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1 Introduction
Let Rn be the n-dimensional Euclid space. For  < β < n, the fractional integral operator
Iβ is defined by

Iβ f (x) =
∫
Rn

f (y)
|x – y|n–β

dy.

The famous Hardy-Littlewood-Sobolev theorem tells us that Iβ is a bounded operator
from the usual Lebesgue spaces Lp to Lq with /q = /p – β/n, where  < p < n/β . Also Iβ is
bounded from L

n
β into BMO. As for p > n/β , Gatto and Vagi [] proved that Ĩβ is bounded

from Lp into Lipschitz spaces whose smoothness is controlled by p and α, where Ĩβ is
defined as

Ĩβ f (x) =
∫
Rn

(


|x – y|n–β
–

χ{|·|≥}(y)
|y|n–β

)
f (y) dy.

Indeed Gatto and Vagi’s result was proved in the setting of the spaces of homogeneous
type. Also there are extensions like weighted function spaces theory, see []. Recently,
Ramseyer et al. [] extended Gatto and Vagi’s result in the variable exponent function
spaces case.

For the sake of convenience, we briefly recall some basic elements of the Lebesgue
spaces with variable exponent, while more results can be found in [, ] and the refer-
ences therein. Let � be a non-empty open set in R

n and p(·) : � → [,∞) be a measurable
function. The variable exponent Lebesgue space Lp(·)(�) is defined by

Lp(·)(�) :=
{

f is measurable :
∫

�

∣∣∣∣ f (x)
λ

∣∣∣∣
p(x)

dx < ∞ for some constant λ > 
}

.
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It is easy to check that Lp(·)(�) is a Banach space with the norm defined by

‖f ‖Lp(·)(�) := inf

{
λ >  :

∫
�

∣∣∣∣ f (x)
λ

∣∣∣∣
p(x)

dx ≤ 
}

.

We let

p–(�) := ess inf
x∈�

p(x), p+(�) := ess sup
x∈�

p(x),

and we denote by P(�) the set of measurable function p(·) on � with value in [,∞) such
that  < p–(�) ≤ p(·) ≤ p+(�) < ∞. For the sake of simplicity, we write Lp(·)(Rn) as Lp(·) and
‖f ‖Lp(·)(Rn) as ‖f ‖p(·), respectively.

We say a function p(·) : Rn −→ R is locally log-Hölder continuous, if there exists a con-
stant C such that

∣∣p(x) – p(y)
∣∣ ≤ C

log(e + /|x – y|)
for all x, y ∈ R

n. If, for some p∞ ∈R and C > , we have

∣∣p(x) – p∞
∣∣ ≤ C

log(e + |x|)
for all x ∈R

n, then we say p(·) is log-Hölder continuous at infinity.
The notation P log(Rn) is used for all those exponents p(·) ∈P(Rn) which are locally log-

Hölder continuous and log-Hölder continuous at infinity with p∞ := lim|x|→∞ p(x). More-
over, we can easily show that p(·) ∈P log(Rn) implies p′(·) ∈P log(Rn) .

Ramseyer, Salinas and Viviani introduced the following function space, which can be
viewed as the variable exponent counterpart of Lipschitz space defined by Peetre in [].

Definition  ([]) Let  < β < n and p(·) ∈ P(Rn) and denote the Lebesgue measure of B
by |B|. We say that a locally integrable function f belongs to Lβ ,p(·)(Rn) if there exists a
constant C such that



|B| β
n ‖χQ‖p′(·)

∫
B
|f – mBf |dx ≤ C, (.)

for every ball B = B(x, R) ⊂ R
n, with mBf = 

|B|
∫

B f . The least constant C in (.) will be
denoted by ‖f ‖Lipβ ,p(·) .

Ramseyer, Salinas and Viviani proved the following theorem.

Theorem . ([]) Given  < β < n and p(·) ∈ P(Rn). Then the following two statements
are equivalent.

() Ĩβ is bounded from Lp(·)(Rn) into Lβ ,p(·)(Rn).
() p(·) ∈ Pβ , i.e., there exists a positive constant C such that for any ball B,

∥∥∥∥ χRn\B

|xB – ·|n–β+

∥∥∥∥
p′(·)

≤ C|B| β
n – 

n –‖χB‖p′(·) (.)

hold for every ball B, where xB denotes its center.
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Corollary . in [] says that if p(·) ∈P log(Rn) with  < β – < n
p+ , then p(·) satisfies (.).

With the help of Theorem ., Ĩβ is bounded from Lp(·)(Rn) to Lβ ,p(·)(Rn). It is natural to
ask what the target space is when Lp(·)(Rn) is replaced by other more general spaces. The
main result of this note is that the target space of mapping Ĩβ is just the variant Lipschitz
space when Lp(·)(Rn) is replaced by the so-called variable exponent Herz space.

2 Herz spaces and main results
Variable exponent Herz spaces were considered by many authors in recent years. Espe-
cially Herz spaces with two variable exponents and even with three variable exponents
were produced by Almeida and Drihem [] and Samko [], respectively. For brevity, we
only consider the Herz space with one variable exponent case, which was introduced by
Izuki in []. Let B(x, r) = {y ∈ R

n : |x – y| < r}, Bk = {x ∈ R
n : |x| < k}, Ak = Bk \ Bk–, and

χAk = χk be the characteristic function of the set Ak for k ∈ Z.

Definition  ([]) Let α ∈ R,  < q ≤ ∞ and p(·) ∈P(Rn). The homogeneous Herz space
K̇α

p(·),q(Rn) is defined as the set of all f ∈ Lp(·)
loc (Rn \ {}) such that

‖f ‖K̇α
p(·),q(Rn) :=

(∑
k∈Z

kαq‖f χk‖q
p(·)

)/q

< ∞.

It is obvious that if p(·) is a constant, then K̇α
p(·),q(Rn) = K̇α

p,q(Rn) are classical Herz spaces.
We can refer to [] for more properties of the classical one.

Our main result is to establish a result of mapping property of Ĩβ on K̇α
p(·),q(Rn). For this

purpose we need to define a variant of the Lipschitz space.

Definition  Given –∞ < λ < +∞,  < β < n, and p(·) ∈P(Rn). We say that a locally inte-
grable function f belongs to Lλ

β ,p(·) if there exists a constant C such that


(|x| + R)λ



|B| β
n ‖χB‖p′(·)

∫
B
|f – mBf |dx ≤ C, (.)

for every ball B = B(x, R) ⊂ R
n, with mBf = 

|B|
∫

B f . The least constant C in (.) will be
denoted by ‖f ‖Lλ

β ,p(·)
.

Remark . It is easy to see that in Definition  the average mBf can be replaced by a
constant in the following sense:



‖f ‖Lipλ

β ,p(·)
≤ sup

B∈Rn ,R>
inf
c∈R


(|x| + R)λ



|B| β
n ‖χB‖p′(·)

∫
B
|f – c|dx ≤ ‖f ‖Lipλ

β ,p(·)
.

Also by Definition , we obtain Lλ
β,p(·) ⊂ Lλ

β ,p(·), where λ – λ = β – β ≥ . Especially,
Lλ

β ,p(·) ⊂Lβ+λ,p(·) for λ <  and Lβ+λ,p(·) ⊂Lλ
β ,p(·) for λ > .

Now we are in a position to state our results.

Theorem . Suppose that  < q < ∞ and p(·) ∈ P log(Rn). If β – n
p+ –  < α < n – n

p– ,  <
β < n

p+ + , then the operator Ĩβ is bounded from K̇α
p(·),q(Rn) to L–α

β ,p(·)(R
n).
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Theorem . Suppose that  < q < ∞ and p(x) ∈P log(Rn). If ε > , then Ĩβ is not bounded
from K̇α

p(·),q(R) to L–α–ε
β+ε,p(·)(R

).

Remark . According to Remark ., L–α–ε
β+ε,p(·)(R

) ⊂ L–α
β ,p(·)(R

) when ε > . This shows
that Theorem . is optimal.

We give some lemmas in Section  and then prove the above theorems in Section .
C always means a positive constant independent of the main parameters and it may change
from one occurrence to another. f ∼ g means C–g ≤ f ≤ Cg .

3 Technique lemmas
Lemma . ([]) Let � ⊂ R

n. If p(·) ∈ P(�), then for all f ∈ Lp(·)(�) and all g ∈ Lp′(·)(�)
we have

∫
�

∣∣f (x)g(x)
∣∣dx ≤ rp‖f ‖Lp(·)(�)‖g‖Lp′(·)(�),

where rp :=  + 
p–(�) – 

p+(�) .

Given a function f ∈ L
loc(Rn), the Hardy-Littlewood maximal operator M is defined by

Mf (x) := sup
r>

r–n
∫

B(x,r)

∣∣f (y)
∣∣dy, x ∈R

n,

and we say B(Rn) is the set of p(·) ∈ P(Rn) satisfying the condition that M is bounded on
Lp(·)(Rn).

Lemma . ([]) p(·) ∈P log(Rn) implies p(·) ∈ B(Rn).

Lemma . ([]) Let p(·) ∈ B(Rn), then there exists a positive constant C such that

C–|B| ≤ ‖χB‖p(·)‖χB‖p′(·) ≤ C|B|

hold for every ball B.

Remark . According to Lemma ., the conclusion of Lemma . is correct when the
condition p(·) ∈ B(Rn) is replaced by p(·) ∈P log(Rn).

Lemma . (Corollary .. in []) Let p(·) ∈P log(Rn), then for every ball B ⊂R
n,

‖χB‖p(·) ∼ |B| 
p(x) , if |B| ≤ n, x ∈ B,

and

‖χB‖p(·) ∼ |B| 
p∞ , if |B| ≥ .

Lemma . ([]) Let p(·) ∈P(Rn) and  < β –  < n
p+ .

() If p(·) ∈P log(Rn) and  < β –  < n
p+ , then p(·) ∈ Pβ .
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() If p(·) ∈ Pβ , then there exists a positive constant C such that

‖χB‖p(·) ≤ C‖χB‖p(·), (.)

for every ball B, where B is the ball having the same center as B but whose diameter
is two times as large.

We point out that the two results collected in Lemma . are from []. The result () is
Corollary . and () is Lemma . therein, respectively.

Lemma . Let p(·) ∈P log(Rn), then there exists a constant C >  such that for all balls B
and all measurable subsets S = B(x, r) ⊂ B = B(x, r),

‖χS‖p(·)
‖χB‖p(·)

≤ C
( |S|

|B|
) 

p+

.

Proof We proved the lemma in the following three cases: () |S| < |B| < ; () |S| <  <
|B|; ()  ≤ |S| < |B|. Cases () and () are easy, we omit the details. Now for case (). By
Lemma .,

‖χS‖p(·)
‖χB‖p(·)

∼ |S| 
p(xS )

|B| 
p(xS )

|B| 
p(xS ) – 

p(xB) ≤ C
( |S|

|B|
) 

p+

.

Indeed in the last inequality in the above equation, since |xB – xS| ≤ r, we make use of
the local-Hölder continuity of p(x), so

∣∣∣∣ 
p(xS)

–


p(xB)

∣∣∣∣ log

r

≤ log 
r

log(e + 
|xS–xB| )

≤ log 
r

log(e + 
r

)
≤ C.

The lemma is proved. �

4 Proofs of theorems

Proof of Theorem . Fix a ball Q = B(x, R). To prove Theorem ., we need to estimate

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Ĩβ f (x) – c
∣∣dx.

Let k be the least integer such that Q ⊂ B(, k), hence |x| + R ∼ k . We consider three
cases:

() Q ∩ B(, k–) �= ∅,
() Q ∩ B(, k–) = ∅ and R ≥ k–,
() Q ∩ B(, k–) = ∅ and R < k–.
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Case () or (). Note that |Q| ≥ Ckn in both cases. We write

f (x) = f χB(,k+)(x) + f χ
Rn\B(,k+)(x) =: f(x) + f(x). (.)

First we estimate Ĩβ f.
Let c = –

∫
|y|≥

f(y)
|y|n–β dy, then Ĩβ f – c = Iβ f. For any x ∈ Q, |Iβ f(x)| ≤ ∫

B(,k+)
|f (y)|

|x–y|n–β dy.
Then by Fubini’s theorem, we have

∫
Q

∣∣Iβ f(x)
∣∣dx ≤

∫
B(,k+)

∣∣f (y)
∣∣
∫

Q


|x – y|n–β

dx dy

≤ C|Q| β
n

∫
B(,k+)

∣∣f (y)
∣∣dy

= C|Q| β
n

k+∑
j=–∞

∫
Aj

∣∣f (y)
∣∣dy.

Using Lemma . and Lemma ., we derive the estimate

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Iβ f(x)
∣∣dx ≤ C

k+∑
j=–∞

(|x| + R)α

‖χQ‖p′(·)

∫
Aj

∣∣f (y)
∣∣dy

≤ C
k+∑

j=–∞
kα ‖χQ‖p(·)

|Q| ‖f χj‖p(·)‖χj‖p′(·)

≤ C
k+∑

j=–∞
kα–kn‖f χj‖p(·)‖χBj‖p′(·)‖χBk ‖p(·). (.)

Now we can distinguish three cases as follows, by Lemma .:
() If  ≤ j –  ≤ k, we have

‖χBj‖p′(·)‖χBk ‖p(·) ∼ |Bj|


p′∞ |Bk|


p∞ ∼ (
jn) 

p′∞
(
kn) 

p∞

∼ jn(k–j) n
p∞ ≤ Cjn(k–j) n

p– .

() If j –  <  ≤ k, we obtain

‖χBj‖p′(·)‖χBk ‖p(·) ∼ |Bj|


p′(xj) |Bk|


p∞ ∼ (
jn) 

p′(xj)
(
kn) 

p∞

∼ jn(–jn) 
p(xj)

(
kn) 

p∞ ≤ Cjn(k–j) n
p– .

() If j –  ≤ k < , we get

‖χBj‖p′(·)‖χBk ‖p(·) ∼ |Bj|


p′(xj) |Bk|


p(xk ) ∼ (
jn) 

p′(xj)
(
kn) 

p(xk )

∼ jn
(k–j) n

p(xj)
(
kn) 

p(xk ) – 
p(xj) ≤ Cjn(k–j) n

p– .
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Here in the last inequality we using the following facts: If k ≥ , |xk| < k , and |xj| < j ≤ k ,
then the local-Hölder continuity of p(x) at the origin yields

∣∣∣∣ 
p(xk)

–


p(xj)

∣∣∣∣ log


k ≤
∣∣∣∣ 
p(xk)

–


p()

∣∣∣∣ log


k +
∣∣∣∣ 
p(xj)

–


p()

∣∣∣∣ log


k

≤ C
log 

k

log(e + 
k )

≤ C

with C >  independent of k, j, xk , xj.
Therefore,

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Iβ f(x)
∣∣dx ≤ C

k+∑
j=–∞

(k–j)(α–n+ n
p– )jα‖f χj‖p(·).

Since

jα‖f χj‖Lp(·)(Rn) =
(
jqα‖f χj‖q

Lp(·)(Rn)

)/q ≤
( ∞∑

i=–∞
iqα‖f χi‖q

Lp(·)
(
R

n)
)/q

≤ ‖f ‖K̇α
p(·),q(Rn).

Thus by the condition α – n + n
p– < , it follows that

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Iβ f(x)
∣∣dx ≤ C‖f ‖K̇α

p(·),q(Rn). (.)

Next we estimate Ĩβ f. Let c = Ĩβ f(x). For any x ∈ Q, y ∈ Aj and j ≥ k + , we have
|x – y| ≥ |y| – |x| > j– – k ≥ j–. Then

∣∣Ĩβ f(x) – c
∣∣ ≤

∫
Rn

∣∣∣∣ 
|x – y|n–β

–


|x – y|n–β

∣∣∣∣
∣∣f(y)

∣∣dy

≤ CR
∫
Rn\B(,k+)

|f (y)|
|x – y|n–β+ dy

≤ CR
∞∑

j=k+

∫
Aj

|f (y)|
|x – y|n–β+ dy

≤ CR
∞∑

j=k+

–j(n–β+)
∫

Aj

∣∣f (y)
∣∣dy.

By Lemma . and Lemma ., we obtain

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Ĩβ f(x) – c
∣∣dx ≤ CR

∞∑
j=k+

kα–j(n–β+)

|Q| β
n ‖χQ‖p′(·)

|Q|
∫

Aj

∣∣f (y)
∣∣dy

≤ CR
∞∑

j=k+

kα–j(n–β+)‖χQ‖p(·)
|Q| β

n
‖f χj‖p(·)‖χj‖p′(·)

≤ CR
∞∑

j=k+

kα–j(n–β+)

kβ
‖f χj‖p(·)‖χBj‖p′(·)‖χBk ‖p(·).
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Applying the arguments used in the corresponding step of the estimate of Ĩβ f, we arrive
at the inequality

‖χBj‖p′(·)‖χBk ‖p(·) ≤ Cjn(k–j) n
p+ . (.)

Since α – β + n
p+ +  > ,

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Ĩβ f(x) – c
∣∣dx ≤ C

∞∑
j=k+

(k–j)(α–β+ n
p+ +)jα‖f χj‖p(·)

≤ C‖f ‖K̇α
p(·),q(Rn).

(.)

Combining (.)-(.), cases () and () are proved.
Case (). We write

f (x) = f χB(x,R)(x) + f χBk+\(Bk–∪B(x,R))(x) + f χBk– (x) + f χRn\Bk+ (x)

=: f(x) + f(x) + f(x) + f(x).
(.)

First we estimate Ĩβ f. Let c = –
∫
|y|≥

f(y)
|y|n–β dy, then Ĩβ f –c = Iβ f. For any x ∈ Q, |Iβ f(x)| ≤∫

B(x,R)
|f (y)|

|x–y|n–β dy. Then by Fubini’s theorem and Lemma ., we obtain

∫
Q

∣∣Iβ f(x)
∣∣dx ≤

∫
B(x,R)

∣∣f (y)
∣∣∫

Q


|x – y|n–β

dx dy

≤ C|Q| β
n

∫
B(x,R)

∣∣f (y)
∣∣dy

≤ C|Q| β
n ‖f χB(x,R)‖p(·)‖χB(x,R)‖p′(·).

Note that B(x, R) ⊂ ⋃k+
j=k– Aj, so

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Ĩβ f(x) – c
∣∣dx ≤ Ckα‖f χB(x,R)‖p(·)

≤ C
k+∑

j=k–

jα‖f χj‖p(·)

≤ C‖f ‖K̇α
p(·),q(Rn). (.)

Next we estimate Ĩβ f. Let c = Ĩβ f(x). By Lemma ., and then by the condition  < β <
n

p+ +  with Lemma .,

∣∣Ĩβ f(x) – c
∣∣ ≤ CR

∫
|x–y|>R

|f(y)|
|x – y|n–β+ dy

≤ CR‖f χBk+\Bk–‖p(·)
∥∥∥∥ χRn\B(x,R)

|x – y|n–β+

∥∥∥∥
p′(·)

≤ C
∣∣B(x, R)

∣∣ β
n –‖f χBk+\Bk–‖p(·)‖χB(x,R)‖p′(·)

≤ C|Q| β
n –‖f χBk+\Bk–‖p(·)‖χQ‖p′(·).
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Hence

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Ĩβ f(x) – c
∣∣dx ≤ Ckα‖f χBk+\Bk–‖p(·)

≤ C‖f ‖K̇α
p(·),q(Rn). (.)

Now we estimate Ĩβ f. Let c = Ĩβ f(x). For any x ∈ Q, y ∈ B(, k–), we have |x – y| ≥
|x| – |y| > k– – k– = k–. Then

∣∣Ĩβ f(x) – c
∣∣ ≤

∫
Rn

∣∣∣∣ 
|x – y|n–β

–


|x – y|n–β

∣∣∣∣
∣∣f(y)

∣∣dy

≤ CR
∫

B(,k–)

|f (y)|
|x – y|n–β+ dy

≤ CR–k(n–β+)
∫

B(,k–)

∣∣f (y)
∣∣dy

= CR–k(n–β+)
k–∑

j=–∞

∫
Aj

∣∣f (y)
∣∣dy.

Now Lemma . yields

∣∣Ĩβ f(x) – c
∣∣ ≤ CR–k(n–β+)

k–∑
j=–∞

‖f χj‖p(·)‖χj‖p′(·).

Lemma . gives

‖χQ‖p(·)
‖χBk ‖p(·)

≤ C
( |Q|

|Bk|
) 

p+

. (.)

Since α – n + n
p– < , we have

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Ĩβ f(x) – c
∣∣dx

≤ C
kα

|Q| β–
n

–k(n–β+)
k–∑

j=–∞
‖f χj‖p(·)‖χj‖p′(·)‖χQ‖p(·)

≤ C
kα

|Bk| β–
n

–k(n–β+)
( |Q|

|Bk|
) 

p+ – β–
n k–∑

j=–∞
‖f χj‖p(·)‖χBj‖p′(·)‖χBk ‖p(·)

≤ C
k–∑

j=–∞
(k–j)(α–n+ n

p– )jα‖f χj‖p(·)

≤ C‖f ‖K̇α
p(·),q(Rn). (.)
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Finally we estimate Ĩβ f. Let c = Ĩβ f(x). For any x ∈ Q, y ∈ R
n \ B(, k+), and j ≥ k + ,

we have |x – y| ≥ |y| – |x| > k+ – k = k . Then we write

∣∣Ĩβ f(x) – c
∣∣ ≤ CR

∫
Rn\B(,k+)

|f (y)|
|x – y|n–β+ dy

≤ CR
∞∑

j=k+

∫
Aj

|f (y)|
|x – y|n–β+ dy

≤ CR
∞∑

j=k+

–j(n–β+)
∫

Aj

∣∣f (y)
∣∣dy.

Lemma . implies

∫
Aj

∣∣f (y)
∣∣dy ≤ C‖f χj‖p(·)‖χBj‖p′(·).

Applying Lemma . we obtain

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Ĩβ f(x) – c
∣∣dx ≤ C

kα

|Q| β–
n

–k(n–β+)
k–∑

j=–∞
‖f χj‖p(·)‖χBj‖p′(·)‖χQ‖p(·).

Since α – β + n
p+ +  > , by (.) and (.),

(|x| + R)α

|Q| β
n ‖χQ‖p′(·)

∫
Q

∣∣Ĩβ f(x) – c
∣∣dx ≤ C

∞∑
j=k+

(k–j)(α–β+ n
p+ +)jα‖f χj‖p(·)

≤ C‖f ‖K̇α
p(·),q(Rn). (.)

Combining (.)-(.), (.), and (.), case () is proved and then the proof of the the-
orem is completed. �

Proof of Theorem . Let fi(x) = –iαχ[i ,i+](x) for i ≥ , then ‖fi‖K̇α
p(·),q(R) ∼  and

Ĩβ fi(x) – Ĩβ fi
(
i) =

∫
R

{


|x – y|–β
–


|i – y|–β

}
fi(y) dy

=
–iα

β

{(
i +  – x

)β –
(
i – x

)β – 
}

.

Let Bi = (i – , i) with |Bi| = , then


|Bi|

∫
Bi

Ĩβ fi(x) dx =
–iα(β+ – β – )

β(β + )
+ Ĩβ fi

(
i).

Hence


|Bi|

∫
Bi

∣∣Ĩβ fi(x) – (Ĩβ fi)Bi

∣∣dx

=
–iα

β

∫ i

i–

∣∣∣∣
(
i +  – x

)β –
(
i – x

)β –  –
β+ – β – 

β + 

∣∣∣∣dx
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=
–iα

β

∫ 



∣∣∣∣( – x)β – ( – x)β –  –
β+ – β – 

β + 

∣∣∣∣dx

= C–iα

and

lim
i→∞


(|i – 

 | + 
 )–α–ε|Bi|β+ε‖χBi‖p′(·)

∫
Bi

∣∣Ĩβ fi(x) – (Ĩβ fi)Bi

∣∣dx

= lim
i→∞

C–iα

(|i – 
 | + 

 )–α–ε|Bi|β+ε–‖χBi‖p′(·)

= lim
i→∞ Ciε = ∞.

This finishes the proof of Theorem .. �
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