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Abstract
As a particular expression of stochastic delay differential equations, stochastic
pantograph differential equations have been widely used in nonlinear dynamics,
quantum mechanics, and electrodynamics. In this paper, we mainly study the stability
of analytical solutions and numerical solutions of semi-linear stochastic pantograph
differential equations. Some suitable conditions for the mean-square stability of an
analytical solution are obtained. Then we proved the general mean-square stability of
the exponential Euler method for a numerical solution of semi-linear stochastic
pantograph differential equations, that is, if an analytical solution is stable, then the
exponential Euler method applied to the system is mean-square stable for arbitrary
step-size h > 0. Numerical examples further illustrate the obtained theoretical results.
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1 Introduction
Stochastic delay differential equations played an important role in application areas, such
as physics, biology, economics, and finance [–]. Stochastic pantograph differential equa-
tions are particular cases of stochastic unbounded delay differential equations, Ockendon
and Tayler [] found how the electric current is collected by the pantograph of an electric
locomotive, therefore one speaks of stochastic pantograph differential equations.

In recent years, as one of the most important characteristics of stochastic systems, the
stability analysis caused much more attention [–]. Generally speaking, due to the char-
acteristics of stochastic differential equations themselves, it is difficult for us to get an-
alytical solution of equations, therefore, researching the proper numerical methods for
a numerical solution has certain theoretical value and practical significance. However,
the research for the numerical solution of stochastic pantograph differential equations
is still rare. Fan [] investigated mean-square asymptotic stability of the θ method for lin-
ear stochastic pantograph differential equations. Hua [, ] developed an almost surely
asymptotic stability analytical solution and numerical solution for neutral stochastic pan-
tograph differential equations. Xiao [] proved mean-square stability of the Milstein
method for stochastic pantograph differential equations under suitable conditions. Zhou
[] showed that the Euler-Maruyama method can preserve almost surely exponential sta-
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bility of stochastic pantograph differential equations under the linear growth conditions,
and the backward Euler-Maruyama method can reproduce almost surely exponential sta-
bility for highly nonlinear stochastic pantograph differential equations. The numerical re-
search for stochastic pantograph differential equations has just begun, and the stability
analysis of the numerical solution of the equations needs further perfection and develop-
ment.

Unfortunately, some conditions of stability are somewhat restrictive as applied to prac-
tical applications. This paper mainly proves that if an analytical solution is stable, then so
is the exponential Euler method applied to the system for any step-size h > . Namely, the
exponential Euler method for semi-linear stochastic pantograph differential equations is
general mean-square stable.

2 Exponential Euler scheme for stochastic pantograph differential equations
Throughout this paper, unless otherwise specified, let (�,F , P) be a complete probability
space with a filtration (Ft)t≥, which is increasing and right continuous, and F contains
all P-null sets. W (t) is Wiener process defined on the probability space, which may be Ft-
adapted and independent of F. Let | · | be the Euclidean norm. The inner product of x, y
in R

n is denoted by 〈x, y〉 or xT y, Rn is n-dimensional Euclidean space. If A is a vector or
matrix, its transpose is denoted by AT , if A is a matrix, the trace norm of the matrix A is
|A| =

√
trace(AT A). We use a ∨ b and a ∧ b to denote max{a, b} and min{a, b}.

We first introduce the exponential Euler method [, ] for a semi-linear ordinary dif-
ferential equation,

⎧
⎨

⎩
u′(t) + Au(t) = g(t, u),

u(t) = u.
()

Making use of method of variation of constant, the expression of the solution is

u(tn + h) = e–Ahu(tn) +
∫ t


e–A(h–τ )g

(
tn + τ , u(tn + τ )

)
dτ .

Applying the exponential Runge-Kutta method to equation (),

un+ = e–Ahun + h
p∑

i=

λi(–Ah)g(tn + cih, un,i),

un,i = e–ciAhun + h
p∑

j=

μij(–Ah)g(tn + cjh, un,j),

where

λi(–Ah) =

h

∫ h


e–A(h–τ )Li(τ ) dτ , μij(–Ah) =


h

∫ cih


e–A(cih–τ )Lj(τ ) dτ ,

Lj(τ ) is the Lagrange interpolating polynomial, c, c, . . . , cp are nodes, un, un,i are approxi-
mate values of u(tn), and u(tn +cih), letting Bn,i = g(tn +cih, un,i), then the numerical scheme
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can be written as

un+ = e–Ahun + h
p∑

i=

λi(–Ah)Bn,i.

When i = , the numerical scheme of the first-order exponential Runge-Kutta method is

un+ = e–Ahun +
∫ h


e–A(h–τ ) dτg(tn, un).

That is,

un+ = e–Ahun + e–Ahg(tn, un)
(

 – eAh

A

)
.

Hence, un+ = e–Ahun + e–Ahg(tn, un)h is called the numerical scheme of the exponential
Euler method.

Then, consider the following semi-linear stochastic pantograph differential equations:
⎧
⎨

⎩
dx(t) = (Ax(t) + f (t, x(t), x(pt))) dt + g(t, x(t), x(pt)) dW (t),

x() = ξ ,
()

where t > ,  < p < , ξ is the initial function, W (t) is a Wiener process, f : R+ ×R
n ×R

n →
R

n and g : R+ ×R
n ×R

n →R
n are two given Borel-measurable functions, and f and g are

called drift coefficient and diffusion coefficient, respectively. A ∈ R
n×n is the generator

of a strongly continuous analytical semi-group S = (S(t))t≥ []. By the definition of the
stochastic differential equations, equation () can be rewritten as the following stochastic
integral equation:

x(t) = eAtξ +
∫ t


eA(t–s)f

(
s, x(s), x(ps)

)
ds

+
∫ t


eA(t–s)g

(
s, x(s), x(ps)

)
dW (s). ()

We can derive numerical schemes by []. From this, we have

x(tn+) = eAtxn +
∫ tn+

tn

eA(tn+–s)f
(
s, x(s), x(ps)

)
ds

+
∫ tn+

tn

eA(tn+–s)g
(
s, x(s), x(ps)

)
dW (s) ()

if we choose the interval to approximate the integrals in the drift and diffusion terms, we
obtain

xn+ = eAhxn + eAhf (tn, xn, x[pn])h + eAhg(tn, xn, x[pn])
Wn, ()

where the initial value ξ = x, xn is an approximation to analytical solution x(tn), which is
Ftn -measurable, h >  is the given step-size, and h = tn+ – tn, 
Wn = W (tn+) – W (tn) are
independent N(, h) distributed stochastic variables. So equation () is called the expo-
nential Euler scheme for semi-linear stochastic pantograph differential equations.
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3 Mean-square stability of analytical solution
In this part, we illustrate the mean-square stability of the analytical solution for semi-
linear stochastic pantograph differential equations under some suitable conditions. First
of all, in order to consider the existence and uniqueness of the solution for equation (),
we impose the following assumption.

Assumption . [] We assume that f , g are sufficiently smooth and satisfy the Lipschitz
condition and the linear growth condition, that is,

() (Lipschitz condition) for all x, x, y, y ∈R
n, there exist a positive constant K , and

t ∈ [, T], such that

∣∣f (t, x, y) – f (t, x, y)
∣∣ ∨ ∣∣g(t, x, y) – g(t, x, y)

∣∣

≤ K
(|x – x| + |y – y|

)
; ()

() (linear growth condition) for all (t, x, y) ∈ [, T] ×R
n ×R

n, and assuming there
exists a positive constant L

∣∣f (t, x, y)
∣∣ ∨ ∣∣g(t, x, y)

∣∣ ≤ L
(
 + |x| + |y|), ()

there exists a unique solution x(t) to equation () and the solution belongs to
M([, T];R), namely x(t) satisfies E

∫ t
 |x(t)| < ∞.

Definition . The solution of equation () is said to be mean-square stable if

lim
t→∞ E

∣∣x(t)
∣∣ = . ()

Definition . [] μ[A] is a logarithmic norm of the matrix A, the definition is as follows:

μ[A] = lim

→+

‖I + 
A‖ – 

 .

Particularly, if ‖ · ‖ denotes the inner norm, μ[A] can be written

μ[A] = max
ξ �=

〈Aξ , ξ 〉
‖ξ‖ .

Theorem . Assume that the condition () holds, assume μ[A] and K satisfy

 + μ[A] + K +
K
p

< . ()

Then the analytical solution of equation () is mean-square stable.

Proof By the Itô formula [], we have

d
∣∣x(t)

∣∣ =
[

〈
x(t), Ax(t) + f

(
t, x(t), x(pt)

)〉
+

∣∣g
(
t, x(t), x(pt)

)∣∣]dt

+ 
〈
x(t), g

(
t, x(t), x(pt)

)〉
dW (t)
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=
[

〈
x(t), Ax(t)

〉
+ 

〈
x(t), f

(
t, x(t), x(pt)

)〉
+

∣∣g
(
t, x(t), x(pt)

)∣∣]dt

+ 
〈
x(t), g

(
t, x(t), x(pt)

)〉
dW (t).

According to condition () and the inequality ab ≤ a + b, we have


〈
x(t), f

(
t, x(t), x(pt)

)〉 ≤ ∣∣x(t)
∣∣ +

∣∣f
(
t, x(t), x(pt)

)∣∣

≤ ( + K)
∣∣x(t)

∣∣ + K
∣∣x(pt)

∣∣.

Combining with Definition ., we can obtain

d
∣∣x(t)

∣∣ ≤ [
μ[A]

∣∣x(t)
∣∣ + ( + K)

∣∣x(t)
∣∣ + K

∣∣x(pt)
∣∣ + K

∣∣x(t)
∣∣

+ K
∣∣x(pt)

∣∣]dt + 
〈
x(t), g

(
t, x(t), x(pt)

)〉
dW (t)

=
[(

 + μ[A] + K
)∣∣x(t)

∣∣ + K
∣∣x(pt)

∣∣]dt

+ 
〈
x(t), g

(
t, x(t), x(pt)

)〉
dW (t).

Integrating from  to t on both sides of the above inequality, it turns into

∣∣x(t)
∣∣ ≤ |ξ | +

∫ t



[(
 + μ[A] + K

)∣∣x(s)
∣∣ + K

∣∣x(ps)
∣∣]ds

+ 
∫ t


x(s)g

(
s, x(s), x(ps)

)
dW (s).

Taking the expectation,

E
∣∣x(t)

∣∣ ≤ E|ξ | + E
∫ t



[(
 + μ[A] + K

)∣∣x(s)
∣∣ + K

∣∣x(ps)
∣∣]ds

≤ E|ξ | +
(
 + μ[A] + K

)
E

∫ t



∣∣x(s)
∣∣ ds +

K
p

E
∫ pt



∣∣x(s)
∣∣ ds

≤ E|ξ | +
(

 + μ[A] + K +
K
p

)
E

∫ t



∣∣x(s)
∣∣ ds.

Together with condition  + μ[A] + K + K
p < , we have

lim
t→∞ E

∣∣x(t)
∣∣ = .

The analytical solution is mean-square stable. Therefore, the theorem is proven. �

4 General mean-square stability of numerical solution of the exponential Euler
method

We introduce the exponential Euler method for semi-linear stochastic pantograph differ-
ential equations in this section.

Definition . For any step-size h > , if the exponential Euler method to equation ()
generates a numerical approximation that satisfies

lim
n→∞ E|xn| =  ()
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then the numerical method applied to equation () is said to be general mean-square sta-
ble.

Theorem . Suppose that the conditions () and () hold, for arbitrary h > , then the
numerical solution of the exponential Euler method is general mean-square stable.

Proof According to equation () and taking squares on both sides, we can get

|xn+| =
∣∣eAhxn + eAhf (tn, xn, x[pn])h + eAhg(tn, xn, x[pn])
Wn

∣∣

= eμ[A]h(|xn| +
∣∣f (tn, xn, x[pn])

∣∣h +
∣∣g(tn, xn, x[pn])
Wn

∣∣)

+ eμ[A]h〈xn, f (tn, xn, X[pn])h
〉
+ eμ[A]h〈xn, g(tn, xn, x[pn])
Wn

〉

+ eμ[A]h〈f (tn, xn, x[pn])h, g(tn, xn, x[pn])
Wn
〉
.

Taking the expectation and substituting condition (), we obtain

E|xn+| ≤ eμ[A]hE
[|xn| + K

(|xn| + |x[pn]|
)
h + K

(|xn| + |x[pn]|
)|
Wn|

]

+ eμ[A]hE
[
( + K)|xn| + K |x[pn]|

]
h + eμ[A]hE

〈
xn, g(tn, xn, x[pn])
Wn

〉

+ eμ[A]hE
〈
f (tn, xn, x[pn])h, g(tn, xn, x[pn])
Wn

〉
. ()

We still note that E(
Wn) = , E[(
Wn)] = h, and xn, x[pn] are Ftn measurable, then

E
〈
xn, g(tn, xn, x[pn])
Wn

〉
= E

(
xT

n g(tn, xn, x[pn])
)
E(
Wn|Ftn ) = .

Similarly

E
〈
f (tn, xn, x[pn])h, g(tn, xn, x[pn])
Wn

〉
= ,

E
∣∣g(tn, xn, x[pn])
Wn

∣∣ = E
∣∣g(tn, xn, x[pn])

∣∣E
(
W 

n |Ftn

)

= E
∣∣g(tn, xn, x[pn])

∣∣h ≤ K
(
E|xn| + E|x[pn]|

)
h.

Equation () turns into

E|xn+| ≤ eμ[A]h[( + Kh + Kh + h
)
E|xn| +

(
Kh + Kh

)
E|x[pn]|

]

= BE|xn| + BE|x[pn]|,

where

B = eμ[A]h( + Kh + Kh + h
)
, B = eμ[A]h(Kh + Kh

)
.

Then

E|xn+| ≤ (B + B) max
{

E|xn|, E|x[pn]|
}

,
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and if

μ[A]h + ln
(
 + Kh + Kh + h

)
<  ()

the exponential Euler method is mean-square stable. Then we verify that () holds under
the conditions () and the following inequality. We all know that

ex >  + x +
x

!
+

x

!

if

(
 + Kh + Kh + h

)
<  – μ[A]h +

(–μ[A]h)

!
+

(–μ[A]h)

!
. ()

Simplifying equation (), we obtain



μ[A]h +

(
K – μ[A]

)
h +

(
 + μ[A] + K

)
< . ()

Let

m(h) =


μ[A]h +

(
K – μ[A]

)
h +

(
 + μ[A] + K

)
.

Due to  < p <  and condition (),

 + μ[A] + K <  + μ[A] + K +
K
P

< .

We can see μ[A] < , it is easy to know that

m′(h) =


μ[A]h + K – μ[A] < 

when h > . We have the monotonicity of the function, namely, m(h) < m() and m() =
 + μ[A] + K < . Hence, equation () holds and this implies that

(
 + Kh + Kh + h

)
< e–μ[A]h

and () holds.
So

B + B = eμ[A]h( + Kh + Kh + h
)

< .

Because of B + B < , it is not difficult to see that E|xn| ≤ E|x[pn]|, therefore

E|xn+| ≤ (B + B)E|x[pn]| ≤ (B + B)E|x[p([pn]–)]|

≤ · · · ≤ (B + B)kE|x|

as k tends to infinity, (B + B)k < . Then limn→∞ E|xn| = , the exponential Euler method
is general mean-square stable. This completes the proof. �
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Remark . When p = , equation () turns into

⎧
⎨

⎩
dx(t) = (Ax(t) + f (t, x(t))) dt + g(t, x(t)) dW (t),

x() = ξ .
()

For convenience, we consider the scalar semi-linear stochastic pantograph differential
equation

⎧
⎨

⎩
dx(t) = (ax(t) + f (t, x(t))) dt + g(t, x(t)) dW (t),

x() = ξ ,
()

where a < , if conditions () and a + 
√

K + K <  hold, for any step-size h > , the
exponential Euler method is stable. This result was demonstrated by Shi and Xiao [].

Remark . Consider the following scalar stochastic pantograph differential equation:

⎧
⎨

⎩
dx(t) = ax(t) dt + (bx(t) + bx(pt)) dW (t),

x() = ξ .
()

Take a = –, b = , c = . It is easy to see the coefficients satisfy the condition a <
– 

 (|b| + |c|). Using the exponential Euler method for (), we get

xn+ = e–hxn + e–h(xn + x[pn])
Wn. ()

Squaring both sides of (), taking the expectation, and using the inequality ab ≤ a + b,
we have

Ex
n+ = e–hx

n + e–h(x
n + xnx[pn] + x

[pn]
)
h

≤ e–hx
n + e–h[x

n + 
(
x

n + x
[pn]

)
+ x

[pn]
]
h

≤ e–h[( + h)x
n + hx

[pn]
]
.

Namely

ehEx
n+ ≤ ( + h)x

n + hx
[pn].

Use the inequality eh >  + h. So

Ex
n+ ≤ ( + h)x

n + hx
[pn]

eh ≤  + h
 + h

max
{

x
n, x

[pn]
}

.

The coefficients +h
+h < . According to Theorem ., the numerical solution produced by

the exponential Euler method is mean-square stable for any step-size h > .
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5 Numerical example
We will use numerical example to prove the effectiveness of the exponential Euler method.
Consider the following stochastic pantograph differential equation:

⎧
⎨

⎩
dx(t) = [ax(t) + ax(pt)] dt + [bx(t) + bx(pt)] dW (t),

x() = .
()

If the coefficients of equation () satisfy

a + |a| +


(|b| + |b|

) < , ()

then the solution of () is mean-square stable.
Case . We choose the coefficients of the test equation () as a = –., a = , b = ,

b = ., and p = .. Obviously, the coefficients do not satisfy the condition (). Numeri-
cal solutions produced by the exponential Euler method with h = ., h = . are shown
Figure . It is easy to see that numerical solutions are not mean-square stable.

Case . Taking the coefficients as a = –., a = , b = , b = ., and p = .. The
coefficients satisfy the condition (). Namely, the analytical solution is stable. We used
Matlab to randomly generate , discrete trajectories, getting the mean-square value
of , trajectories at the same time, that is,

Yj =


,

,∑

i=

∣∣yi
j
∣∣,

where yi
j is numerical solution of i trajectories at the time tj. Apply the exponential Euler

method with step-size h = ., h = ., h = ., and h = . as shown Figure . We
observe that numerical solutions produced by the exponential Euler method with arbitrary
step-sizes h >  are all stable.

Case . Considering () and taking p = .. We can know that numerical solutions pro-
duced by the Euler Maruyama method are not stable under h = ., h = . (see []).
While, under the same step-size, the exponential Euler numerical solutions are stable as
shown Figure . It is proved that the exponential Euler method is more advantageous than
the Euler Maruyama method in certain cases.

Figure 1 The exponential Euler method with h1 = 0.05, h2 = 0.5.
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Figure 2 The exponential Euler method with h3 = 0.05, h4 = 0.5, h5 = 1.5, h6 = 2.5.

Figure 3 The exponential Euler method with h1 = 0.2, h2 = 0.5.

6 Conclusions
In this paper, we investigate the stability of analytical solutions and numerical solutions
for a class of semi-linear stochastic pantograph differential equations. We not only ob-
tain the mean-square stability of the analytical solution under some sufficient conditions
but we also prove the general mean-square stability of numerical solution. That is, if the
semi-linear stochastic pantograph differential equation is stable, then the exponential Eu-
ler method applied to the system is mean-square stable for any step-size h > .
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