eit)f (t) dt,

Pm (·) is a polynomial of order m ≤ m.

In particular, from this theorem we obtain the following.

Corollary  Let all the conditions of Theorem  be fulfilled. Then the non-homogeneous
Riemann problem () is uniquely solvable in classes H+

p(·),ρ × –H–
p(·),ρ for ∀f ∈ Lp(·),ρ , and

this solution can be represented in the form

F(z) =
Z(z)
π

∫ π

–π

Kz(t)Z+(
eit)f (t) dt,

where Z(z) is the canonical solution of the corresponding homogeneous problem.

Indeed, in this case m = – and therefore Pm (·) ≡ . So, F(∞) = , then it is clear that
F(·) ∈ –H–

p(·),ρ , and, as a result, as follows from Theorem , F(z) ≡ F(z) is a unique solu-
tion of the problem ().

3 Main results
Consider the following system of exponents:

{
en(·)}n∈Z , ()

where

en(t) = exp i
(
nt + γ (t) sign n

)
, γ (t) = αt + β sign t;

α,β ∈ R are real parameters.
We will study the basicity of the system () in Lp(·),ρ with respect to the parameters α

and β .
Denote γ = α + β

π
; γ = – β

π
. Consider the following systems:

h+
n(t) =

ei(αt+β sign t–β)

π

(
eit + 

)–γ
–

(
eit – 

)–γ
+

n∑
k=

(–)n–kCn–k
γ

k∑
s=

Ck–s
γ e–st , n ∈ Z+,

h–
n(t) =

ei(αt+β sign t–β)

π

(
eit + 

)–γ
–

(
eit – 

)–γ
+

n∑
k=

(–)m–kCm–k
γ

k∑
s=

Ck–s
γ e–st , m ∈ N ,
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where

Cn
γ =

γ (γ – ) · · ·γ (γ – n + )
n!

, C
γ = ,

are the binomial coefficients. The following lemma is true (see e.g. [, ]).

Lemma  Let, with respect to the parameters α,β ∈ R, the following inequalities be ful-
filled:

∣∣∣∣α +
β

π

∣∣∣∣ <



;
∣∣∣∣βπ

∣∣∣∣ <



.

Then the following relations hold:

〈
x+

k , h+
n
〉

=
〈
x–

k+, h–
n+

〉
= δnk , ∀n, k ∈ N ;

〈
x+

k , h–
n+

〉
=

〈
x–

k+, h+
n
〉

= , ∀n, k ∈ N ,

x±
n = e±i[(n–α)t–β sign t], where 〈x, y〉 =

∫ π

π

x(t)y(t) dt.

Let us establish the validity of the following lemma.

Lemma  Let p ∈ WL and p– > . If the following inequalities:

⎧⎪⎨
⎪⎩

– 
p() < {α;α + γ} < 

q() ; – 
p(π ) < α;

– 
p(π ) < {αm;α + γ} < 

q(π ) ; αm + γ < 
q(π ) ;

– 
p(τi)

< αi < 
q(τi)

, i = , m – ,
()

are fulfilled, then the system of exponents {en}n∈Z is minimal in Lp(·),ρ .

Proof Let us determine the conditions under which the inclusions {x±
n } ⊂ Lp(·),ρ and

{h±
n } ⊂ Lq(·),ρ– are true. It is clear that if ρp(·)(·) ∈ L, then {x±

n } ⊂ Lp(·),ρ . From Statement 
it follows that under fulfilling the inequalities

αi > –


p(τi)
, ∀i = , m,

the inclusion ρ ∈ Lp(·) is true. Consider the inclusion {h±
n } ⊂ Lq(·),ρ– . We have

ρ–(t) = |t|–α
m∏

i=

|t – τi|–αi .

It is clear that if |ρ(x)|q(x) ∈ L, then {h±
n } ⊂ Lq(·),ρ– , where

ρ(x) =
∣∣eix + 

∣∣–γ ∣∣eix – 
∣∣–γ

ρ–(x).

Taking into account the relations

∣∣eix – 
∣∣ ∼

∣∣∣∣sin
x


∣∣∣∣ ∼ |x|, x ∈ [–π ,π ];
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∣∣eix + 
∣∣ ∼

∣∣∣∣sin
x + π



∣∣∣∣
∣∣∣∣sin

x – π



∣∣∣∣ ∼ |x – π ||x + π |, x ∈ [–π ,π ],

we get

ρ(x) ∼ |x|–γ |x – π |–γ |x + π |–γρ–(x), x ∈ [–π ,π ],

where the expression f ∼ g on [–π ,π ] means that ∃δ > :

δ ≤
∣∣∣∣ f (x)
g(x)

∣∣∣∣ ≤ δ–, ∀x ∈ [–π ,π ].

Thus

ρ(x) ∼ |x|–γ–α
m∏

i=

|x – τi|–α̃i , x ∈ [–π ,π ],

where

α̃ = γ + α, α̃m = αm + γ,

α̃i = αi, i = , m – .

If ρ ∈ Lp(·), i.e. if the inequalities

–


p(τi)
< αi, i = , m, ()

are fulfilled, it is absolutely clear that the inclusion {x±
k } ⊂ Lp(·),ρ is true. Let us find the

conditions under which the system {h±
n } belongs to Lq(·),ρ– . From the representation for

{h±
n } it directly follows that if ω(·) ∈ Lq(·),ρ– , then {h±

n } ⊂ Lq(·),ρ– , where

ω(t) =
∣∣eit + 

∣∣–γ ∣∣eit – 
∣∣–γ , t ∈ [–π ,π ].

We have

∣∣eit – 
∣∣ ∼ |t|, t ∈ [–π ,π ];

∣∣eit + 
∣∣ ∼ |t – π ||t + π |, t ∈ [–π ,π ].

Consequently

ω(t) ∼ |t|–γ |t – π |–γ |t + π |–γ , t ∈ [–π ,π ].

It is clear that ω ∈ Lq(·),ρ– if and only if ωρ– ∈ Lq(·). The product ωρ has the representation

ω(t)ρ–(t) ∼ |t|–α–γ |t + π |–α–γ |t – π |–αm–γ
m–∏
i=

|t – τi|–αi , t ∈ [–π ,π ].
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Drawing attention to Statement , we see that if the inequalities

–


q()
< –α – γ; –


q(π )

< –α – γ;

–


q(π )
< –αm – γ; –


q(τi)

< –αi, i = , m – ,
()

are fulfilled, then ωρ– ∈ Lq(·), and as a result, we obtain {h±
n } ⊂ Lq(·),ρ– .

Consider the functionals

H±
n (f ) =

∫ π

–π

f (t)h±
n (t) dt, f ∈ Lp(·),ρ .

We have

∣∣H±
n (f )

∣∣ =
∣∣∣∣
∫ π

–π

f (t)ρ(t)h±
n (t)ρ–(t) dt

∣∣∣∣ ≤ c
(
p–; p+)‖f ρ‖Lp(·)

∥∥h±
n ρ–∥∥

Lq(·)

= c
(
p–; p+)∥∥h±

n ρ–∥∥
Lq(·)‖f ‖Lp(·),ρ .

From this relation it follows directly that if the inclusion {h±
n } ⊂ Lq(·),ρ– is true, then

{H±
n } ⊂ (Lp(·),ρ)∗. Taking into account Lemma  we get the validity of the lemma. �

The following main theorem is true.

Theorem  Let p ∈ WL, p– >  and the following inequalities be satisfied:

–


p(τi)
< αi <


q(τi)

, i = , m;

–


p()
< α + γ <


q()

; –


p(π )
< α + γ <


q(π )

;

–


p(π )
< αm + γ <


q(π )

; γ = 
(

α +
β

π

)
; γ = –

β

π
.

Then the system {en}n∈Z forms a basis for Lp(·),ρ .

Proof In establishing of basis properties of the system () in Lp(·),ρ , we will apply the
method of boundary value problems, namely, we will consider the following Riemann
problem:

{
F+(τ ) + e–iγ (t)F–(τ ) = g(τ )e–iγ (t),
F+ ∈ H+

p(·),ρ , F– ∈ –H–
p(·),ρ ,

()

where g(·) is some Hölder function on ∂ω. We will solve this problem by the method de-
veloped in []. Here we need some auxiliary functions. Let

(z + )γ–; zγ
–

(
(z – )γ+; zγ

+
)
,

be branches of multi-valued analytic functions

(z + )γ ; zγ
(
(z – )γ ; zγ

)
,
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which are analytic on the cut along the negative (positive) part of the real axis of the com-
plex plane, respectively. Define

(
z + 

z

)γ

–
=

(z + )γ–
zγ

–
;

(
z – 

z

)γ

+
=

(z – )γ+
zγ

+
.

Thus, a particular solution of the problem () has the form

F+
 (z) = 

π

∫ π

–π

ei(αt+β sign t)g(eit ) dt
(eit+)γ

–(eit–)γ
+ (–zeit )

(z + )γ
–(z – )γ

+,

F–
 (z) = 

π

∫ π

–π

ei(αt+β sign t)g(eit ) dt
(eit+)γ

–(eit–)γ
+ (–zeit )

( z+
z )γ

–( z–
z )γ

+.

⎫⎪⎬
⎪⎭ ()

If the inequality |γi| < , i = , , is fulfilled, from the representation of the function F±
 (z)

it directly follows that F+
 ∈ H+

 ; F–
 ∈ –H–

 . From the known relations []

∫ π

–π

∣∣F+

(
eit) – F+


(
reit)∣∣dt → , r →  – ;

∫ π

–π

∣∣F–

(
eit) – F–


(
reit)∣∣dt → , r →  + ,

()

∫ π

–π

∣∣F–

(
eit) – F–


(
reit)∣∣dt → , r →  + ,

it follows that

a+
n =


π

∫ π

–π

F+

(
eit)eint dt, ∀n ∈ Z+; a–

k =


π

∫ π

–π

F–

(
eit)eikt dt, ∀k ∈ N ,

where

F+
 (z) =

∞∑
n=

a+
nzn

(
F–

 (z) =
∞∑

n=

a–
nz–n

)

is a Taylor expansion of the function F+
 (z) (F+

 (z)) in the neighborhood of zero (an infinitely
remote point).

Let us consider the basicity of system {en}n∈Z in Lp(·),ρ . Let g ∈ Lp(·),ρ be an arbitrary
function. Let us apply Theorem  to the non-homogeneous Riemann problem (). Paying
attention to Corollary , we see that if the inequalities

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

– 
p(τk ) < αk < 

q(τk ) , k = , m;
– 

p() < α + γ < 
q() ;

– 
p(π ) < α + γ < 

q(π ) ;
– 

p(π ) < αm + γ < 
q(π ) ,

are fulfilled, then the problem () has a unique solution of the form () in classes H+
p(·),ρ ×

–H–
p(·),ρ . Expanding the function F+

 (z)
(
F–

 (z)
)

in a Taylor series at the point z =  (at the
point z = ∞) we have

F+
 (z) =

∞∑
n=

H+
n (g)zn, F–

 (z) =
∞∑

n=

H–
n (g)z–n.
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Let F±
 (τ ) be boundary values on ∂ω of F±

 (z). It is obvious that F+
 ∈ L+

p(·),ρ (F–
 ∈ –L–

p(·),ρ ),
where L+

p(·),ρ (–L–
p(·),ρ ) is the restriction of class H+

p(·),ρ (–H–
p(·),ρ ) on ∂ω. Assume that the

following inequalities are true:

–


p(τk)
< αk <


q(τk)

, k = , m.

According to the results of [], the system {eint}∞ ({e–int}∞ ) forms a basis for L+
p(·),ρ (for

–L–
p(·),ρ ). Expanding the functions F±

 (τ ) in these systems we have

F+

(
eit) =

∞∑
n=

a+
neint , F–


(
eit) =

∞∑
n=

a–
ne–int .

From equations () it follows that

a±
n = H±

n (g), ∀n.

Substituting these expansions into () we see that the function g can be expanded in a
series in Lp(·),ρ with respect to the system {en}n∈Z . Lemma  implies that such an expansion
is unique. So, we have proved the theorem. �

Let us consider some special cases of this theorem.

Corollary  Let p ∈ WL, p– >  and αk = , k = , m – ; β = . If the following inequalities:

–


p()
< α <


q()

; –


p(π )
< {α;αm} <


q(π )

;

–


p(π )
< α + α <


q(π )

; –


p(π )
< αm + α <


q(π )

,

hold, then the system of exponents {ei(n+α sign n)t}n∈Z forms a basis for Lp(·),ρ .

Consider a more complicated case.

Corollary  Let p ∈ WL, p– >  and αk = , k = , m – ; α = . If the inequalities

–


p()
< α <


q()

; –


p(π )
< {α;αm} <


q(π )

;

–


p()
< α –

β

π
<


q()

; –


p(π )
< α +

β

π
<


q(π )

;

–


p(π )
< αm +

β

π
<


q(π )

,

are fulfilled, then the system of exponents {ei(nt+β sign t sign n)}n∈Z forms a basis for Lp(·),ρ .
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